
Yuval The Shannon capacity of graphs Mathcamp 2017

1 Texting with weird alphabets

Suppose you are texting your friend, but your screen is broken, so you can only use the letters mnuw. In
order to make things simpler, you agree on a code for what messages different letters represent; for instance,
m might mean “let’s get breakfast”, n might mean “let’s get lunch”, u might mean “let’s get dinner”, and
w might mean “let’s get midnight snack”. Or alternately, if you want to communicate more than 4 distinct
ideas, you could agree on a code that matches the 16 possible pairs of letters to 16 meanings. More generally,
if you agree on a set of messages assigned to strings of letters of length n, then you can communicate up to
4n distinct messages.

But now suppose you’re texting me. Your phone is still broken, so you can still only use the letters
mnuw. However, I’m really bad at phones; in particular, I often hold my phone upside down, and don’t
notice. This means that if you text me an m, I might read it as w, and vice versa; similarly, I confuse n and
u.

In this case, we’ll be in trouble if we assign the same four messages to the four letters; if we do that, and
you text me a w, I might try to meet you at midnight instead of at lunch. In fact, the pigeonhole principle
shows that we can’t assign more than two messages to these four letters: once we assign more than two, we
will definitely be using two letters that I get confused, and we’ll be in trouble. However, we can assign two
messages, by simply restricting our attention to a subset of the four letters; there are several such options,
such as n, m, or w, u. Similarly, if we assign messages to strings of length n, then we can send up to 2n

messages.
One way of representing the information of which letters I get confused is in terms of a so-called distin-

guishability graph: the vertices of the graph are the letters we’re using, and there’s an edge between two
letters if I can tell them apart (so a non-edge represents confusability). In this example, the distinguishability
graph would be

n m

uw

This feels a bit silly for such a simple example, but it will become important soon. Note that a set of letters
we can restrict to is precisely a pair of letters in this graph that are connected by an edge. More generally, if
we had a distinguishability graph with a subset of size r that looks like a complete graph on r vertices (this
is called a clique in the graph), then we could restrict to those r letters and send r distinguishable messages
unambiguously.

A more complicated example of a distinguishability graph is the following:

p
q

d

b
a

How many messages can we use with this set of five letters? Again, by pigeonhole, we can’t do better than
2 (and in fact, by looking at the graph, we see that it has no clique subgraph of size 3 or more). Again, we
get that with strings of length n, we can send up to 2n messages.

However, something astonishing happens in this example: we can actually do better than 2n. Specifically,
using strings of length 2, we can actually send 5 (which is more than 4) messages: we restrict ourselves to the
strings aa, bd, dp, qb, pq. Then it is a simple check that I will always be able to distinguish any pair of
these strings; for some pairs, I’ll confuse the first letter, but I’ll be able to tell apart the second letter, while
for other pairs the reverse will happen. Thus, these five strings do indeed allow us to encode five messages

1

Yuval The Shannon capacity of graphs Mathcamp 2017

unambiguously, so that I will never confuse them. This also implies that if we send strings of length 2k, then
we will be able to encode 5k messages. Thus, in a string of length n, we can encode roughly (

√
5)n messages.

As both of these examples show, the number of messages we can send with strings of length n is roughly
Cn, for some constant C. This makes sense, since we can always scale up multiplicatively: if we have r
messages of length n, then by appending all pairs, we get r2 messages of length 2n. This motivates the
following definition:

Definition (Shannon, 1956). Given a graph G, its Shannon capacity, denoted Θ(G), is defined as the number
of messages “per letter” that we can send using G. More precisely, it is the limit of (rn)1/n, where rn is the
number of messages that we can send using strings of length n.

Then what we saw above is that Θ(C4) ≥ 2,Θ(C5) ≥
√

5, where Cn denotes a cycle graph of length n.
We also saw above that Θ(G) ≥ ω(G), where ω(G) is the clique number of G—the size of the largest clique
in G; this follows just because a clique of some size in G allows us to send that many messages using a single
letter.

However, as in the case of C5, we saw that sometimes we can do strictly better than the clique number,
namely doing strictly better by sending longer messages. Maybe we can also do better in the case of C4? As
it turns out, we can’t:

Theorem. Θ(C4) = 2.

