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What are three-term arithmetic progressions?

Definition
A three-term arithmetic progression (3-AP) consists of three
integers of the form a, a+ d, a+ 2d, where d > 0.
d is called the common difference of the 3-AP.

• 11,17,23 (d = 6)
• 3,5,7 (d = 2)
• 100,200,300 (d = 100)

• 1,25,49 (d = 24)
• 3,76,149 (d = 73)
• 49,169,289 (d = 120)

What interesting things can possibly be said about 3-APs?
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What interesting things can possibly be said about 3-APs?
Theorem (Fibonacci 1225)
There are infinitely many 3-APs among the perfect squares.

For any integers r,m,n with m > n, let d = 4r2mn(m2 − n2). Then
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What are three-term arithmetic progressions?

Definition
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What interesting things can possibly be said about 3-APs?
Theorem (Dénes 1952, Ribet 1997, Darmon–Merel 1997)
There are no 3-APs among the perfect nth powers, for any n ≥ 3.
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Which sets are 3-AP-free?
Some natural sets of integers (perfect squares, primes) contain
infinitely many 3-APs, but others do not.

Question
How large can a set A ⊆ ℕ be if A contains no 3-AP?

Well… |A| = ∞ is possible (e.g. A = {cubes} or A = {powers of 2}).

Better question (Erdős–Turán 1936)
How large can a set A ⊆ {1,2,…,N} be if A contains no 3-AP?

Definition
Let r3(N) be the maximum size of a 3-AP-free subset of {1,…,N}, i.e.

r3(N) = max
A⊆{1,…,N}

A contains no 3-AP

|A|.

Rest of the talk: How well can we estimate r3(N) as a function of N?
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Thinking asymptotically
Which is larger:

X = 1000N1/3 + 1000000 or Y =
N2/3

1000 − 1000000 ?

For “reasonable” N, X is clearly much larger than Y.
In fact, X > Y for N up to one quintillion.
However, if N is huge, then Y ismuch bigger than X.

Definition
For two functions f,g, we say that f ≳ g if

lim
N→∞

f(N)
g(N) > 0.

We say that f ≫ g if

lim
N→∞

f(N)
g(N) = ∞.

f ≳ gmeans that f is at least as large as g up to a constant factor.
f ≫ gmeans that f ismuch bigger than g.

Introduction Lower bounds Upper bounds Conclusion
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Lower bounds on r3(N)

Introduction Lower bounds Upper bounds Conclusion



Techniques for lower-bounding r3(N)

Recall: r3(N) is the maximum size of a 3-AP-free subset of
{1,2,…,N}.

Probabilistic method

Greedy algorithm

Number theory

High-dimensional geometry

Introduction Lower bounds Upper bounds Conclusion
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The probabilistic method

Often, you have to work really hard to find a mathematical object
with certain “nice” properties.
Sometimes, a random object has the desired properties!
We pick a random subset R ⊆ {1,2,…,N}, by keeping each
element with probability p (chosen later).

Fact
If N is large, with probability > 99%, we have |R| ≈ pN and

#(3-APs in R) ≈ p3 · #(3-APs in {1,2,…,N})

< p3N2.

We have that#(3-APs in {1,2,…,N}) < N2.
(N choices for the start, < N for the common difference of the 3-AP.)
Pick p = N−2/3, so

#(3-APs in R) < p3N2 = 1.
So R has no 3-APs, and |R| ≈ pN = N1/3.

r3(N) ≳ N 1/3
r3(N) ≳ √

N

Introduction Lower bounds Upper bounds Conclusion
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A number-theoretic construction

Idea (Szekeres)
Consider all numbers with no 2 in their base-3 expansion.

13 = 1113 21 = 2103 30 = 10103 80 = 22223

Let T ⊆ {1,…,N} denote the set of such numbers. T is 3-AP-free.
Suppose a, a+ d, a+ 2d ∈ T, e.g. a = 11010010113,d = 20221003.

a+ d = 11101001113 a+ 2d = 11121222113
Suppose for simplicity N = 3m − 1, so every number in {1,…,N} has
m base-3 digits (with leading 0s).

|T| = 2m − 1 = (3m)log3 2 − 1 ≈ Nlog3 2 ≈ N0.63

r3(N) ≳ N log3 2

Conjecture (Erdős–Turán 1936)
This is best possible, i.e. r3(N) ≲ Nlog3 2.

Introduction Lower bounds Upper bounds Conclusion
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High-dimensional geometry

Idea (Behrend 1946)
A 3-AP is 3 points, one of which is the midpoint of the other two.
Forget the integers! A sphere (in any dimension) is “3-AP-free”.

Can we embed a high-dimensional sphere in ℕ? d = 2,m = 5

{0,…,m}d = (m+ 1)× · · · × (m+ 1) grid inℝd.

Pick a sphere centered at the origin passing
through as many such points as possible.

(0,0)

(5,5)

(0,5)

(5,0)

(3,4)
(4,3)

View these points as integers written in base 2m (5,34,43,50).
This defines X ⊆ {1,…, (2m)d}. X is 3-AP-free!
Midpoint of (5,0) and (3,4) is (4,2); midpoint of 50 and 34 is 42.
Fact: By picking parameters well, we can make |X| ≥ N/10

√
logN.

r3(N) ≫ N θfor any θ < 1
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Upper bounds on r3(N)
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Can r3(N) be really large?

Conjecture (Erdős–Turán 1936)
r3(N) ≲ Nlog3 2.

This is false: Behrend’s construction shows r3(N) ≫ Nθ for all θ < 1.
Can r3(N) be really large, like > N − 100? How about > N/100?

Theorem (Roth 1953)
r3(N) ≪ N. In other words, for any ε > 0, we have

r3(N) < εN

for all sufficiently large N.
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“Proof” of Roth’s theorem

Theorem (Roth 1953)
r3(N) ≪ N. In other words, for any ε > 0, we have

r3(N) < εN

for all sufficiently large N.

Fix ε > 0 and fix a set A ⊆ {1,2,…,N} with |A| = εN.
Goal: Show that if N is very large, then A has a 3-AP.

Structure vs. randomness paradigm
Every mathematical object is either structured or looks random.

If A looks random, it has ≈ ε3N2 3-APs. In particular, it has > 0 3-APs.
If A is structured, we can exploit the structure to obtain a density
increment. We then iterate the argument.

randomness:3-APs galorestructure:use it!density increment
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Conclusion
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Upper bounds on r3(N)
Theorem (Roth 1953)
r3(N) ≪ N.

In fact,
r3(N) ≲

N
log logN .

Person (year) r3(N) ≲ ?
Heath-Brown (1987), Szemerédi (1990) N/(logN)0.00001

Bourgain (1999) N/(logN)1/2

Bourgain (2008) N/(logN)2/3

Sanders (2010) N/(logN)3/4

Sanders (2010) N(log logN)6/logN
Bloom (2016) N(log logN)4/logN
Schoen (2020) N(log logN)3/logN
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Even better upper bounds

...
...

Schoen (2020) N(log logN)3/logN

Theorem (Bloom–Sisask 2020)

r3(N) ≲
N

(logN)1.000001

Corollary
The primes contain infinitely many 3-APs—not because the primes
are special, just because there are a lot of them!
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Longer arithmetic progressions

Let rk(N) denote the maximum size of a subset of {1,2,…,N}
without a k-AP.
Theorem (Roth 1953)

r3(N) ≪ N.

Theorem (Szemerédi 1969)
r4(N) ≪ N.

Theorem (Szemerédi 1975)
rk(N) ≪ N for all k.
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Thank you!
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