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1 Introduction

Let Mn denote a random n× n matrix whose entries are iid Rademacher random variables,
i.e. every entry is +1 or −1 with probability 1/2, independently over all entries. In this talk,
we’ll study the singularity problem for Mn, which is simply the question of how likely it is
for Mn to be singular (non-invertible) for large n. Formally, we define

sn = Pr(Mn is singular),

and we wish to understand how sn behaves as n→∞.
On the one hand, it stands to reason that sn → 0 as n → ∞. Indeed, if M̃n is an

n × n matrix drawn from some “usual” random matrix ensemble (e.g. the GUE or GOE

ensembles), then M̃n will be invertible a.s. The reason is that the space of singular matrices
is a codimension-1 submanifold of Rn2

, and so it has Lebesgue measure zero. As the “usual”
ensembles have an absolutely continuous distribution, we see that M̃n does not lie on this
submanifold a.s. Additionally, we know that many results in random matrix theory exhibit
universality, meaning that the behavior as n → ∞ stops depending heavily on the precise
distribution of the entries. Combining these two, one might expect that limn→∞ sn = 0.

On the other hand, we can easily see that sn 6= 0 for all n. Indeed, there is a 2−n

probability that the first two rows of Mn are equal, and if this happens, then Mn is certainly
singular, which shows that sn ≥ 2−n. More generally, if any two rows of Mn are either equal
to one another or negatives of each other, then Mn is singular, and similarly for pairs of
columns. This shows that

sn ≥ 2 · 2 ·
(
n

2

)
· 2−n = (2− o(1))n22−n =

(
1

2
+ o(1)

)n

.

Moreover, no one has ever been able to come up with a significantly better lower bound on
sn, suggesting that this may be best possible. In other words, it may be that the “likeliest
reason” for why a Rademacher random matrix is singular is that two of its rows or two of
its columns are equal or negatives of each other.

Because of this intuition, people have over the years made a number of conjectures about
sn, which I present in below in increasing order of strength.

Conjecture 1.1.

sn ≤


o(1)

e−cn for some c > 0

(1
2

+ o(1))n

(2 + o(1))n22−n

The first conjecture, that lim sn = 0, was proven by Komlós in 1967. The first expo-
nential bound, that sn < 0.999n, was proven by Kahn, Komlós, and Szemerédi in 1995.
Their exponential constant was subsequently improved several times by several authors, and
finally in 2018 Tikhomirov proved that sn ≤ (1

2
+ o(1))n, which left only the final, strongest
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conjecture open. A proof of this result was announced earlier this year by Irmatov, but my
understanding is that it is not yet accepted as correct (and may have serious issues). Just two
days ago, Jain, Sah, and Sawhney posted a paper on the arXiv which proves the analogue of
this conjecture for a random matrix whose entries come from any discrete distribution that
is not uniform on its support, thus “almost” proving this conjecture.

In this talk, we’ll prove Komlós’s theorem, that sn = o(1). In fact, we’ll show a quantita-
tive bound of the form sn = O(log n/

√
n), which is roughly the same quantitative result as

Komlós’s original bound. Komlós’s original proof has been simplified many times (including
several times by Komlós himself); the argument I’ll present today is due to Asaf Ferber, and
I learned of it from Matthew Kwan. However, many of the basic ideas go all the way back to
Komlós; most notably, Komlós’s key insight was that to understand the singularity problem,
one needs to understand anticoncentration. Essentially every improved upper bound on sn
has involved developing new results on anticoncentration of certain random variables. As
such, we’ll begin by discussing anticoncentration.

2 Anticoncentration and Erdős–Littlewood–Offord

Before discussing anticoncentration, let’s begin with concentration. Generally speaking, a
concentration result for some random variable X is a statement of the form

There exists an interval I of length ` such that Pr(X /∈ I) is small. (∗)

Here, “small” can mean many things, e.g. a small absolute constant, or something decaying
to zero as some parameter n tends to ∞, or maybe something decaying exponentially in
n. Many concentration results exist, including simple ones like Markov’s and Chebyshev’s
inequalities, ones giving exponential bounds such as Chernoff’s, Hoeffding’s, and Azuma’s
inequalities, and more sophisticated ones like Talagrand’s inequality. Usually, when applying
a concentration inequality, we want the length ` to be as small as possible.