Proof. We already proved that Θ(C4) ≥ 2, so we just need to prove that Θ(C4) ≤ 2. For that, we will cover
C4 by two independent sets, namely subsets of the vertices that contain no edges. In the example above,
these independent sets will be red (R), consisting of m and w, and blue (B), consisting of n and u. Now,
suppose that n is some integer, and that we have a set S of unambiguous messages of length n. We would
like to show that |S| ≤ 2n. For each string in S, we form an auxiliary string as follows: for each letter in
the string, we forget which letter it actually is, and only write down its color. In so doing, we get a string of
length n in the letters R,B. Moreover, suppose that two distinct strings in S produce the same color-string.
Then in each coordinate, they must have either the same letter or two confusable letters, since R and B
were both independent sets. Since we assumed that all strings in S were not confusable, these two strings
must agree in every coordinate, so they must actually be equal.

This thus gives us an injection from S to the set of all strings in the letters R,B. Since there are exactly
2n such strings, we get that |S| ≤ 2n.

In fact, the exact same proof shows that if we can cover G by k independent sets, then Θ(G) ≤ k. In the
case of C5, that shows us that Θ(C5) ≤ 3. Moreover, as the above names of the independent sets suggest,
the minimal number of independent sets it takes to cover a graph has a special name: it is the chromatic
number χ(G), namely the minimal number of colors necessary to properly color G. So we have just proven
the following theorem.

Theorem. ω(G) ≤ Θ(G) ≤ χ(G).

For many graphs, ω and χ are equal; for instance, this happens for all graphs on at most 4 vertices.
This is what makes the 5-cycle so special: it is the smallest graph with ω(G) < χ(G), which means that
it is the smallest graph for which the above theorem does not determine Θ. Shannon himself proved this
theorem when he first defined the Shannon capacity, and ended that paper with an open question, which
was to determine Θ(C5). Astonishingly, solving this problem took more than 20 years, and was eventually
done by Lovász in 1978; by the end of this course, we will see that proof. But in the meantime, all we know
is that

√
5 ≤ Θ(C5) ≤ 3.

2

Yuval The Shannon capacity of graphs Mathcamp 2017

2 The OR product

In order to formalize the definition of the Shannon capacity, we need to first define a very important operation
on graphs, which is called the OR product.

Definition. Given two graphs G,H, their OR product, denoted G ·H, is a graph with vertex set

V (G ·H) = V (G)× V (H)

In other words, a vertex of G ·H is an ordered pair, consisting of a vertex of G and a vertex of H. The edges
of G ·H are given by

E(G ·H) = {((u, v), (u′, v′)) : (u, u′) ∈ E(G) or (v, v′) ∈ E(H)}

In other words, two ordered pairs are connected by an edge if and only if the restriction to at least one of
the two coordinates is connected by an edge. Note that this is the mathematical usage of “or”, which means
that it is really “and/or”—both can be connected, but at least one must be.

Finally, given a positive integer n, we will denote by Gn the nth OR power of G, namely G ·G · · ·G ·G︸ ︷︷ ︸
n times

.

Example. If G = , then G ·G is

On the other hand, if H is the two-vertex graph with no edge, , then G ·H is

Finally, if P3 = , then P3 · P3 is

The reason we care about OR products and OR powers is the following proposition.

Proposition. If G is the distinguishability graph of some set of letters, then a clique in Gn precisely corre-
sponds to a collection of unconfusable strings of length n.

Proof. First of all, a vertex of Gn is indeed precisely a string of length n consisting of the letters defining
G. Moreover, two vertices in Gn are connected by an edge if and only if there is at least one coordinate in
which they are connected (in G), which precisely means that there is at least one coordinate where they are
distinguishable. Thus, a clique in Gn is precisely a collection of strings of length n, any two of which are
distinguishable in at least one coordinate. This is precisely our previous notion of distinguishable strings, as
desired.

