Recent results on size Ramsey numbers

David Conlon

SIAM Conference on Discrete Mathematics June 14, 2022

Joint with Jacob Fox and Yuval Wigderson

Recent results on size Ramsey numbers

David Conlon Yuval Wigderson

SIAM Conference on Discrete Mathematics June 14, 2022

Joint with Jacob Fox and Yuval Wigderson David Conlon

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H?

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H? Among all such G, which one is the smallest?

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H? Among all such G, which one is the smallest?

Ramsey number: $r(H) := \min\{v(G) : G \text{ is Ramsey for } H\}$

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H? Among all such G, which one is the smallest?

Ramsey number: size Ramsey number:

$$r(H) := \min\{v(G) : G \text{ is Ramsey for } H\}$$
$$\hat{r}(H) := \min\{e(G) : G \text{ is Ramsey for } H\}$$

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H? Among all such G, which one is the smallest?

Ramsey number: $r(H) := \min\{v(G) : G \text{ is Ramsey for } H\}$ size Ramsey number: $\hat{r}(H) := \min\{e(G) : G \text{ is Ramsey for } H\}$

Size Ramsey numbers were introduced by Erdős, Faudree, Rousseau, and Schelp in 1978.

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of E(G) contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H? Among all such G, which one is the smallest?

Ramsey number: $r(H) \coloneqq \min\{v(G) : G \text{ is Ramsey for } H\}$ size Ramsey number: $\hat{r}(H) \coloneqq \min\{e(G) : G \text{ is Ramsey for } H\}$

Size Ramsey numbers were introduced by Erdős, Faudree, Rousseau, and Schelp in 1978.

Observation (Erdős-Faudree-Rousseau-Schelp)

If H has no isolated vertices, then

$$\frac{r(H)}{2} \le \hat{r}(H) \le \binom{r(H)}{2}.$$

If *H* has no isolated vertices, then
$$\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$$
.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

The starburst graph $S_n^{(k)}$ consists of a K_k and n pendant edges off each vertex of the K_k .

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

The starburst graph $S_n^{(k)}$ consists of a K_k and n pendant edges off each vertex of the K_k .

Every *n*-vertex tree *T* has $r(T) = \Theta(n)$, so $r(S_n^{(1)})$, $r(S_n^{(2)}) = \Theta(n)$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

The starburst graph $S_n^{(k)}$ consists of a K_k and n pendant edges off each vertex of the K_k .

Every *n*-vertex tree *T* has $r(T) = \Theta(n)$, so $r(S_n^{(1)})$, $r(S_n^{(2)}) = \Theta(n)$. However:

Proposition $\hat{r}(S_n^{(1)}) = 2n - 1$. On the other hand, $\hat{r}(S_n^{(2)}) = \Theta(n^2)$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Chvátal)

$$\hat{r}(K_t) = \begin{pmatrix} r(K_t) \\ 2 \end{pmatrix}$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Chvátal)

$$\hat{r}(K_t) = \begin{pmatrix} r(K_t) \\ 2 \end{pmatrix}$$

Proof.

Exercise!

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Chvátal)

$$\hat{F}(K_t) = \begin{pmatrix} r(K_t) \\ 2 \end{pmatrix}$$

Proof.

Exercise! Hint: Prove that if G is Ramsey for K_t , then $\chi(G) \ge r(K_t)$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Chvátal)

$$\hat{F}(K_t) = \begin{pmatrix} r(K_t) \\ 2 \end{pmatrix}$$

Proof.

Exercise! Hint: Prove that if G is Ramsey for K_t , then $\chi(G) \ge r(K_t)$.

Theorem (Erdős, Erdős-Szekeres)

 $2^{t/2} \leq r(K_t) \leq 2^{2t}$

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K_{s,t}

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K_{s,t}

Book graphs, $B_n^{(k)}$

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K_{s,t}

Book graphs, $B_n^{(k)}$

Starburst graphs, $S_n^{(k)}$

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K_{s,t}

Book graphs, $B_n^{(k)}$

Starburst graphs, $S_n^{(k)}$

Path graphs, P_n

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Thus, $\Omega(n) \leq \hat{r}(P_n) \leq O(n^2)$, since $r(P_n) = \Theta(n)$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Thus, $\Omega(n) \leq \hat{r}(P_n) \leq O(n^2)$, since $r(P_n) = \Theta(n)$.

