Three-term arithmetic progressions

Yuval

Mathcamp 2022

Introduction

Lower bounds

Upper bounds

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. *d* is called the common difference of the 3-AP.

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (d = 6) 1, 25, 49 (d = 24)
- 3, 5, 7 (d = 2) 3, 76, 149 (d = 73)
- 100, 200, 300 (*d* = 100) 49, 169, 289 (*d* = 120)

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (*d* = 6) 1, 25, 49 (*d* = 24)
- 3, 5, 7 (*d* = 2) 3, 76, 149 (*d* = 73)
- 100, 200, 300 (*d* = 100) 49, 169, 289 (*d* = 120)

What interesting things can possibly be said about 3-APs?

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- (d = 6)(d = 24)• 11, 17, 23 • 1, 25, 49
- (*d* = 2) 3, 76, 149 (d = 73)• 3, 5, 7
- 100, 200, 300 (d = 100) 49, 169, 289 (d = 120)

What interesting things can possibly be said about 3-APs?

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- (d = 6) 1, 25, 49 (d = 24)• 11, 17, 23
- (*d* = 2) 3, 76, 149 (d = 73)• 3, 5, 7
- 100, 200, 300 (d = 100) 49, 169, 289 (d = 120)

What interesting things can possibly be said about 3-APs?

```
Theorem (Fibonacci 1225)
```

There are infinitely many 3-APs among the perfect squares.

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (d = 6) 1, 25, 49 (d = 24)(*d* = 2) • 3, 76, 149 (d = 73)• 3, 5, 7
- 100, 200, 300 (d = 100) 49, 169, 289 (d = 120)

What interesting things can possibly be said about 3-APs?

Theorem (Fibonacci 1225)

There are infinitely many 3-APs among the perfect squares. For any integers r, m, n with m > n, let $d = 4r^2mn(m^2 - n^2)$. Then $r^{2}(m^{2}+n^{2})^{2}-d,$ $r^{2}(m^{2}+n^{2})^{2},$ $r^{2}(m^{2}+n^{2})^{2}+d$

forms a 3-AP of squares, and all such 3-APs arise in this way.

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (d = 6) 1, 25, 49 (d = 24)• 3, 5, 7 (d = 2) • 3, 76, 149 (d = 73)
- 3, 5, 7 (d = 2) 3, 76, 149 (d = 73) • 100, 200, 300 (d = 100) • 49, 169, 289 (d = 120)
- What interesting things can possibly be said about 3-APs?

Theorem (Dénes 1952, Ribet 1997, Darmon-Merel 1997)

There are no 3-APs among the perfect nth powers, for any $n \ge 3$.

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (d = 6) 1, 25, 49 (d = 24)• 3, 5, 7 (d = 2) • 3, 76, 149 (d = 73)
- 3, 5, 7 (d = 2) 3, 76, 149 (d = 73)
- 100, 200, 300 (*d* = 100) 49, 169, 289 (*d* = 120)

What interesting things can possibly be said about 3-APs?

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23 (d = 6) 1, 25, 49 (d = 24)• 3, 5, 7 (d = 2) • 3, 76, 149 (d = 73)
- 100, 200, 300 (*d* = 100) 49, 169, 289 (*d* = 120)

What interesting things can possibly be said about 3-APs?

Theorem (van der Corput 1939)

There are infinitely many 3-APs among the primes.

Definition

A three-term arithmetic progression (3-AP) consists of three integers of the form a, a + d, a + 2d, where d > 0. d is called the common difference of the 3-AP.

- 11, 17, 23(d = 6)• 1, 25, 49(d = 24)• 3, 5, 7(d = 2)• 3, 76, 149(d = 73)
- 100, 200, 300 (*d* = 100) 49, 169, 289 (*d* = 120)

What interesting things can possibly be said about 3-APs?

Theorem (van der Corput 1939)

There are infinitely many 3-APs among the primes.

Theorem (Green-Tao 2008)

The primes contain arbitrarily long arithmetic progressions.

Introduction

Upper bounds

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Question

How large can a set $A \subseteq \mathbb{N}$ be if A contains no 3-AP?

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Question

How large can a set $A \subseteq \mathbb{N}$ be if A contains no 3-AP?

Well... $|A| = \infty$ is possible (e.g. $A = \{\text{cubes}\}$ or $A = \{\text{powers of } 2\}$).