This proposition immediately tells us a very important fact, namely that our notion of “the most messages
we can send with length n” is exactly ω(Gn). Thus, we can restate formally our definition from yesterday:

Definition (Shannon, 1956). Given a graph G, its Shannon capacity, Θ(G), is

Θ(G) = lim
n→∞

[ω(Gn)]1/n

3

Yuval The Shannon capacity of graphs Mathcamp 2017

An important property of OR products is the following lemma:

Lemma. If G,H are graphs, then
ω(G ·H) ≥ ω(G) · ω(H)

Proof. Let C be a maximal clique in G, and D a maximal clique in H. Then consider C ×D ⊆ V (G ·H).
First of all,

|C ×D| = |C| · |D| = ω(G) · ω(H)

Moreover, C×D is a clique in G ·H. To see this, consider two distinct vertices (u, v), (u′, v′) ∈ C×D. Since
they’re distinct, at least one of the pairs u, u′ and v, v′ contains distinct elements. Since these are vertices
from a clique in G or H, they are connected by an edge. Thus, (u, v) and (u′, v′) are connected by an edge.
So we have found a clique in G ·H of size ω(G) · ω(H), which proves what we want.

By applying this lemma n times, we find that

ω(Gn) = ω(G ·G · · ·G ·G) ≥ ω(G) · ω(G) · · ·ω(G) · ω(G) = ω(G)n

and thus we conclude that

Corollary. Θ(G) ≥ ω(G).

We proved this yesterday intuitively, but it’s good that our formal notion of Shannon capacity seems to
work. In particular, the fact that ω(Gn) ≥ ω(G)n precisely tells us what we saw yesterday, that if we have
some number k of unambiguous letters, then they define kn unambiguous strings of length n.

Yesterday, we also saw that Θ(G) ≤ χ(G); in order to prove it formally, we need the following very
important lemma (that will also be very useful in the future).

Lemma. Suppose that for every graph G, we have some real number r(G), that satisfies the properties that
for all graphs G,H

1. r(G) ≥ ω(G)

2. r(G ·H) ≤ r(G) · r(H)

Then Θ(G) ≤ r(G).

Proof. For any integer n, we have that

ω(Gn) ≤ r(Gn) = r(G ·G · · ·G ·G) ≤ r(G) · r(G) · · · r(G) · r(G) = r(G)n

where the first inequality comes from property (1), and the second inequality comes from property (2). This
implies that

[ω(Gn)]1/n ≤ [r(G)n]1/n = r(G)

and thus
Θ(G) = lim

n→∞
[ω(Gn)]1/n ≤ lim

n→∞
r(G) = r(G)

Corollary. Θ(G) ≤ χ(G).

Proof. We check that χ satisfies properties (1) and (2). First, we already saw yesterday that ω(G) ≤ χ(G)
for all G; this can also be seen by observing that it takes m colors to properly color a complete graph on m
vertices, so it will take at least ω(G) colors to properly color G. For property (2), we need to check that

χ(G ·H) ≤ χ(G) · χ(H)

4

Yuval The Shannon capacity of graphs Mathcamp 2017

for all graphs G,H. Indeed, suppose we have a coloring c1 of G, namely a function c1 : V (G) → C1 that
assigns to each vertex some color in the set C1. Similarly, suppose we have a coloring c2 : H → C2. Finally,
we may assume that these are minimal colorings, namely that |C1| = χ(G), |C2| = χ(H). Then we can color
G ·H by declaring

c((u, v)) = (c1(u), c2(v)) ∈ C1 × C2

This yields a function c : V (G ·H)→ C1 × C2, and we claim that it’s a proper coloring. Indeed, if we have
an edge in G · H between (u, v) and (u′, v′), then there must be an edge either between u, u′ or v, v′ (or
both). Then since c1, c2 are proper colorings, we have that either c1(u) 6= c1(u′) or c2(v) 6= c2(v′) (or both).
But in particular, c((u, v)) 6= c((u′, v′)), so this is indeed a proper coloring. Moreover, the number of colors
we used is

|C1 × C2| = |C1| · |C2| = χ(G) · χ(H)

Thus, since χ(G ·H) is the minimal number of colors we need to properly color G ·H, and since we can color
it with χ(G) · χ(H) colors, we find that

χ(G ·H) ≤ χ(G) · χ(H)

This proves property (2), so the previous lemma guarantees that Θ(G) ≤ χ(G).

5

Yuval The Shannon capacity of graphs Mathcamp 2017

3 Orthonormal representations

Before we start today, we need to review some basic properties of dot products in Rn. Recall that an element
u of Rn is just an n-tuple (u1, . . . , un) of real numbers.

