
Homework 1 Mathcamp 2017 Shannon Capacity of Graphs

1 Recall that given a graph G, its complement graph G is the graph whose vertices are the same as those

of G, but whose edges are precisely the complement of the edges of G—in other words, if (u, v) is an
edge of G, then (u, v) is not an edge of G, and vice versa.

(a) Let Cn be a cycle graph of length n, and let Pn be a path graph on n vertices (i.e. Cn minus an

edge). Draw the complement graphs C4, C5, C6, P3, P4, P5.

(b) Verify that C5 is isomorphic to C5 and that P4 is isomorphic to P4. Graphs with this property

(that G ⇠= G) are called self-complementary.

(c) Using the isomorphism between C5 and C5, reconstruct the example I gave in class of five length-2

strings that are not confusable from C5.

(d) Generalize the construction above to prove that if G is a self-complementary graph with n vertices,

then ⇥(G) �
p
n.

(e)* Try to find more self-complementary graphs!

2 In this problem, we’ll explore a very important quantity associated to a graph, called its fractional
chromatic number.

(a) Let I(G) denote the collection of all non-empty independent sets in a graph G. Write down all

elements of I(C5) (make sure you write down 10 independent sets!).

(b) A fractional coloring of G is an assignment of a real number aI � 0 for each I 2 I(G) such that

for every vertex v of G, X

I2I(G)
v2I

aI � 1

Recall that a proper coloring of G is just a choice of some independent sets in G that cover all

the vertices; these chosen independent sets are called color classes. Check that if we declare

aI =

(
1 if I is a color class

0 otherwise

then this yields a fractional coloring. Thus, fractional coloring is a more general notion than

proper coloring.

(c) The fractional chromatic number of G is defined as

�f (G) = min

8
<

:
X

I2I(G)

aI

������
{aI}I2I(G) is a fractional coloring of G

9
=

;

Using (2b), check that �f (G)  �(G).

(d) Find a fractional coloring {aI}I2I(C5) of C5 such that
P

I2I(G) aI =
5
2 , and thus conclude that

�f (C5)  5
2 . Tomorrow, we will see that the fractional chromatic number is an upper bound for

the Shannon capacity (i.e. ⇥(G)  �f (G) for all graphs G), so this implies that ⇥(C5)  5
2 , which

is better than our current upper bound of �(C5) = 3.

(e)* Try to prove that �f (C5) =
5
2 .



Homework 2 Mathcamp 2017 Shannon Capacity of Graphs

1 A sequence of real numbers a1, a2, . . . is called superadditive if for every m,n, we have that

am+n � am + an

A very useful theorem from analysis is the following, called Fekete’s Lemma.

Lemma. If a1, a2, . . . is a superadditive sequence, then limn!1
an
n exists.

Check that if G is a graph and if we define

an = log!(Gn)

then a1, a2, . . . is a superadditive sequence. Then apply Fekete’s Lemma to conclude that the Shannon
capacity is well defined.

2 We know that for any graph, !(G)  �(G). We also know that for the five-cycle C5, we have that
!(C5) = �(C5) � 1. A natural question is how large the gap between !(G) and �(G) can be. In this
problem, we’ll explore the Mycielski construction, which shows that this gap can be arbitrarily large.

Given a graph G, its Mycielskian M(G) is a new graph defined as follows. If the vertices of G are
u1, . . . , un, then the vertices of M(G) are u1, . . . , un, v1, . . . , vn, x. Among the uis, we keep connectivity
exactly as it was in G, namely if ui, uj are adjacent in G, then they’re also adjacent in M(G). Between
the vis we don’t connect anything, although we connect vi to uj if and only if (ui, uj) is an edge of G;
in other words, each vi is a “clone” of ui, and is connected to the ujs that ui is connected to. Finally,
the extra vertex x is connected to all the vis. Here is a maybe-helpful schematic:

The bottom layer are the uis (namely just a copy of G), the middle layer are the vis (with dotted lines
not representing edges, just demonstrating the relationships copied from the bottom layer), and the
top layer is x.

(a) Check that if P2 = , then M(P2) = C5.

(b) Prove that if G is triangle-free (i.e. there is no set of three vertices all pairs of which are adjacent),
then M(G) is triangle-free as well.

(c) Prove that �(M(G)) = �(G) + 1.

(d) We define the Mycielski graphs as M1 = P2, M2 = C5 = M(M1), and more generally Mn =
M(Mn�1). Observe that each Mn is triangle-free, so !(Mn) = 2 for all n, and that �(Mn) = n+1.
Therefore, these graphs have arbitrarily large gaps between ! and �. Thus, for these graphs, we
get arbitrarily bad bounds on ⇥.



Homework 2 Mathcamp 2017 Shannon Capacity of Graphs

3* If you did the homework problem on the fractional chromatic number yesterday, check that it satisfies
the two properties in the key lemma we proved today, namely that for any graphs G,H, we have

• �f (G) � !(G)

• �f (G ·H)  �f (G) · �f (H)

Conclude that ⇥(G)  �f (G), and thus conclude that ⇥(C5)  5
2 .

4* In this problem, we will prove Fekete’s Lemma (from Problem 1). Let a1, a2, . . . be any superadditive
sequence of real numbers.