Anticoncentration is simply the negation of (∗). Namely, an anticoncentration result for
X is a statement of the form

For any interval I of length `, Pr(X ∈ I) is small.

We’ll be dealing only with discrete random variables, which means that it will usually be
more convenient to think of our anticoncentration results as

For any x ∈ R, Pr(X = x) is small.

Of course, up to the value of “small”, the previous two statements are equivalent for dis-
crete random variables. For example, if X is integer-valued, then we can get from the first
statement to the second by taking ` = 1 and using an interval around some integer x. To go
from the second statement to the first, we can simply apply the bound on Pr(X = x) to all
integer points x ∈ I, and get the first statement.
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The first result in anticoncentration, and the one that we’ll need, concerns the Littlewood–
Offord problem, which is as follows. Let ε1, . . . , εn be iid Rademacher random variables, and
let a1, . . . , an be arbitrary non-zero real numbers. Let

X =
n∑

i=1

εiai

be a random signed sum of the ai. Littlewood and Offord wanted to find a good antincon-
centration result for X, i.e. they wanted to obtain a good upper bound on

sup
x∈R

Pr(X = x).

Note that it is important to assume that all the ai are non-zero, for otherwise we’ll have some
irrelevant terms in the sum for X, and we might even have that X = 0 always. However,
other than this constraint, we won’t assume anything about the ai.

Intuitively, it makes sense that the worst case for the Littlewood–Offord problem (i.e.
the case when supx Pr(X = x) is largest) is when all the ai are equal or close to equal.
Indeed, if they have vastly different sizes, then we won’t get any collisions among the random
signed sums, and X will take on 2n values, each with probability 2−n. Similarly, since there
is a symmetry in the problem, it is natural to guess that the highest point probability
will be Pr(X = 0), or something similar. In case n is even and all the ai equal 1, then
Pr(X = 0) =

(
n

n/2

)
/2n = O(1/

√
n). Littlewood and Offord were able to prove a nearly

matching bound.

Theorem 2.1 (Littlewood–Offord 1938). For any non-zero a1, . . . , an and any x ∈ R,

Pr

(
n∑

i=1

εiai = x

)
≤ O

(
log n√
n

)
.

Their proof used a quantitative version of the central limit theorem: roughly speaking,
for large n, we have that X is close to a Gaussian in some appropriate metric. Since the
probability that a Gaussian is equal to any fixed real number is zero, this closeness shows
that Pr(X = x) is small as well. By using an appropriate quantitative CLT, one can obtain
the bound above.

However, a few years later, Erdős improved their result, getting an exactly tight bound.

Theorem 2.2 (Erdős 1945). For any non-zero a1, . . . , an and any x ∈ R,

Pr

(
n∑

i=1

εiai = x

)
≤

(
n
bn/2c

)
2n

= O

(
1√
n

)
Before we prove this, we’ll need a simple but important combinatorial result. We say

that a collection F of subsets of [n] is an antichain if S * T for any distinct S, T ∈ F . In
other words, F consists of incomparable elements in the Boolean lattice 2[n].
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Theorem 2.3 (Sperner 1928). If F ⊂ 2[n] is an antichain, then |F| ≤
(

n
bn/2c

)
.

Sperner’s theorem is easily seen to be tight, as the collection of all sets of size bn/2c
forms an antichain.

Proof (Bollobás 1965). Pick a random permutation π of [n], and consider the probability
that some set in F is an initial segment of π. For a fixed S ∈ F , the probability that S
is an initial segment of π is precisely 1/

(
n
|S|

)
. Moreover, by the antichain condition, we see

that these events are disjoint for distinct S, T ∈ F , for if S is an initial segment of π, we
cannot have T be an initial segment as well. Therefore, the probability that some S ∈ F is

an initial segment is just
∑

S∈F
(

n
|S|

)−1
, and we conclude that

1 ≥
∑
S∈F

1(
n
|S|

) ≥∑
S∈F

1(
n
bn/2c

) =
|F|(
n
bn/2c

) ,
as claimed.