Definition. Given two vectors u,v ∈ Rn, their dot product is defined as

u · v = u1v1 + · · ·+ unvn

Note that the dot product of two vectors is a real number.

Definition. The length of a vector u is defined as

‖u‖ =
√
u21 + · · ·+ u2n

Note that ‖u‖ =
√

u · u. If a vector has length 1, then it’s called a unit (or normal) vector.

Proposition. If two vectors u,v have an angle θ between them, then

u · v = ‖u‖ · ‖v‖ cos θ

In particular, two vectors form an angle of 90◦ if and only if u · v = 0. Such vectors are called orthogonal.

Definition. Given a graph G, an orthonormal representation of G consists of some natural number n and,
for every vertex i ∈ V (G), a unit vector ui ∈ Rn such that if (i, j) ∈ E(G), then ui ·uj = 0. In other words,
we view the vertices of our graph as points in Rn, and then we require that if two vertices are adjacent, then
the corresponding unit vectors are orthogonal.

Note that we do not require anything in the case that i and j are not adjacent.

Example. A very simple example is that if G has n vertices, then we always have a simple orthonormal
representation in Rn: simply declare

ui = (0, 0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in position i. Since all of these vectors are orthogonal unit vectors, we certainly get an
orthonormal representation of G, regardless of where its edges are.

Here is a slightly more interesting orthonormal representation of C4 in R2:

The vertices are at the vectors (±1, 0), (0,±1). Here is a different orthonormal representation of C4:

6

Yuval The Shannon capacity of graphs Mathcamp 2017

In this case, we’ve put two vertices at (1, 0) and two at (0, 1), and the one edge drawn above actually
represents all four edges.

One way of generalizing this last example is as follows. Suppose G is a graph, and k = χ(G). Then we
can get an orthonormal representation of G in Rk as follows. First, color G with the colors 1, 2, . . . , k. Then,
declare

ui = (0, 0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in position ` if and only if vertex i is colored with color `. This is indeed an orthonormal
representation—first of all, all of these vectors are unit vectors, and second of all, if (i, j) is an edge of G,
then i and j definitely received different colors, and thus ui · uj = 0.

Intuitively, it seems that some of these orthonormal representations are more “wasteful” than others,
in that the vectors we use are more “spread out”. One way of capturing how spread out these are is the
following quantity.

Definition (Lovász 1978). Let U = {ui}i∈V (G) be an orthonormal representation of a graph G in Rn, and
let c ∈ Rn be some unit vector (which we call the handle of the representation). Then the Lovász ϑ-function
of U and c is defined as

ϑ(U, c) = max
i∈V (G)

1

(c · ui)2

What is this actually measuring? Since c and ui are unit vectors, we have that c · ui = cos θ, where θ is
the angle between them. So in some sense, ϑ(U, c) is measuring how wide a cone with axis at c has to be in
order to contain all the vectors used in U. However, I have no good intuition as to why we square or why
we take reciprocals; it is just something that will make the proof work.

In order to figure out how “absolutely” spread out U is, we don’t want to compare to a single handle c,
but to the best handle c:

Definition. Given an orthonormal representation U of a graph G, we define

ϑ(U) = min
c∈Rn

‖c‖=1

ϑ(U, c)

Finally, we want this to be a property of the graph, rather than a property of some orthonormal represen-
tation. So we also take the minimum over all orthonormal representations (in all dimensions):

ϑ(G) = min
U an orthonormal representation of G

ϑ(U)

This is called the Lovász ϑ-function of G.

Example. Let’s think about C4 again. We can think of the orthonormal representation in R4, where our
vertices are at (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). Then for any choice of a unit vector c, we have
that

min
i∈V (C4)

|c · ui| ≥
1

2

Intuitively, the reason for this is that the vector that will minimize c · ui for all i is the one in which all
coordinates are equal. The unit-length c with this property is (1

2 ,
1
2 ,

1
2 ,

1
2), which indeed gives c · ui = 1

2 . So
we can conclude that for this representation, we have ϑ = 1/(1/2)2 = 4.