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Question

How large can a set $A \subseteq \mathbb{N}$ be if A contains no 3-AP?

Well... $|A| = \infty$ is possible (e.g. $A = \{\text{cubes}\}$ or $A = \{\text{powers of } 2\}$).

Better question (Erdős-Turán 1936)

How large can a set $A \subseteq \{1, 2, ..., N\}$ be if A contains no 3-AP?

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Question

How large can a set $A \subseteq \mathbb{N}$ be if A contains no 3-AP?

Well... $|A| = \infty$ is possible (e.g. $A = \{\text{cubes}\}$ or $A = \{\text{powers of } 2\}$).

Better question (Erdős-Turán 1936)

How large can a set $A \subseteq \{1, 2, ..., N\}$ be if A contains no 3-AP?

Definition

Let $r_3(N)$ be the maximum size of a 3-AP-free subset of $\{1, ..., N\}$, i.e.

$$r_3(N) = \max_{\substack{A \subseteq \{1, \dots, N\}\\A \text{ contains no 3-AP}}} |A|.$$

Some natural sets of integers (perfect squares, primes) contain infinitely many 3-APs, but others do not.

Question

How large can a set $A \subseteq \mathbb{N}$ be if A contains no 3-AP?

Well... $|A| = \infty$ is possible (e.g. $A = \{\text{cubes}\}$ or $A = \{\text{powers of } 2\}$).

Better question (Erdős-Turán 1936)

How large can a set $A \subseteq \{1, 2, ..., N\}$ be if A contains no 3-AP?

Definition

Let $r_3(N)$ be the maximum size of a 3-AP-free subset of $\{1, ..., N\}$, i.e.

$$r_3(N) = \max_{\substack{A \subseteq \{1, \dots, N\}\\A \text{ contains no 3-AP}}} |A|.$$

Rest of the talk: How well can we estimate $r_3(N)$ as a function of N?

Introduction

Lower bound

Upper bounds

Which is larger:

 $X = 1000N^{1/3} + 1000000$ or $Y = \frac{N^{2/3}}{1000} - 1000000$?

Introduction

Upper bounds

Which is larger:

$$X = 1000N^{1/3} + 1000000$$
 or $Y = \frac{N^{2/3}}{1000} - 1000000$?

For "reasonable" N, X is clearly much larger than Y. In fact, X > Y for N up to one quintillion.

Which is larger:

 $X = 1000N^{1/3} + 1000000$ or $Y = \frac{N^{2/3}}{1000} - 1000000$?

For "reasonable" N, X is clearly much larger than Y. In fact, X > Y for N up to one quintillion. However, if N is huge, then Y is **much** bigger than X.

Introduction

Upper bounds

Which is larger:

 $X = 1000N^{1/3} + 1000000$ or $Y = \frac{N^{2/3}}{1000} - 1000000$?

For "reasonable" N, X is clearly much larger than Y. In fact, X > Y for N up to one quintillion. However, if N is huge, then Y is **much** bigger than X.

Definition

For two functions f, g, we say that $f \gtrsim g$ if

$$\lim_{N\to\infty}\frac{f(N)}{g(N)}>0.$$

 $f \gtrsim g$ means that f is at least as large as g up to a constant factor.

Introduction

Which is larger:

 $X = 1000N^{1/3} + 1000000$ or $Y = \frac{N^{2/3}}{1000} - 1000000$?

For "reasonable" N, X is clearly much larger than Y. In fact, X > Y for N up to one quintillion. However, if N is huge, then Y is **much** bigger than X.

Definition

For two functions f, g, we say that $f \gtrsim g$ if

$$\lim_{N\to\infty}\frac{f(N)}{g(N)}>0.$$

We say that $f \gg g$ if

$$\lim_{N\to\infty}\frac{f(N)}{g(N)}=\infty.$$

 $f \gtrsim g$ means that f is at least as large as g up to a constant factor. $f \gg g$ means that f is **much** bigger than g.

Introduction

Lower bounds

Upper bounds

Lower bounds on $r_3(N)$

Introduction

Lower bounds

Upper bounds

Techniques for lower-bounding $r_3(N)$

Recall: $r_3(N)$ is the maximum size of a 3-AP-free subset of $\{1, 2, ..., N\}$.

