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1 Introduction

Ramsey’s theorem, proved by Ramsey in 1930, says that for every positive integer t, there
exists some positive integer N so that any two-coloring of E(KN) contains a monochromatic
copy ofKt. Since every graph is contained in a complete graph, an equivalent but superficially
stronger statement is the following: for every graph H, there exists a graph G so that every
two-coloring of E(G) contains a monochromatic copy of H. In case G satisfies this property,
we say that G is Ramsey for H.

Broadly speaking, the field of graph Ramsey theory is concerned with the question “which
graphs G are Ramsey for a given graph H?”. In general, this question is extremely difficult,
so one studies various natural subquestions. For example, it is natural to ask for the smallest
graph G which is Ramsey for H. The most well-studied version of this question is to
determine the Ramsey number r(H) of H, which is defined as the least number of vertices in
a graph G which is Ramsey for H. Equivalently, r(H) is the least N so that KN is Ramsey
for H.

However, rather than asking for few vertices, one can ask for few edges. Specifically, one
can define the size Ramsey number r̂(H) as

r̂(H) = min{e(G) : G is Ramsey for H}.

This quantity was defined in 1978 by Erdős, Faudree, Rousseau, and Schelp. One simple
observation they made is that if H has no isolated vertices, then

r(H)

2
≤ r̂(H) ≤

(
r(H)

2

)
. (1)

Indeed, for the upper bound, one notes that if N = r(H), then KN is Ramsey for H and
has

(
N
2

)
edges. For the lower bound, suppose that G is Ramsey for H and has r̂(H) edges.

Since H has no isolated vertices, we may assume that G also does not, and thus G has at
most 2e(G) = 2r̂(H) vertices, showing that r(H) ≤ 2r̂(H).

Thanks to (1), we know that r̂(H) is somewhere between a linear and a quadratic function
of r(H). And interestingly, it turns out that there are situations where one of the two bounds
is close to optimal, and other situations where the other is close to optimal. A nice pair of
illustrative examples is given by stars and double stars. Let us define the starburst graph
S

(k)
n to consist of a clique Kk with n pendant vertices coming off of each of the vertices of

the clique. Thus, S
(1)
n is simply the star K1,n, and S

(2)
n is the double star, consisting of two

stars joined along a common edge. It is well-known and simple to prove that any tree has
Ramsey number which is linear in its number of vertices, so r(S

(i)
n ) = O(n) for i = 1, 2. This

implies, by (1), that Ω(n) ≤ r̂(S
(i)
n ) ≤ O(n2) for i = 1, 2. And surprisingly, the answers in

the two cases are very different!

Proposition 1.1. r̂(S
(1)
n ) = 2n− 1.

Proof. Consider S
(1)
2n−1, which has 2n− 1 edges. In any two-coloring of E(S

(1)
2n−1), at least n

edges receive the same color, and they form a monochromatic copy of S
(1)
n .
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For the lower bound, if G is a graph with at most 2n− 2 edges, then we may 2-color its
edges so that there are fewer than n edges in either color. As S

(1)
n has n edges, there can be

no monochromatic copy of S
(1)
n in this coloring.

Proposition 1.2. r̂(S
(2)
n ) > n2.

Proof. Let G be a graph with at most n2 edges. This implies that G has at most 2n vertices
of degree at least n; call the set of these high-degree vertices U . Then color all edges within
U red, and all other edges blue. There can be no red copy of S

(2)
n , since S

(2)
n has 2n + 2

vertices and U has at most 2n vertices. Additionally, any blue copy of S
(2)
n would have to

include a blue edge between two vertices of degree at least n, and there are no such blue
edges. This shows that G is not Ramsey for H.

As these examples show, either of the bounds in (1) can be close to optimal, and the value

of r̂(H) really depends on the structure of H; superficially, S
(1)
n and S

(2)
n are fairly similar

graphs (e.g. they are both trees of bounded diameter), yet their size Ramsey numbers are
very different.

An even more surprising result, due to Chvátal, is that the upper bound in (1) is exactly
tight when H is a clique.