(a) Pick any m � 1 and any n � m. Divide n by m with remainder to write n = qm+ r, where q, r

are integers and 0  r  m�1. By applying the superadditivity property many times, prove that

an � qam + ar

(b) Divide by n to get
an

n
� q

n
am +

ar

n
� q

n
am +

min0`m�1 a`

n

Now, let n ! 1 while keeping m fixed. Prove that the right-hand side of the above inequality
converges to am/m.

(c) Conclude that the sequence a1/1, a2/2, . . . , am/m, . . . can’t oscillate between a high and a low
value infinitely many times, and thus that limm!1 am/m exists.



Homework 3 Mathcamp 2017 Shannon Capacity of Graphs

1 This problem will be about the geometry of regular pentagons; tomorrow, we will see that the facts

here will end up being very useful for us.

(a) Prove that if a regular pentagon has side length 1, then the length of any diagonal is the golden

ratio,

� =
1 +

p
5

2

(b) Prove that if a regular pentagon has side length 1, then the distance from any vertex to the center

is s
1

2
+

p
5

10
=

p
�

4
p
5

(c) Check that

� = �
p
5� 2

2* For any k � 2, a k-vector coloring of a graph G is an assignment of vectors ui 2 Rn
, one for each

vertex of G, such that if i and j are adjacent vertices, then

ui · uj = � 1

k � 1

(a) Prove that if we place three points v1,v2,v3 in R2
so that they form an equilateral triangle

centered at the origin, then

v1 · v2 = v2 · v3 = v1 · v3 = �1

2

(b) Similarly, prove that if we place four points in R3
so that they form a regular tetrahedron centered

at the origin, then the dot product of any pair of them will be equal to �1/3.

(c)* More generally, prove that n+1 points in Rn
that form a regular “simplex” centered at the origin

have the property that the dot product of any pair equals �1/n.

(d) Prove that if k is an integer and we have a proper k-coloring of a graph G, then we can also get

a k-vertex coloring of G.

Hint: Place each color class at a vertex of a regular simplex in Rk�1
.

(e) The vertex chromatic number of G is defined as

�v(G) = min{k : there exists a k-vector coloring of G}

Note that we allow k to be any real number, not just an integer. Using the previous part, prove

that �v(G)  �(G).

(f)* Try to prove that �v(G) = #(G).



Homework 4 Mathcamp 2017 Shannon Capacity of Graphs

1 To solve this problem, you’ll need some familiarity with modular arithmetic and a little bit of number
theory.

If p is a prime that is 1 mod 4, then we define the Paley graph of order p, denoted Pp, as follows. The
vertices are just the integers mod p, namely 0, 1, . . . , p � 1. Two distinct vertices are adjacent in this
graph if their di↵erence is a perfect square mod p.

(a) Prove that this is a well-defined graph, namely that if x is adjacent to y, then also that y is
adjacent to x (notice that this is not immediate from the definition). To prove this, you may
assume a standard fact from number theory, namely that if p ⌘ 1 mod 4, then �1 is a perfect
square mod p.

(b) Check that the Paley graph of order 5 is just C5.

(c) Prove that all Paley graphs are self-complementary (and thus solve a homework problem from
the first assignment).
Hint: To construct an isomorphism between Pp and Pp, fix a non-perfect-square z mod p, and
map every vertex x to xz.

(d) Conclude that ⇥(Pp) �
p
p, using a problem on the first homework assignment.

(e)* Try to prove that #(Pp) 
p
p, which implies that ⇥(Pp) =

p
p.

It is worth remarking that the clique number and chromatic number of Pp are unknown in general;
it is believed that !(Pp) ⇡ log p and �(Pp) ⇡ p/ log p for most values of p, although it seems that
proving anything like this will involve a major breakthrough in number theory (e.g. proving the
Riemann Hypothesis). Thus, Paley graphs are in sharp contrast to the graphs we’ve been studying
for much of this course (e.g. odd cycles), for which we know the clique and chromatic numbers,
but have to work really hard to determine the Shannon capacity.

2* We’ve almost finished determining the Shannon capacity of C5. However, the Shannon capacity of any
larger odd cycle is still unknown (and new bounds, even if they are a very small improvement, would
likely be considered a major breakthrough). In this problem, we’ll look a bit at the best known results
for these larger odd cycles.

(a) It turns out that if k is odd, then

#(Ck) =
1 + cos(⇡k )

cos(⇡k )

and this is our best-known upper bound on ⇥(Ck). For the case k = 7, try to prove this, or at
least prove that

#(C7) 
1 + cos(⇡7 )

cos(⇡7 )

I believe that you can do this by exhibiting a suitable 4-dimensional orthonormal representation
of C7, but I’m not sure; I can’t picture R4 well enough.

(b) As for lower bounds, the best known result is the following, due to Bohman and Holzman:

⇥(C2n+3) �
⇣
22

n

+ 1
⌘1/2n

> 2

Note that though this beats the clique-number lower bound of 2, it does so very slightly. They
proved this result by exhibiting a clique of size 22

n

+ 1 in the OR power C2n
2n+3. Try to do this

for the 7-cycle, namely the case n = 2: try to find a clique of size 17 in C4
7 .

(c)* Can you improve on either of these bounds?