Techniques for lower-bounding $r_3(N)$

Recall: $r_3(N)$ is the maximum size of a 3-AP-free subset of $\{1, 2, ..., N\}$.

Probabilistic method

Greedy algorithm

Number theory

High-dimensional geometry

Lower bounds

Upper bounds

Introduction

Lower bounds

Upper bounds

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs in R) \approx p^3 \cdot #(3-APs in \{1, 2, ..., N\})$

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs in R) \approx p^3 \cdot #(3-APs in \{1, 2, ..., N\})$

We have that $#(3-APs \text{ in } \{1, 2, ..., N\}) < N^2$.

Upper bounds

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs in R) \approx p^3 \cdot #(3-APs in \{1, 2, ..., N\})$

We have that #(3-APs in $\{1, 2, ..., N\}$) < N^2 . (*N* choices for the start, < *N* for the common difference of the 3-AP.)

Upper bounds

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If *N* is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs \text{ in } R) \approx p^3 \cdot #(3-APs \text{ in } \{1, 2, ..., N\}) < p^3 N^2.$

We have that #(3-APs in $\{1, 2, ..., N\}$) < N^2 . (*N* choices for the start, < *N* for the common difference of the 3-AP.)

Upper bounds

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs in R) \approx p^3 \cdot #(3-APs in \{1, 2, ..., N\}) < p^3 N^2.$

We have that $\#(3\text{-APs in } \{1, 2, ..., N\}) < N^2$. (*N* choices for the start, < *N* for the common difference of the 3-AP.) Pick $p = N^{-2/3}$, so

$$\#(3-\text{APs in } R) < p^3 N^2 = 1.$$
The probabilistic method

ð

Often, you have to work really hard to find a mathematical object with certain "nice" properties.

Sometimes, a random object has the desired properties!

We pick a random subset $R \subseteq \{1, 2, ..., N\}$, by keeping each element with probability p (chosen later).

Fact

If N is large, with probability > 99%, we have $|R| \approx pN$ and

 $#(3-APs in R) \approx p^3 \cdot #(3-APs in \{1, 2, ..., N\}) < p^3 N^2.$

We have that $\#(3\text{-APs in } \{1, 2, ..., N\}) < N^2$. (*N* choices for the start, < *N* for the common difference of the 3-AP.) Pick $p = N^{-2/3}$, so

$$\#(3-\text{APs in } R) < p^3 N^2 = 1.$$

So *R* has no 3-APs, and $|R| \approx pN = N^{1/3}$.

The probabilistic method

So *R* has no 3-APs, and $|R| \approx pN = N^{1/3}$.

Lower bounds

Upper bounds

The probabilistic method

ð

So *R* has no 3-APs, and $|R| \approx pN = N^{1/3}$.

Lower bounds

Upper bounds

Introduction

Lower bounds

Upper bounds

1 2 3 4 5 6 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 4 5 6 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 6 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 **3 4** 5 **6** 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 **3 4** 5 **6** 7 8 **9** 10

Introduction

Lower bounds

Upper bounds

1 2 **3 4** 5 **6** 7 8 9 10

Introduction

Lower bounds

Upper bounds

1 2 **3 4** 5 **6** 7 8 **9 10**

Introduction

Lower bounds

Upper bounds

1 2 3 4 5 6 7 8 <mark>9</mark> 10

Introduction

Lower bounds

Upper bounds

Introduction

Lower bounds

Upper bounds

1 2 3 **4** 5 **6** 7 8 **9 10**

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 <mark>9</mark> 10

Suppose we have picked out *k* elements from {1, ..., *N*}.

Introduction

Lower bounds

Upper bounds

1 2 3 <mark>4</mark> 5 <mark>6</mark> 7 8 <mark>9</mark> 10

Suppose we have picked out *k* elements from $\{1, ..., N\}$. They rule out at most $3\binom{k}{2}$ other elements.

Introduction

Lower bounds

Upper bounds

Suppose we have picked out k elements from $\{1, ..., N\}$. They rule out at most $3\binom{k}{2}$ other elements. So as long as $3\binom{k}{2} < N - k$, we can keep picking out elements.

Introduction

Lower bounds

Upper bounds

Suppose we have picked out k elements from $\{1, ..., N\}$. They rule out at most $3\binom{k}{2}$ other elements.