Theorem 1.3 (Chvátal). For any positive integer t,

r̂(Kt) =

(
r(Kt)

2

)
.

Proof (Folklore?) Let G be a graph which is Ramsey for Kt. We first claim that χ(G) ≥
r(Kt). Indeed, if χ(G) < r(Kt), then there is a graph homomorphism ϕ : G→ Kr(Kt)−1. By
the definition of the Ramsey number, we know that there exists a 2-coloring of E(Kr(Kt)−1)
with no monochromatic Kt. By pulling this coloring back along the homomorphism ϕ (i.e.
by coloring an edge (u, v) of G according to the color of the edge (ϕ(u), ϕ(v))), we obtain a
2-coloring of E(G) with no monochromatic Kt, a contradiction.

Now, it remains to observe that G has at least
(
χ(G)

2

)
edges. Indeed, suppose this is not

the case, and fix a proper coloring of G with χ(G) colors. By the pigeonhole principle, there
exist two colors such that there is no edge of G connecting them. But this means that the
union of these two color classes is an independent set of G, so we can combine these two
colors to obtain a proper coloring of G with χ(G)− 1 colors, a contradiction. Putting these
two observations together yields the desired result.

Theorem 1.3 is very nice, in that it allows us to reduce the study of the size Ramsey
number r̂(Kt) to the study of the ordinary Ramsey number r(Kt). Unfortunately, the de-
termination of r(Kt) is a notoriously difficult problem. The bounds

√
2
t
≤ r(Kt) ≤ 4t

were proved over 75 years ago by Erdős and Erdős–Szekeres, respectively, and despite decades
of effort, there has been no improvement to either of the exponential constants

√
2 and 4.
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Because of Theorem 1.3, all of the study of size Ramsey numbers concerns itself with
graphs which are not complete. In their original 1978 paper, Erdős, Faudree, Rousseau, and
Schelp proved a number of bounds on size Ramsey numbers of various classes of graphs, and
they ended the paper with four questions: to determine (up to a constant factor) the size
Ramsey numbers of four classes of graphs.

1. Complete bipartite graphs, Ks,t.

2. Book graphs, B
(k)
n . This graph consists of n copies of Kk+1 glued along a common Kk.

3. Starburst graphs, S
(k)
n , defined above.

4. Path graphs, Pn.

Let me discuss these questions in reverse order. First, consider the path graph Pn. As
Pn is a tree, we know that r(Pn) = Θ(n) (and the precise value of r(Pn) has been known for
decades, thanks to a 1967 result of Gerencsér and Gyárfás). By (1), this shows that r̂(Pn) is
somewhere between linear and quadratic in n. In 1983, Beck proved that the lower bound is
essentially tight, namely that r̂(Pn) = Θ(n). The key idea in Beck’s proof is to take G to be
a good expander on Θ(n) vertices, which we can take to have Θ(n) edges. If we two-color the
edges of G, then one of the monochromatic subgraphs contains another good expander, and
it is not too hard to show that good expanders contain long paths, which together implies
that G is Ramsey for Pn. In fact, one can even take G to be an Erdős–Rényi random graph
G(N, p), where N = Θ(n) and p = Θ(1/n), and this graph will be Ramsey for H with high
probability.

Almost all of the subsequent work on size Ramsey numbers begins with Beck’s result.
There were a sequence of results proving that certain special sparse graphs have linear size
Ramsey numbers, including cycles and bounded-degree trees. More generally, suppose we
have a graph H with n vertices and maximum degree ∆. A foundational result of Chvátal,
Rödl, Szemerédi, and Trotter says that r(H) = O∆(n), that is, that bounded-degree graphs
have linear Ramsey numbers. Because of this and (1), we know that Ω(n) ≤ r̂(H) ≤ O∆(n2).
It is natural to wonder whether the upper bound can be improved for all such H, as it is for
the special sparse graphs mentioned above. This is indeed true, since Kohayakawa, Rödl,
Schacht, and Szemerédi proved that r̂(H) ≤ n2−1/∆+o(1) for all n-vertex H with maximum
degree ∆. Like Beck, they prove this by taking G to be an appropriate Erdős–Rényi random
graph, namely G(N, p) where N = Θ(n) and p = n−1/∆+o(1). However, proving that this
graph is Ramsey for H with high probability is quite involved, and uses the techniques of
sparse regularity, which is an important tool in many results in the area.