Remark. We in fact proved a stronger statement, namely that for any antichain F ,∑
S∈F

1(
n
|S|

) ≤ 1.

This result is known as the LYM inequality, and often gives more refined results than
Sperner’s theorem itself.

Once we know Sperner’s theorem, proving Erdős’s bound on the Littlewood–Offord prob-
lem is quite straightforward.

Proof of Theorem 2.2. We may assume without loss of generality that all the ai are positive,
since the random variable X is unchanged by replacing ai with −ai. Fix some x ∈ R, and
let F consist of all sets S ⊆ [n] such that∑

i∈S

ai −
∑
j /∈S

aj = x.

Note that Pr(X = x) = |F|/2n. We claim that F is an antichain. Indeed, if S ⊂ T , then∑
i∈S

ai −
∑
j /∈S

aj <
∑
i∈T

ai −
∑
j /∈T

aj,

since we assumed that all the ai were positive. In particular, at most one of the two terms
can equal x, and thus at most one of S and T lies in F . But then by Sperner’s theorem, we
conclude that

Pr

(
n∑

i=1

εiai = x

)
=
|F|
2n
≤

(
n
bn/2c

)
2n

.
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3 Bounding the singularity problem

Before we can prove our upper bound of sn = O(log n/
√
n), we will need a simple linear-

algebraic lemma.

Lemma 3.1. Let V ⊆ Rn be a subspace of dimension d. Then V contains at most 2d vectors
in {−1, 1}n.

Proof. Let v1, . . . , vd be a basis for V , and let A be the matrix whose columns are v1, . . . , vd.
Since rankA = d, there must exist indices i1, . . . , id ∈ [n] such that the rows indexed by
i1, . . . , id are linearly independent. In particular, every other row is a fixed linear combination
of these rows. This implies that for every ui1 , . . . , uid ∈ R, there is a unique u ∈ V whose
i1, . . . , id coordinates are ui1 , . . . , uid . In particular, there are exactly 2d vectors in V that
have ±1 in coordinates i1, . . . , id, and thus at most 2d vectors in V ∩ {−1, 1}n.

Now, let the rows of Mn be ξ1, . . . , ξn, where the ξi are iid random vectors in {−1, 1}n.
Let Vi = span(ξ1, . . . , ξi) be the span of the first i rows. If Mn is singular, there must be
some linear dependence among its rows, and in particular we must have that ξi+1 ∈ Vi for
some i ≤ n− 1. Therefore, we conclude that

sn ≤
n−1∑
i=1

Pr(ξi+1 ∈ Vi).

Additionally, we have that dimVi ≤ i and that ξi+1 is a vector in {−1, 1}n. So by Lemma 3.1,
we see that Pr(ξi+1 ∈ Vi) ≤ 2i−n. Therefore, for any 1 ≤ k ≤ n− 1,

sn ≤
n−k−1∑
i=1

Pr(ξi+1 ∈ Vi) +
n−1∑

i=n−k

Pr(ξi+1 ∈ Vi) ≤ 2−k +
n−1∑

i=n−k

Pr(ξi+1 ∈ Vi). (1)

Thus, we see that the first n−k−1 rows contribute very little to the probability of singularity.
We will eventually end up taking k = log2 n, and so the first term above will be of order 1/n,
which is much smaller than the O(log n/

√
n) bound we are trying to prove. More generally,

the moral here is that the vast majority of the rows of Mn won’t cause us any problems,
but we need to work harder to deal with the last few rows. To do so, we will need one more
lemma.

Lemma 3.2 (Ferber). Let d ≥ 99
100
n. With probability at least 1 − 2−n/20, there is some

w ∈ V ⊥d with at least n/5 non-zero coordinates. In fact, every non-zero w ∈ Qn ∩ V ⊥d has
at least n/5 non-zero coordinates.