On the other hand, if we look again at our first orthonormal representation,

7

Yuval The Shannon capacity of graphs Mathcamp 2017

then we see that for every unit vector c ∈ R2 we pick, there will be at least one of these vertices that forms
an angle of at most 45◦. So we can conclude that for this representation, we have

ϑ =
1

(cos 45◦)2
=

1

(1/
√

2)2
= 2

The key property we used in the example above is the following fact from linear algebra, which we won’t
prove:

Proposition. If v1, . . . ,vn are n orthonormal vectors in Rn, and c is any unit vector in Rn, then there is
some i with

|c · vi| ≥
1√
n

This immediately implies an interesting bound on the ϑ function of a graph:

Theorem. ϑ(G) ≤ χ(G).

Proof. Recall that if k = χ(G), we have an orthonormal representation of G in Rk, gotten by sending all
of the vertices in each color class to one of the basis vectors ei = (0, . . . , 0, 1, 0, . . . , 0). Then the previous
proposition implies that for any unit vector c, there is some i such that |c · ei| ≥ 1/

√
k. Therefore, if we

denote this orthonormal representation by Uχ, then we get that

ϑ(Uχ) =
1

(1/
√
k)2

= k = χ(G)

Since ϑ(G) is a minimum over all orthonormal representations, we see that ϑ(G) ≤ χ(G).

The reason this is interesting is that we will eventually use the Lovász ϑ-function to upper-bound the
Shannon capacity, and this proposition guarantees that it improves on our current best upper bound of χ(G).
(Moreover, one can also prove that ϑ(G) ≤ χf (G), so it even beats the fractional chromatic number.)

In order to prove that ϑ upper-bounds Θ, we will use the key lemma that we proved yesterday. We will
do this in several steps.

8

Yuval The Shannon capacity of graphs Mathcamp 2017

The goal for today is to prove that the Lovász ϑ-function upper-bounds the Shannon capacity. For this,
we will use the key lemma we proved two days ago; namely, in order to show that Θ(G) ≤ ϑ(G), we need to
show that ω(G) ≤ ϑ(G) and that ϑ(G ·H) ≤ ϑ(G)ϑ(H).

Proposition. For any graph G, ω(G) ≤ ϑ(G).

Proof. To prove this, we will need a key fact from linear algebra, which is basically a generalization of the
Pythagorean theorem to higher dimensions. It says that if v1, . . . ,vn are a collection of n orthonormal
vectors in Rn, and if c is any vector in Rn, then

‖c‖2 =

n∑
i=1

(c · vi)2

We won’t prove this, but you should convince yourself that in the case n = 2, it is precisely the Pythagorean
theorem. This also implies that if v1, . . . ,vk is some collection of orthonormal vectors in Rn (not necessarily

n of them), then ‖c‖2 ≥
∑k
i=1(c · vi)2.

Now, to prove that ϑ(G) ≥ ω(G), we need to prove that for any orthonormal representation U of G and
any handle c ∈ Rn, we have that ϑ(U, c) ≥ ω(G). For this, let K ⊆ V (G) be a maximal clique in G. Then
{ui}i∈K is an orthonormal collection in Rn, since all pairs are adjacent, so all the vectors are orthogonal.
Thus, using the above, we have that

1 = ‖c‖2 ≥
∑
i∈K

(c · ui)2 ≥ |K| min
i∈V (G)

(c · ui)2 = ω(G) min
i∈V (G)

(c · ui)2

When we divide out, we get that

ω(G) ≤ 1

mini∈V (G)(c · ui)2
= max
i∈V (G)

1

(c · ui)2
= ϑ(U, c)

Since this holds for all U, c, we conclude that ω(G) ≤ ϑ(G), as desired.

Proposition. For any two graphs G,H, we have ϑ(G ·H) ≤ ϑ(G)ϑ(H).