In the other direction, Rödl and Szemerédi proved that the lower bound r̂(H) = Ω(n) is
not always tight, by showing that there exists an n-vertex graph H with maximum degree
3 and r̂(H) ≥ n(log n)c for some absolute constant c > 0. It remains a major open problem
to close the gap between the lower and upper bounds; in particular, it is unknown whether
one has r̂(H) ≥ n1+c for some bounded-degree H and some positive c > 0.

3



Yuval Wigderson Size Ramsey numbers May 12, 2022

Over the past 40 years, there was very little progress on any of the remaining three
questions asked by Erdős, Faudree, Rousseau, and Schelp. For those three classes of graphs—
complete bipartite, books, and starbursts—the techniques they developed allowed Erdős,
Faudree, Rousseau, and Schelp to prove some bounds, but there remained a gap in all cases.
Additionally, it seems that they raised these specific questions for exactly this reason, in order
to see how their techniques could be improved to go beyond the barriers they encountered.

In recent work with David Conlon and Jacob Fox, we determine up to a constant factor
r̂(B

(k)
n ) and r̂(S

(k)
n ) when n � k, and make significant progress on determining r̂(Ks,t). In

the following sections, I will discuss these results.

2 Starburst graphs

As we saw earlier, there is a notable difference between r̂(S
(1)
n ) and r̂(S

(2)
n ), coming from the

presence of adjacent high-degree vertices. Given this, it is natural to ask about r̂(S
(k)
n ) for

k ≥ 3 and n� k.
Erdős, Faudree, Rousseau, and Schelp proved that for k ≥ 2,

Ω(k3n2) ≤ r̂(S(k)
n ) ≤ O(k4n2) (2)

when n is sufficiently large with respect to k, and they asked to close the Θ(k) gap. The
lower bound is actually very general, and follows from the following result (a similar result
is implicit in the paper of Erdős, Faudree, Rousseau, and Schelp).

Proposition 2.1 (Conlon–Fox–W.). If H is a connected graph with N vertices, maximum
degree ∆, and chromatic number k, then

r̂(H) ≥
(
k − 1

2

)
∆(N − 1).

This is proved by combining the degree-based coloring in the proof of Proposition 1.2 with
the Turán coloring, a standard coloring for avoiding monochromatic copies of a graph with
a given chromatic number. More precisely, one can show that given any graph G with fewer
than

(
k−1

2

)
∆(N − 1) edges, one can partition the vertices of G into k − 1 parts so that each

part either has fewer than N vertices or induces a subgraph with maximum degree less than
∆. If we color all edges inside a part red and all edges between parts blue, it is easy to check
that there is no monochromatic copy of H. Since S

(k)
n has chromatic number k, maximum

degree ∆ = n+ k − 1, and kn+ k vertices, this result implies that r̂(S
(k)
n ) = Ω(k3n2).

For the upper bound on r̂(S
(k)
n ), Erdős, Faudree, Rousseau, and Schelp actually proved

an upper bound on the ordinary Ramsey number r(S
(k)
n ), namely r(S

(k)
n ) = O(k2n) for n

sufficiently large with respect to k, which implies r̂(S
(k)
n ) ≤

(
r(S

(k)
n )
2

)
= O(k4n2). The proof

is fairly straightforward, and uses a neighborhood-chasing argument akin to the ordinary
Erdős–Szekeres proof which bounds r(Kt). One of our new results closes the Θ(k) gap in
(2), establishing that the lower bound is asymptotically tight.

4



Yuval Wigderson Size Ramsey numbers May 12, 2022

Theorem 2.2 (Conlon–Fox–W.). If n is sufficiently large with respect to k ≥ 2, then

r̂(S(k)
n ) = Θ(k3n2).