So as long as $3\binom{k}{2} < N - k$, we can keep picking out elements. We need

$$N > 3\binom{k}{2} + k = \frac{3}{2}k^2 - \frac{1}{2}k$$

Upper bounds

Suppose we have picked out k elements from $\{1, ..., N\}$. They rule out at most $3\binom{k}{2}$ other elements.

So as long as $3\binom{k}{2} < N - k$, we can keep picking out elements. We need

$$N > 3\binom{k}{2} + k = \frac{3}{2}k^2 - \frac{1}{2}k \qquad \Longleftrightarrow \qquad k < \frac{\sqrt{24N+1}+1}{6}.$$

Upper bounds

Lower bounds

Upper bounds

Introduction

Lower bounds

Upper bounds

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ $21 = 210_3$ $30 = 1010_3$ $80 = 2222_3$

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ **21 210 30** = 1010₃ **80 2222 3**

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ $21 - 210_3$ $30 = 1010_3$ 80 - 222

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers.

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ **21 210 30** = 1010₃ **80 2222 3**

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. *T* is 3-AP-free.

Introduction

Upper bounds

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ 2 2103 $30 = 1010_3$ 80 222

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. *T* is 3-AP-free. Suppose *a*, *a* + *d*, *a* + 2*d* \in *T*

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. *T* is 3-AP-free. Suppose *a*, *a* + *d*, *a* + 2*d* \in *T*, e.g. *a* = 1101001011₃, *d* = 2022100₃.

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ **21 210 30** = 1010₃ **80 2222 3**

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. *T* is 3-AP-free. Suppose *a*, *a* + *d*, *a* + 2*d* \in *T*, e.g. *a* = 1101001<u>0</u>11₃, *d* = 2022<u>1</u>00₃.

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

 $13 = 111_3$ **21 210 30** = 1010₃ **80 2222 3**

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$

Introduction

Upper bounds

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$ $a + 2d = 1112122211_3$

Introduction

Upper bounds

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$ $a + 2d = 1112122211_3$

Suppose for simplicity $N = 3^m - 1$, so every number in $\{1, ..., N\}$ has *m* base-3 digits (with leading 0s).

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$ $a + 2d = 1112122211_3$

Suppose for simplicity $N = 3^m - 1$, so every number in $\{1, ..., N\}$ has *m* base-3 digits (with leading 0s).

$$|T| = 2^m - 1$$

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$ $a + 2d = 1112122211_3$

Suppose for simplicity $N = 3^m - 1$, so every number in $\{1, ..., N\}$ has *m* base-3 digits (with leading 0s).

$$|T| = 2^m - 1 = (3^m)^{\log_3 2} - 1$$

Idea (Szekeres)

Consider all numbers with no 2 in their base-3 expansion.

Let $T \subseteq \{1, ..., N\}$ denote the set of such numbers. T is 3-AP-free. Suppose $a, a + d, a + 2d \in T$, e.g. $a = 1101001\underline{0}11_3, d = 2022\underline{1}00_3$.

 $a + d = 1110100111_3$ $a + 2d = 1112122211_3$

Suppose for simplicity $N = 3^m - 1$, so every number in $\{1, ..., N\}$ has *m* base-3 digits (with leading 0s).

$$|T| = 2^m - 1 = (3^m)^{\log_3 2} - 1 \approx N^{\log_3 2} \approx N^{0.63}$$

Upper bounds

Conjecture (Erdős-Turán 1936)

This is best possible, i.e. $r_3(N) \leq N^{\log_3 2}$.

Introduction

Lower bounds

Upper bounds

Introduction

Lower bounds

Upper bounds

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two.

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers!

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

View these points as integers written in base 2m (5, 34, 43, 50).

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

View these points as integers written in base 2m (5, 34, 43, 50). This defines $X \subseteq \{1, ..., (2m)^d\}$.

Upper bounds

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

View these points as integers written in base 2m (5, 34, 43, 50). This defines $X \subseteq \{1, ..., (2m)^d\}$. X is 3-AP-free!

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

View these points as integers written in base 2*m* (5, 34, 43, 50). This defines $X \subseteq \{1, ..., (2m)^d\}$. X is 3-AP-free! Midpoint of (5, 0) and (3, 4) is (4, 2); midpoint of 50 and 34 is 42.