Proof. First, we need an important operation on vectors, called the tensor product. Given two vectors
u ∈ Rm,v ∈ Rn, we define u⊗ v ∈ Rmn by

u⊗ v = (u1v1, u1v2, . . . , u1vn, u2v1, . . . , u2vn, . . . , umv1, . . . , umvn)

In other words, the mn coordinates of u⊗ v consist of all the pairwise products of a coordinate of u and a
coordinate of v. One of the reasons we care about the tensor product is that it interacts very nicely with
dot products. Namely, for any u,w ∈ Rm,v,x ∈ Rn, we have the formula

(u⊗ v) · (w ⊗ x) = (u ·w)(v · x)

Note that on the left-hand side, we have the dot product of two vectors in Rmn, whereas on the right-hand
side, we have the product of two real numbers (each of which is a dot product of vectors). To prove this this
formula, we just write down both sides: the left-hand side is

(u⊗ v) · (w ⊗ x) = (. . . , uivj , . . .) · (. . . , wixj , . . .) =

m∑
i=1

n∑
j=1

uivjwixj

The right-hand side is

(u ·w)(v · x) =

(
m∑
i=1

uiwi

) n∑
j=1

wixj

 =

m∑
i=1

n∑
j=1

uivjwixj

9

Yuval The Shannon capacity of graphs Mathcamp 2017

which proves the formula.
Now recall what we want to prove, namely that ϑ(G ·H) ≤ ϑ(G)ϑ(H). Since the ϑ-function is defined as

a minimum over all orthonormal representations, in order to prove an upper bound for ϑ(G ·H), it suffices to
present an orthonormal representation of G ·H for which we can upper-bound ϑ. For this, let’s pick optimal
orthonormal representations and handles for G and H; namely, we pick an orthonormal representation U of
G in dimension m and V of H in dimension n, along with unit vectors c ∈ Rm,d ∈ Rn, such that

ϑ(G) = ϑ(U, c) and ϑ(H) = ϑ(V,d)

Then, we construct an orthonormal representation of G ·H as follows. Recall that a vertex of G ·H is a pair
(i, j) with i ∈ V (G), j ∈ V (H). To this vertex, we assign the vector ui ⊗ vj ∈ Rmn, and we claim that this
forms an orthonormal representation U⊗V of G ·H in Rmn. To see this, let’s first check that each of these
vectors are unit vectors. Indeed,

‖ui ⊗ vj‖ =
√

(ui ⊗ vj) · (ui ⊗ vj) =
√

(ui · ui)(vj · vj) =
√

1 · 1 = 1

where we use the fact that U and V are orthonormal representations. Next, we need to check the orthogo-
nality condition: if (i, j) is adjacent to (i′, j′) in G ·H, then we need to make sure that ui⊗vj is orthogonal
to ui′ ⊗ vj′ . For this, we again use our formula:

(ui ⊗ vj) · (ui′ ⊗ vj′) = (ui · ui′)(vj · vj′)

Now, since (i, j) is adjacent to (i′, j′) in G ·H, then by the definition of the OR product, we must have that
either i is adjacent to i′ in G or that j is adjacent to j′ in H (or both). But in either of those two cases,
since we have that U,V are orthonormal representations, we get that the right-hand side is 0. Thus, we
indeed get that ui⊗vj is orthogonal to ui′ ⊗vj′ , and thus U⊗V is an orthonormal representation of G ·H
in Rmn.

Next, we also pick a handle for this representation, and there is a natural guess, namely c⊗d ∈ Rmn. As
above, c⊗d is a unit vector in Rmn, so it can act as an handle. Finally, we want to evaluate ϑ(U⊗V, c⊗d).
For this, we use our formula one last time:

ϑ(U⊗V, c⊗ d) = max
(i,j)∈V (G·H)

1

((c⊗ d) · (ui ⊗ vj))2

= max
(i,j)∈V (G·H)

1

(c · ui)2(d · vj)2

=

(
max
i∈V (G)

1

(c · ui)2

)(
max
j∈V (H)

1

(d · vj)2

)
= ϑ(U, c)ϑ(V,d)

= ϑ(G)ϑ(H)

where the last line uses the fact that (U, c) are optimal choices for G, and (V,d) are optimal choices for H.
From this, we conclude that

ϑ(U⊗V) ≤ ϑ(U⊗V, c⊗ d) = ϑ(G)ϑ(H)

since the left-hand side is the minimum over all choices of handle. Similarly, we now conclude that

ϑ(G ·H) ≤ ϑ(U⊗V) ≤ ϑ(G)ϑ(H)

since ϑ(G · H) is defined as the minimum over all orthonormal representations. This is precisely what we
wanted to prove.