The idea of the proof is as follows. As mentioned above, if N = Θ(k2n), then KN is

Ramsey for S
(k)
n . Rather than using KN , we use the random graph G(N, p) where p =

Θ(1/k), which has Θ(k3n2) edges with high probability. The key idea is that, since the edges
of G(N, p) are very well-distributed with high probability, the same neighborhood-chasing
argument that worked in KN can be made to work in G(N, p), establishing the upper bound.

3 Book graphs

Recall that the book graph B
(k)
n consists of n copies of Kk+1 glued along a common Kk. Why

should one care about book graphs? As it turns out, there is good reason to care: book
graphs play a surprisingly central role in a number of other Ramsey-theoretic questions.
For example, all known techniques for upper-bounding r(Kt) use (implicitly or explicitly)

bounds on r(B
(k)
n ) somewhere. In fact, Ramsey’s original proof of Ramsey’s theorem proved

the finiteness of r(Kt) by inductively proving the finiteness of r(B
(k)
n ) for appropriate choices

of k and n. Additionally, books show up in other Ramsey-theoretic problems; for example,
a result of Sudakov on the Ramsey number of a graph with a given number of edges works
by iteratively finding large monochromatic books in a coloring of KN .

Erdős, Faudree, Rousseau, and Schelp proved that for n� k ≥ 2,

Ω(k2n2) ≤ r̂(B(k)
n ) ≤ O(16kn2).

As with starbursts, the lower bound follows immediately from Proposition 2.1, and the upper
bound follows from a result on the ordinary Ramsey number of B

(k)
n . Indeed, Erdős, Faudree,

Rousseau, and Schelp proved that

(2k − o(1))n ≤ r(B(k)
n ) ≤ 4kn, (3)

where the o(1) term tends to 0 as n tends to infinity, for fixed k. Here, the lower bound
follows immediately from a random coloring, and the upper bound follows by a simple
neighborhood-chasing argument. Closing the gaps here remained a major open problem,
until it was essentially full resolved by Conlon in 2019.

Theorem 3.1 (Conlon). If k is fixed, then

r(B(k)
n ) = (2k + o(1))n

as n→∞.

Conlon’s original proof used Szemerédi’s regularity lemma and gave very poor quantita-
tive estimates on the o(1) term. In follow-up work, Conlon, Fox, and I simplified Conlon’s
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proof, got a much better quantitative dependence, and proved some generalizations which I
won’t discuss here. But suffice to say that these works give powerful techniques for finding
monochromatic books in colorings of graphs, and I will return to this momentarily.

As an immediate corollary of Conlon’s theorem, we see that r̂(B
(k)
n ) ≤

(
r(B

(k)
n )
2

)
= O(4kn2)

for n� k. But even with this improvement, there remains a massive gap between the lower
and upper bounds in (3), between quadratic in k and exponential in k behavior.

As it turns out, the truth is essentially halfway between these two bounds.

Theorem 3.2 (Conlon–Fox–W.). If n is sufficiently large with respect to k ≥ 2, then

r̂(B(k)
n ) = Θ(k2kn2).

Let’s begin with the upper bound, which is technically harder but provides good intuition
for the lower bound. We wish to find a graph G which is Ramsey for B

(k)
n . I think a natural

choice is B
(K)
N for appropriate parameters K > k,N > n, and we hope to embed the common

Kk of B
(k)
n in the common KK of B

(K)
N . For this to work, how big must we take K and N?

First, we claim that we need K > (k−1)n. Indeed, suppose that K ≤ (k−1)n. Then we

can use the Turán coloring on the KK of B
(K)
N . Namely, we split this KK into (k − 1) sets,

each of size n, and color each set red and all edges between distinct sets blue. Additionally,
we color all edges between the KK and the remaining N vertices blue. Inside the KK , there is
no red B

(k)
n , since the red graph has connected components with only n vertices, so B

(k)
n can’t

fit. Additionally, the blue graph on the KK has chromatic number k − 1, so it contains no
Kk. Thus, we can’t possibly find a blue B

(k)
n in the entire coloring. So we need K > (k−1)n.