Theorem (Beck)

 $\hat{r}(P_n) = \Theta(n)$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Thus, $\Omega(n) \leq \hat{r}(P_n) \leq O(n^2)$, since $r(P_n) = \Theta(n)$.

Theorem (Beck)

 $\hat{r}(P_n) = \Theta(n)$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_n . In particular, we may take G = G(N, p) for $N = \Theta(n)$, $p = \Theta(\frac{1}{n})$.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Thus, $\Omega(n) \leq \hat{r}(P_n) \leq O(n^2)$, since $r(P_n) = \Theta(n)$.

Theorem (Beck)

 $\hat{r}(P_n) = \Theta(n)$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_n . In particular, we may take G = G(N, p) for $N = \Theta(n)$, $p = \Theta(\frac{1}{n})$.

Much subsequent work on size Ramsey numbers begins here, studying size Ramsey numbers of bounded-degree *H*.

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Thus, $\Omega(n) \leq \hat{r}(P_n) \leq O(n^2)$, since $r(P_n) = \Theta(n)$.

Theorem (Beck)

 $\hat{r}(P_n) = \Theta(n)$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_n . In particular, we may take G = G(N, p) for $N = \Theta(n)$, $p = \Theta(\frac{1}{n})$.

Much subsequent work on size Ramsey numbers begins here, studying size Ramsey numbers of bounded-degree *H*.

Often, one takes G to be a sparse (pseudo)random graph. To prove that G is Ramsey for H, one uses techniques like sparse regularity.

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K_{s,t}

Book graphs, $B_n^{(k)}$

Starburst graphs, $S_n^{(k)}$

Path graphs, P_n EFRS: $\Omega(n) \le \hat{r}(P_n) \le O(n^2)$. Beck: $\hat{r}(P_n) = \Theta(n)$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

The lower bound relies on the following lemma.

Lemma (Erdős-Rousseau) For any $s \le t$ and any graph G, $\#\{\text{copies of } K_{s,t} \text{ in } G\} \le \left(\frac{100e(G)}{st}\right)^t$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

The lower bound relies on the following lemma.

Lemma (Erdős-Rousseau) For any $s \le t$ and any graph G, $\#\{\text{copies of } K_{s,t} \text{ in } G\} \le \left(\frac{100e(G)}{st}\right)^t$.

Proof of lower bound: Let *G* be any graph with $\leq st2^s/100$ edges.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

The lower bound relies on the following lemma.

Lemma (Erdős-Rousseau) For any $s \le t$ and any graph G, #{copies of $K_{s,t}$ in G} $\le \left(\frac{100e(G)}{st}\right)^t$.

Proof of lower bound: Let *G* be any graph with $\leq st2^s/100$ edges. Color *E*(*G*) red or blue randomly. The expected number of monochromatic *K*_{s,t} is $2^{1-st} \cdot \#$ {copies of *K*_{s,t} in *G*}.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

The lower bound relies on the following lemma.

Lemma (Erdős-Rousseau) For any $s \le t$ and any graph G, #{copies of $K_{s,t}$ in G} $\le \left(\frac{100e(G)}{st}\right)^t$.

Proof of lower bound: Let *G* be any graph with $\leq st2^s/100$ edges. Color *E*(*G*) red or blue randomly. The expected number of monochromatic $K_{s,t}$ is $2^{1-st} \cdot \#\{\text{copies of } K_{s,t} \text{ in } G\}$. By the lemma, this is < 1, so there exists a coloring with no monochromatic $K_{s,t}$.
Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{s,t}) \le O(s^2t2^s)$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate S, T.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For s < t,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$. The number of monochromatic $K_{1,s}$ centered at a vertex *v* on the right is

$$\binom{\deg_{\mathcal{R}}(v)}{s} + \binom{\deg_{\mathcal{B}}(v)}{s}$$

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$. The number of monochromatic $K_{1,s}$ centered at a vertex *v* on the right is

$$\binom{\deg_{\mathcal{R}}(v)}{s} + \binom{\deg_{\mathcal{B}}(v)}{s} \ge 2\binom{S/2}{s}.$$

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$. The number of monochromatic $K_{1,s}$ centered at a vertex *v* on the right is

$$\binom{\deg_{\mathcal{R}}(v)}{s} + \binom{\deg_{\mathcal{B}}(v)}{s} \geq 2\binom{S/2}{s}.$$