In what follows, we’ll only need the “there exists” statement. However, it seems that the
easiest way to prove the “there exists” statement is to prove the “for all” statement. While
this is somewhat surprising, it’s not completely crazy; for instance, in the case d = n− 1, we
will typically have that dimV ⊥d = 1, meaning that in this case, the “there exists” and the
“for all” statements are the same, as there is a unique w ∈ Qn ∩ V ⊥d up to scaling.
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Proof. Heuristically, this lemma should be true becuase, for any fixed vector w with few non-
zero coordinates, the probability that it lies in V ⊥d is small. However, as there are infinitely
many such possible vectors w, we can’t just apply the union bound. Instead, Ferber’s clever
idea is to reduce this whole problem modulo 3 so that we have a finite set to union-bound
over.

Concretely, suppose that there is some w ∈ Qn ∩ V ⊥d with at most n/5 non-zero coordi-
nates. By rescaling w by the least common denominator of its entries and reducing every
coordinate modulo 3, we end up with a vector u ∈ {0, 1, 2}n such that

ξi · u ≡ 0 mod 3 for each 1 ≤ i ≤ d.

Note too that u has at most n/5 non-zero coordinates, though it may have fewer non-zero
coordinates than w, since some of w’s coordinates may be divisible by 3. However, u has at
least one non-zero coordinate, since otherwise we could have divided every entry of w by 3
before reducing modulo 3.

Next, we claim that for any fixed non-zero u ∈ {0, 1, 2}n, we have that

Pr(ξi · u ≡ 0 mod 3) ≤ 1

2
. (2)

Indeed, since u is non-zero, it has at least one non-zero entry, which WLOG is u1. Suppose

that ξi · u ≡ 0 mod 3. If we let ξ̃i denote ξi but with the first entry negated, then we

must have that ξ̃i · u 6≡ 0 mod 3. Indeed, since u1 6= 0, negating ξi1 adds either 1 or 2 to

ξi · u (mod 3). Thus, every choice of ξi for which ξi · u ≡ 0 has an equiprobable choice ξ̃i for

which ξ̃i · u 6≡ 0, implying (2).
Therefore, we conclude that

Pr(ξi · u ≡ 0 mod 3 for each 1 ≤ i ≤ d) ≤ 2−d ≤ 2−.99n. (3)

Recall that this holds for any vector u ∈ {0, 1, 2}n with at most n/5 non-zero coordinates.
The number of choices for such a u is

n/5∑
m=1

(
n

m

)
2m ≤ 2n/5

n/5∑
m=1

(
n

m

)
≈ 2.92n,

using the standard approximation for the volume of a Hamming ball in terms of the Shannon
entropy of the radius. If you don’t know what this is, it should it least be plausible that
such a bound holds: the sum of the binomial coefficients up to n/5 is the probability that a
binomial random variable is at most 2/5 of its expectation, which should be exponentially
small in n. Combining this with (3), we see that

Pr(∃w ∈ Qn ∩ V ⊥d with at most n/5 non-zero coordinates) . 2.92n · 2−.99n ≤ 2−n/20.

Now, suppose i ≥ 99n/100, and fix some w ∈ V ⊥i with at least n/5 non-zero coordinates,
which exists with high probability. Then we find that

Pr(ξi+1 ∈ Vi) ≤ Pr(ξi+1 · w = 0) = Pr

(
n∑

j=1

ξi+1
j wj = 0

)
.
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By assumption, at least n/5 of the numbers w1, . . . , wn are non-zero, and the coordinates
ξi+1
j are iid Rademacher random variables. Therefore, by Theorem 2.2, we find that

Pr(ξi+1 ∈ Vi | ∃w ∈ V ⊥i with ≥ n/5 non-zero coordinates) ≤ O

(
1√
n/5

)
= O

(
1√
n

)
.

We now return to (1), and plug in k = log2 n. For sufficiently large n, we have that n −
log2 n ≥ 99n/100. We then see that

sn ≤
n−log2 n−i∑

i=1

2−i +
n−1∑

i=n−log2 n

Pr(ξi+1 ∈ Vi)

≤ 1

n
+
(
log2 n · 2−n/20

)
+

n−1∑
i=n−log2 n

Pr(ξi+1 ∈ Vi | ∃ good w ∈ V ⊥i )

≤ 1

n
+O(2−n/30) +O

(
log n√
n

)
= O

(
log n√
n

)
,

as claimed.
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