On the other hand, suppose that we color the edges uniformly at random. Then a simple
application of the Chernoff bound and the union bound shows that no monochromatic Kk

will have many more than 2−k(K +N) monochromatic extensions to a Kk+1. Since we hope
to find n monochromatic extensions, we see that we need to take N at least roughly 2kn for
this to have any hope of working.

As it turns out, these are essentially the only two constraints! This is the content of the
following result, which implies the upper bound in Theorem 3.2.

Lemma 3.3 (Conlon–Fox–W.). Suppose n is sufficiently large with respect to k. If K = 2kn

and N = 2k+1n, then B
(K)
N is Ramsey for B

(k)
n .

The proof is quite involved, and requires the techniques developed to find monochromatic
books in the earlier works of Conlon and Conlon–Fox–W. But morally, the content of these
techniques is that once one is past the “Turán barrier” and the “random barrier”, then any
coloring contains a monochromatic book.

This upper bound also hints at how to prove the lower bound in Theorem 3.2. Namely,
we are given a graph G with few edges, and we wish to color it so that it there is no
monochromatic B

(k)
n . If we take as our model that G should be “similar to” B

(K)
N , then

we want to use both the Turán coloring and the random coloring. We want to use the
Turán coloring within the “high-degree part” of G, and the random coloring everywhere
else. So a natural thing to try is to pull out the (k−1)n highest-degree vertices of G, further
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partition them into k − 1 sets and put the Turán coloring between these sets, and then to
color all remaining edges uniformly at random. As it turns out, this doesn’t quite work, but
something similar to it does.

Namely, suppose we are given a graph G with at most k2kn2/10000 edges. Let s = k/3.
Let V0 consist of the n/10 highest-degree vertices in G, let V1 consist of the n/10 next-highest-
degree vertices, and so on until Vs. Finally, let U consist of all the remaining vertices. We
color each Vi red, and color all edges between Vi and Vj for i 6= j blue. Inside U , we color
each edge red or blue uniformly at random. However, for all edges between Vi and U , we
color them red with probability pi = 1

2
(i/s)1/k and blue with probability 1 − pi. Basically,

for smaller i, the vertices in Vi have higher degree, and are thus more “dangerous” for red
books. So we wish to counteract this by coloring them red with probability that is smaller
than 1

2
, and it turns out that the choice of pi above is a good one.

As it turns out, this coloring works. The proof is not hard, but it is fairly technically
involved; there are many different “types” of books one needs to worry about, and for each
one, one needs to analyze the probability that it is monochromatic. So I will not discuss the
proof any further.

4 Complete bipartite graphs

Erdős, Faudree, Rousseau, and Schelp proved that if s ≤ t, then

Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s),

where the upper bound holds for all s ≤ t and the lower bound holds whenever t � s.
Later, Erdős and Rousseau actually proved that the lower bound holds for all s ≤ t, so there
remains only a Θ(s) gap between the lower and upper bounds. When t is very large with
respect to s, then Pikhurko proved that the upper bound is tight, and even determined the
correct asymptotic constant. However, his proof gives no information on how large t must
be as a function of s, and thus says nothing about r̂(Ks,t) for any given s, t.

Our final result improves the Erdős–Rousseau lower bound. It gives a power improvement
on s whenever t ≥ (1+δ)s for any δ > 0, and it matches the upper bound once t = Ω(s log s).

Theorem 4.1 (Conlon–Fox–W.). For all t ≥ s,

r̂(Ks,t) = Ω(s2− s
t t2s)

The lower bound argument of Erdős and Rousseau is very simple to describe, and it is
also at the heart of our improved lower bound. They first prove the following lemma.

Lemma 4.2 (Erdős–Rousseau). If s ≤ t are integers and G is a graph with m edges, then
G has at most (

100m

st

)t
copies of Ks,t.
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Once they have this lemma, the lower bound is straightforward. In a random coloring of
G, every copy of Ks,t is monochromatic with probability 21−st. If we choose m = st2s/200
and fix a graph G with m edges, then in a random coloring of G, the expected number of
monochromatic Ks,t is at most

21−st
(

100m

st

)t
= 2

(
100m

st2s

)t
= 21−t < 1.