So for a random *s*-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T {\binom{S/2}{s}} / {\binom{S}{s}}$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$. The number of monochromatic $K_{1,s}$ centered at a vertex *v* on the right is

$$\binom{\deg_{\mathcal{R}}(v)}{s} + \binom{\deg_{\mathcal{B}}(v)}{s} \geq 2\binom{S/2}{s}.$$

So for a random s-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T{\binom{S/2}{s}}/{\binom{S}{s}}$. Optimizing, a good choice is $S = \Theta(s^2)$, $T = \Theta(t2^s)$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s).$$

For the upper bound, let's **guess** a graph *G* which we hope is Ramsey for $K_{s,t}$. A good guess is $K_{S,T}$ for appropriate *S*, *T*. Fix a red/blue coloring of $E(K_{S,T})$. The number of monochromatic $K_{1,s}$ centered at a vertex *v* on the right is

$$\binom{\deg_{\mathcal{R}}(v)}{s} + \binom{\deg_{\mathcal{B}}(v)}{s} \geq 2\binom{S/2}{s}.$$

So for a random s-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T\binom{S/2}{s} / \binom{S}{s}$. Optimizing, a good choice is $S = \Theta(s^2)$, $T = \Theta(t2^s)$. Pikhurko proved that if $t \gg s$, then this construction (appropriately optimized) is optimal. In particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ if $t \gg s$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

Theorem (Pikhurko) If $t \gg s$, then $\hat{r}(K_{s,t}) = \Theta(s^2 t 2^s)$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

Theorem (Pikhurko) If $t \gg s$, then $\hat{r}(K_{s,t}) = \Theta(s^2 t 2^s)$.

Theorem (Conlon-Fox-W.) $\hat{r}(K_{s,t}) \ge \Omega(s^{2-\frac{s}{t}}t2^{s})$. In particular, $\hat{r}(K_{s,t}) = \Theta(s^{2}t2^{s})$ if $t = \Omega(s \log s)$.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

Theorem (Pikhurko) If $t \gg s$, then $\hat{r}(K_{s,t}) = \Theta(s^2 t 2^s)$.

Theorem (Conlon-Fox-W.)

 $\hat{r}(K_{s,t}) \ge \Omega(s^{2-\frac{s}{t}}t2^s)$. In particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ if $t = \Omega(s \log s)$.

Proof idea: For the lower bound, Erdős-Rousseau use a uniformly random coloring. But the upper bound argument is tight if all vertices have equal degrees in red and blue.

Theorem (Erdős-Faudree-Rousseau-Schelp, ER) For $s \le t$, $\Omega(st2^s) \le \hat{r}(K_{st}) \le O(s^2t2^s)$.

Theorem (Pikhurko)

If $t \gg s$, then $\hat{r}(K_{s,t}) = \Theta(s^2 t 2^s)$.

Theorem (Conlon-Fox-W.)

 $\hat{r}(K_{s,t}) \ge \Omega(s^{2-\frac{s}{t}}t2^s)$. In particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ if $t = \Omega(s \log s)$.

Proof idea: For the lower bound, Erdős-Rousseau use a uniformly random coloring. But the upper bound argument is tight if all vertices have equal degrees in red and blue. So rather than uniform, it's better to use a (dyadically iterated) hypergeometric random coloring.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, $K_{s,t}$ EFRS, ER: $\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s)$ for $s \leq t$. CFW: $\hat{r}(K_{s,t}) \geq \Omega(s^{2-\frac{s}{t}}t2^s)$; in particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ for $t = \Omega(s \log s)$.

Book graphs, $B_n^{(k)}$

Starburst graphs, $S_n^{(k)}$

Path graphs, P_n EFRS: $\Omega(n) \le \hat{r}(P_n) \le O(n^2)$. Beck: $\hat{r}(P_n) = \Theta(n)$.

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k .

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

 $2^k n - o(n) \leq r(B_n^{(k)}) \leq 4^k n.$

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$2^k n - o(n) \le r(B_n^{(k)}) \le 4^k n.$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {\binom{r(H)}{2}}$.