These last two propositions, taken together with the key lemma from two days ago, proves the following
crucial corollary:

Corollary (Lovász, 1978). For any graph G, Θ(G) ≤ ϑ(G).

10

Yuval The Shannon capacity of graphs Mathcamp 2017

4 Back to C5

Finally, we can state Lovász’s Theorem:

Theorem (Lovász, 1978). Θ(C5) =
√

5.

Proof. We already proved on the first day of class that Θ(C5) ≥
√

5, so we just need to prove the reverse
inequality. Since we’ve been building up the machinery of the Lovász ϑ-function, it’s probably not surprising
that we will prove that ϑ(C5) ≤

√
5. This will imply that

√
5 ≤ Θ(C5) ≤ ϑ(C5) ≤

√
5

and thus we have equalities throughout.
To prove that ϑ(C5) ≤

√
5, we will present a specific orthonormal representation of C5 in R3, called

the Lovász umbrella construction. For this, fix a handle c, and imagine that your five vertices are on the
boundary of an umbrella that we are slowly opening around the handle, with the tip of the umbrella at
the origin. Keep track of the star (which is just C5) that these five vertices define. If we let the umbrella
open all the way, then the angle between two vertices connected by the star edges will be 144◦. So at some
point during the process, we must have all these angles be exactly 90◦; this point at the process defines an
orthonormal representation of C5.

x

Now we need to do a bit of geometry to figure out exactly what the ϑ-function of this representation is.
When the angles at the top of the umbrella are 90◦, then every diagonal of the pentagon is the hypotenuse
of an isosceles right triangle with side length 1. So every diagonal of the pentagon has length

√
2.

On yesterday’s homework, you proved that if a regular pentagon has side length s, then its diagonal has
side length φs, where φ = 1

2 (
√

5 + 1) is the golden ratio. So this pentagon has side length s =
√

2/φ. You

also proved that the distance between a vertex and the center of the pentagon is s
√
φ/ 4
√

5. So we find that
the distance between each of our vectors and the center of the pentagon is

r =

√
2

φ

√
φ

4
√

5
=

√
2

√
φ 4
√

5

Now, the quantity we’re interested in is c · ui, and since these are all unit vectors, this is just cos θ, where θ
is the angle between the handle and each of the five vectors. By the definition of the cosine, applied to the
right triangle whose hypotenuse is the vector and one of whose legs is the handle, we get that cos θ is just the

11

Yuval The Shannon capacity of graphs Mathcamp 2017

length of the handle up to the point where it intersects the plane of the pentagon. Using the Pythagorean
theorem on this same right triangle, this quantity is just

√
1− r2. So we find that

(c · ui)2 = (cos θ)2 = 1− r2 = 1− 2

φ
√

5
=
φ
√

5− 2

φ
√

5
=

φ

φ
√

5
=

1√
5

Thus, we conclude that for the Lovász umbrella representation, we have

ϑ(U, c) = max
i∈V (C5)

1

(c · ui)2
=

1

1/
√

5
=
√

5

and thus ϑ(C5) ≤
√

5, as desired.

5 What’s next?

To recap, Shannon himself managed to determine the Shannon capacity of any graph which has ω = χ, and
it took more than 20 years until Lovász determined the Shannon capacity of the smallest graph without
this property. More or less, this is still the state of the art. In particular, we still don’t know the Shannon
capacity of any odd cycle larger than 5, all of which have ω = 2, χ = 3. The ϑ-function gives an upper
bound that shows that Θ(Cn) approaches 2 as n gets large, and Bohman-Holzman proved a lower bound
that Θ(Cn) > 2 for all n, but these are the best we know. I believe that the Bohman-Holzman construction
gives the correct value, but in order to prove this, we would need some new ideas to get an upper bound.

There’s also something very interesting to say about computing these various things. In this class, we’ve
proven the sequence of inequalities

ω(G) ≤ Θ(G) ≤ ϑ(G) ≤ χf (G) ≤ χ(G)

It turns out that computing ω, χ, and χf is so-called “NP-hard”; this means that, as far as we know,
computing these things takes an insanely long time. How long is insanely long? For a graph with 1000
vertices (which is quite small from a computer’s perspective), if we put all of our supercomputers on the task
of computing one of these parameters, they wouldn’t finish before the death of the sun (in about 5 billion
years).