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional sphere in \mathbb{N} ?

$$\{0, ..., m\}^d = (m+1) \times \cdots \times (m+1)$$
 grid in \mathbb{R}^d
Pick a sphere centered at the origin passing
through as many such points as possible.

View these points as integers written in base 2*m* (5, 34, 43, 50). This defines $X \subseteq \{1, ..., (2m)^d\}$. X is 3-AP-free! Midpoint of (5, 0) and (3, 4) is (4, 2); midpoint of 50 and 34 is 42. Fact: By picking parameters well, we can make $|X| > N/10^{\sqrt{\log N}}$.

Introduction

d = 2, m = 5

(0, 5)

Idea (Behrend 1946)

A 3-AP is 3 points, one of which is the midpoint of the other two. Forget the integers! A sphere (in any dimension) is "3-AP-free".

Can we embed a high-dimensional s $r_3(N) \gg N^{\Theta}$ for $a_{n_y} \otimes N^{\Theta} \leq 1$

 $\{0, ..., m\}^d = (m + 1) \times \cdots \times (n + 1)$ Pick a sphere centered at through as many such point

View these points as integers to base 2m (5, 34, 43, 50). This defines $X \subseteq \{1, ..., (2m)^d\}$. X is 3-AP-free! Midpoint of (5, 0) and (3, 4) is (4, 2); midpoint of 50 and 34 is 42.

rid

ng

Fact: By picking parameters well, we can make $|X| \ge N/10^{\sqrt{\log N}}$.

Introduction

Introduction

Lower bound:

Upper bounds

Conjecture (Erdős-Turán 1936)

 $r_3(N) \lesssim N^{\log_3 2}.$

Introduction

Lower bounds

Upper bounds

Conjecture (Erdős-Turán 1936)

 $r_3(N) \lesssim N^{\log_3 2}.$

This is false: Behrend's construction shows $r_3(N) \gg N^{\theta}$ for all $\theta < 1$.

Introduction

Lower bounds

Upper bounds

Conjecture (Erdős-Turán 1936)

 $r_3(N) \lesssim N^{\log_3 2}$.

This is false: Behrend's construction shows $r_3(N) \gg N^{\theta}$ for all $\theta < 1$. Can $r_3(N)$ be really large, like > N - 100?

Upper bounds

Conjecture (Erdős-Turán 1936)

 $r_3(N) \lesssim N^{\log_3 2}$.

This is false: Behrend's construction shows $r_3(N) \gg N^{\theta}$ for all $\theta < 1$. Can $r_3(N)$ be really large, like > N - 100? How about > N/100?

Upper bounds

Conjecture (Erdős-Turán 1936)

 $r_3(N) \lesssim N^{\log_3 2}$.

This is false: Behrend's construction shows $r_3(N) \gg N^{\theta}$ for all $\theta < 1$. Can $r_3(N)$ be really large, like > N - 100? How about > N/100?

Theorem (Roth 1953)

 $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have

 $r_3(N) < \varepsilon N$

for all sufficiently large N.

Upper bounds

"Proof" of Roth's theorem

Theorem (Roth 1953)

 $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have

 $r_3(N) < \varepsilon N$

for all sufficiently large N.

"Proof" of Roth's theorem

Theorem (Roth 1953) $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have $r_3(N) < \varepsilon N$

for all sufficiently large N.

Fix $\varepsilon > 0$ and fix a set $A \subseteq \{1, 2, ..., N\}$ with $|A| = \varepsilon N$. Goal: Show that if N is very large, then A has a 3-AP. Theorem (Roth 1953)

 $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have

 $r_3(N) < \varepsilon N$

for all sufficiently large N.

Fix $\varepsilon > 0$ and fix a set $A \subseteq \{1, 2, ..., N\}$ with $|A| = \varepsilon N$. Goal: Show that if N is very large, then A has a 3-AP.

Structure vs. randomness paradigm

Every mathematical object is either structured or looks random.

Theorem (Roth 1953)

 $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have

 $r_3(N) < \varepsilon N$

for all sufficiently large N.

Fix $\varepsilon > 0$ and fix a set $A \subseteq \{1, 2, ..., N\}$ with $|A| = \varepsilon N$. Goal: Show that if N is very large, then A has a 3-AP.