Therefore, any graph with st2s/200 edges can be colored to have no monochromatic Ks,t.
For the upper bound, let S = 2s2 and T = 10t2s. We claim that KS,T is Ramsey for Ks,t.

To see this, suppose we are given a two-coloring of E(KS,T ). Without loss of generality, at
least T/2 vertices on the right are incident to at least S/2 red edges. Now pick a random
subset of size s from the left. The expected number of red common neighbors it has is exactly

1(
S
s

)∑
v

(
degR(v)

s

)
≥ 1(

S
s

) · T
2
·
(
S/2

s

)
=
T

2
·
(
S/2
s

)(
S
s

) ,
where the sum is over all vertices on the right. By our choice of S = 2s2, one can check that(
S/2
s

)
/
(
S
s

)
≥ 1

5
· 2−s. So an average s-set on the left has at least T/(10 · 2s) = t red neighbors

on the right, and so we find a red Ks,t.
Recall that for the lower bound argument, Erdős and Rousseau colored the edges inde-

pendently at random. But if we examine the upper bound, we see that this doesn’t really
seem like the right thing to do. Indeed, this upper bound argument is tight when all vertices
on the right of KS,T have equal red and blue degrees. However, if we color the edges inde-
pendently at random, then the red degree of a vertex on the right is distributed as Bin(S, 1

2
).

This random variable has standard deviation on the order of
√
S = Θ(s). Moreover, since

we have exp(s) many vertices on the right, we will expect a large number of vertices to be
off from the mean by a noticeable number of standard deviations. So one should expect a
random coloring to not be optimal in case the host graph really is KS,T , which was the graph
we used for the upper bound.

Instead, a better coloring to use would be hypergeometric in nature. We want every
vertex on the right to have equal red and blue degree, but otherwise we want the edges to
behave randomly. So we should make every vertex on the right select a uniformly random
subset of size S/2 from the left, make that subset its red neighborhood, and its complement
its blue neighborhood.

More generally, if we wish to color an arbitrary graph G, we should try to color hyperge-
ometrically from the low-degree to the high-degree vertices. Namely, a natural thing to try
is the following. Let us order the vertices of G according to their degree, let A consist of the
≈ s2 highest-degree vertices in G, and let B be the remaining vertices. We want to pretend
that G looks like a complete bipartite graph between A and B. In particular, we expect edges
inside B not to matter too much, so we color all those edges independently and uniformly
at random. All remaining edges are incident to A, and those we color hypergeometrically:
for every vertex v, it has some number k of neighbors which precede it in the ordering and
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which are in A. It picks a random subset of exactly k/2 of these, colors the edges to those
vertices red, and colors the remaining k/2 edges blue.

As it turns out, this doesn’t quite work; it does improve on the Erdős–Rousseau bound,
but the exponent on s is 2− s

t
+ o(1), where the o(1) tends to 0 as s→∞.

The problem is that we actually had a fair amount of wiggle room in our choice of S
and T above. For example, we can multiply S by an absolute constant factor c, multiply
T by roughly 1/c, and as long as we are careful, we can still get a complete bipartite
graph that is Ramsey for Ks,t, and which has essentially the same number of edges as
KS,T . So we can’t just “model” G as KS,T ; if we try to do that, we might be off by a
big constant factor on the “correct” size for A. So the right thing to do is to hedge our
bets. We pick sets A1, A2, . . . , Am, where A1 consists of the two highest-degree vertex in
G, A2 consists of the next four highest-degree vertices, and in general Ai will consist of the
2i highest-degree vertices that have not yet been included in some Aj. We then color all
edges hypergeometrically independently into each Ai, making all these choices independently.
Since the Ai’s cover all possible “scales”, the issue encountered above goes away, and one
can show that this coloring has no monochromatic Ks,t with high probability, as long as the
number of edges in G is at most O(s2− s

t t2s).
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