One of the most important breakthroughs that partially came out of Lovász’s paper is the invention of
semidefinite programming, which has become one of the most powerful tool in the theory of algorithms. In
particular, it turns out that the ϑ-function (and any other so-called semidefinite problem) can be determined
quickly (formally, in polynomial time). So despite being sandwiched between several NP-hard problems, ϑ
turns out to not be hard to compute.

Finally, what about the Shannon capacity itself? The short answer is that we don’t know. Some people
believe that Θ might be uncomputable, meaning that determining it isn’t just very hard—it might be actually
impossible. I’m not sure I believe this conjecture, but if it is true, then it implies a crazy fact: there is some
graph for which the axioms of math (called ZFC) cannot prove what its Shannon capacity is. So if this
conjecture is true, more smart people like Lovász will not suffice for determining the Shannon capacity of
every graphs: there are some for which this determination is literally impossible.

6 The Join of Graphs

Definition. Given two graphs G,H, their join is the graph G+H gotten by placing G and H next to each
other, and then connecting every vertex in G to every vertex in H.

Example. Here is the join C3 + C4:

12

Yuval The Shannon capacity of graphs Mathcamp 2017

From the perspective of communication, what does the join represent? Well, since there is an edge
between every vertex of G and every vertex of H, the join precisely describes what happens when we put
together two alphabets in such a way that I can always tell apart a letter of one from a letter of another.
This interpretation immediately suggests a guess for Θ(G+H), namely Θ(G) + Θ(H): a set of unconfusable
messages in G+H should just consist of taking together a set of unconfusable messages in G and in H.

Shannon himself formulated this guess as a conjecture, and he also managed to prove that Θ(G+H) ≥
Θ(G) + Θ(H), and also proved equality for some special cases. This proof is not particularly hard, and the
intuition is hopefully clear: to prove this, we legitimately can just construct a set of unconfusable messages
in the vertices of G+H of size Θ(G) + Θ(H), basically by just putting together such sets for G and H.

However, in 1998, Noga Alon actually proved that this conjecture is false. Not only is it false, but it’s
somehow really really false:

Theorem (Alon, 1998). For every k, there exist graphs G,H with the property that Θ(G) ≤ k,Θ(H) ≤ k,
but Θ(G+H) ≥ k2.

In fact, he proved an even stronger bound, which is a bit harder to state. We don’t quite have time to
prove this result, but we can see some of the big ideas in the proof.

First of all, one idea is to take H = G, the complement graph of G. The reason is that this allows us to
give a lower bound for Θ(G+H):

Proposition. If G has n vertices, then Θ(G+G) ≥
√
n.

Proof. It suffices to find a clique of size n in (G + G)2. To do this, let’s call the vertices of G + G
u1, . . . , un, v1, . . . , vn, where the ui are the vertices of G, and the vi are the vertices of G. Then a clique in
(G+G)2 is given by {(u1, v1), . . . , (un, vn)}. Indeed, this is a clique for the following reason: for any i, j, we
have that either ui is adjacent to uj in G, or not. If it is, then (ui, vi) is adjacent to (uj , vj) in (G + G)2,
since the first coordinate has an adjacency. If ui is not adjacent to uj , then vi is adjacent to vj in G, and
thus (ui, vi) is adjacent to (uj , vj) in (G + G)2. Regardless, we get adjacency, so this is indeed a clique.
Moreover, since G has n vertices, then this clique has size n, so

Θ(G+G) ≥
√
ω((G+G)2) ≥

√
n

The next part of Alon’s proof is to pick a clever graph G, for which we can upper bound Θ(G) and
Θ(G). The choice of G is not so important (though it also requires some ideas), but the main thing is
Alon’s new technique for constructing upper bounds for Θ. For this, he generalized Lovász’s notion of an
orthonormal representation to work for any field, which is basically a mathematical structure in which we
can add, subtract, multiply, and divide. Crucially, in order to upper-bound both Θ(G) and Θ(G), Alon
needed to do this sort of analysis over two different fields, and one can prove that this is necessary: a single
upper bound like the ϑ-function cannot, by itself, give the necessary bounds for Θ(G) and Θ(G).

13