Structure vs. randomness paradigm

Every mathematical object is either structured or looks random.

If A looks random, it has $\approx \varepsilon^3 N^2$ 3-APs. In particular, it has > 0 3-APs.

Theorem (Roth 1953)

 $r_3(N) \ll N$. In other words, for any $\varepsilon > 0$, we have

 $r_3(N) < \varepsilon N$

for all sufficiently large N.

Fix $\varepsilon > 0$ and fix a set $A \subseteq \{1, 2, ..., N\}$ with $|A| = \varepsilon N$.

Goal: Show that if *N* is very large, then *A* has a 3-AP.

Structure vs. randomness paradigm

Every mathematical object is either structured or looks random.

If A looks random, it has $\approx \varepsilon^3 N^2$ 3-APs. In particular, it has > 0 3-APs. If A is structured, we can exploit the structure to obtain a density increment. We then iterate the argument.

"Proof" of Roth's theorem

Introduction

Lower bounds

Upper bounds

Conclusion

Introduction

Lower bounds

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N.$

Introduction

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Introduction

Upper bounds

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$

Upper bounds
Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N) \lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$
Bourgain (2008)	$N/(\log N)^{2/3}$

Introduction

Lower bound

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$
Bourgain (2008)	$N/(\log N)^{2/3}$
Sanders (2010)	$N/(\log N)^{3/4}$

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$
Bourgain (2008)	$N/(\log N)^{2/3}$
Sanders (2010)	$N/(\log N)^{3/4}$
Sanders (2010)	$N(\log \log N)^6/\log N$

Introduction

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim$?
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$
Bourgain (2008)	$N/(\log N)^{2/3}$
Sanders (2010)	$N/(\log N)^{3/4}$
Sanders (2010)	$N(\log \log N)^6/\log N$
Bloom (2016)	$N(\log \log N)^4/\log N$

Introduction

Lower bound:

Upper bounds

Theorem (Roth 1953)

 $r_3(N) \ll N$. In fact,

$$r_3(N) \lesssim rac{N}{\log \log N}.$$

Person (year)	$r_3(N)\lesssim ?$
Heath-Brown (1987), Szemerédi (1990)	$N/(\log N)^{0.00001}$
Bourgain (1999)	$N/(\log N)^{1/2}$
Bourgain (2008)	$N/(\log N)^{2/3}$
Sanders (2010)	$N/(\log N)^{3/4}$
Sanders (2010)	$N(\log \log N)^6/\log N$
Bloom (2016)	$N(\log \log N)^4/\log N$
Schoen (2020)	$N(\log \log N)^3/\log N$

Even better upper bounds

÷	÷
Schoen (2020)	$N(\log \log N)^3/\log N$

Introduction

Lower bounds

Upper bounds

Even better upper bounds

Theorem (Bloom-Sisask 2020)

 $r_3(N) \lesssim \frac{N}{(\log N)^{1.000001}}$

Introduction

Lower bounds

Upper bounds

Even better upper bounds

Theorem (Bloom-Sisask 2020)

$$r_3(N) \lesssim \frac{N}{(\log N)^{1.000001}}$$

Corollary

The primes contain infinitely many 3-APs–not because the primes are special, just because there are a lot of them!

Upper bounds

Introduction

Lower bounds

Upper bounds

Let $r_k(N)$ denote the maximum size of a subset of $\{1, 2, ..., N\}$ without a k-AP.

Let $r_k(N)$ denote the maximum size of a subset of $\{1, 2, ..., N\}$ without a k-AP.

```
Theorem (Roth 1953)
```

 $r_3(N) \ll N.$

Let $r_k(N)$ denote the maximum size of a subset of $\{1, 2, ..., N\}$ without a k-AP.

Theorem (Roth 1953)

 $r_3(N) \ll N.$

Theorem (Szemerédi 1969)

 $r_4(N) \ll N.$

Upper bounds

Let $r_k(N)$ denote the maximum size of a subset of $\{1, 2, ..., N\}$ without a k-AP.

Theorem (Roth 1953)

 $r_3(N) \ll N.$

Theorem (Szemerédi 1969)

 $r_4(N) \ll N.$

Theorem (Szemerédi 1975)

 $r_k(N) \ll N$ for all k.

Introduction

Lower bound

Upper bounds