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$2^k n - o(n) \le r(B_n^{(k)}) \le 4^k n.$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Erdős-Faudree-Rousseau-Schelp)

For $n \gg k \ge 2$,

 $\Omega(2^k n) \le \hat{r}(B_n^{(k)}) \le 16^k n^2$

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$2^k n - o(n) \le r(B_n^{(k)}) \le 4^k n.$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^2n^2)$ $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le 16^kn^2$

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$2^k n - o(n) \le r(B_n^{(k)}) \le 4^k n.$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^2n^2)$ $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le 16^kn^2$

Theorem (Conlon)

$$r(B_n^{(k)}) = 2^k n + o(n)$$

The book graph $B_n^{(k)}$ consists of *n* copies of K_{k+1} glued along a common K_k . Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$2^k n - o(n) \le r(B_n^{(k)}) \le 4^k n.$$

If *H* has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq {r(H) \choose 2}$.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \ \Omega(2^kn) \le \hat{r}(B_n^{(k)}) \le 16^kn^2 \ O(4^kn^2)$

Theorem (Conlon)

$$r(B_n^{(k)}) = 2^k n + o(n)$$

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Upper bound: Let's guess that $B_N^{(K)}$ is Ramsey for $B_n^{(k)}$ for large N, K.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Upper bound: Let's guess that $B_N^{(K)}$ is Ramsey for $B_n^{(k)}$ for large *N*, *K*. If $N < 2^k n/10$, a random coloring of $B_N^{(K)}$ avoids monochromatic $B_n^{(k)}$.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Upper bound: Let's guess that $B_N^{(K)}$ is Ramsey for $B_n^{(k)}$ for large N, K. If $N < 2^k n/10$, a random coloring of $B_N^{(K)}$ avoids monochromatic $B_n^{(k)}$. If K < (k - 1)n, a Turán coloring of $B_N^{(K)}$ avoids monochromatic $B_n^{(k)}$.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Upper bound: Let's guess that $B_N^{(K)}$ is Ramsey for $B_n^{(k)}$ for large N, K. If $N < 2^k n/10$, a random coloring of $B_N^{(K)}$ avoids monochromatic $B_n^{(k)}$. If K < (k - 1)n, a Turán coloring of $B_N^{(K)}$ avoids monochromatic $B_n^{(k)}$.

Lemma (Conlon-Fox-W.)

These are the only obstructions to finding monochromatic books. In particular, $B_N^{(K)}$ is Ramsey for $B_n^{(k)}$ if $N = 2^{k+1}n$, K = 2kn.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph G with $k2^kn^2/1000$ edges.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph G with $k2^kn^2/1000$ edges. Our goal is to color E(G) in a way that is simultaneously Turán-like and random-like.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph *G* with $k2^kn^2/1000$ edges. Our goal is to color E(G) in a way that is simultaneously Turán-like and random-like.

Let V_0 consist of the n/10 highest-degree vertices, V_1 the next n/10 highest-degree vertices, and so on until V_s , where s = k/3.

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph G with $k2^kn^2/1000$ edges. Our goal is to color E(G) in a way that is simultaneously Turán-like and random-like.

Let V_0 consist of the n/10 highest-degree vertices, V_1 the next n/10 highest-degree vertices, and so on until V_s , where s = k/3. Color:

• All edges in V_i red, all edges between V_i and V_j blue,

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph G with $k2^kn^2/1000$ edges. Our goal is to color E(G) in a way that is simultaneously Turán-like and random-like.

Let V_0 consist of the n/10 highest-degree vertices, V_1 the next n/10 highest-degree vertices, and so on until V_s , where s = k/3. Color:

- All edges in V_i red, all edges between V_i and V_j blue,
- All other edges incident to V_i red with probability $p_i = \frac{1}{2}(i/s)^{1/k}$,

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon) For $n \gg k \ge 2$, $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(4^kn^2).$

Theorem (Conlon-Fox-W.)

For $n \gg k \ge 2$,

 $\hat{r}(B_n^{(k)}) = \Theta(k2^k n^2).$

Lower bound: Fix a graph G with $k2^kn^2/1000$ edges. Our goal is to color E(G) in a way that is simultaneously Turán-like and random-like.

Let V_0 consist of the n/10 highest-degree vertices, V_1 the next n/10 highest-degree vertices, and so on until V_s , where s = k/3. Color:

- All edges in V_i red, all edges between V_i and V_j blue,
- All other edges incident to V_i red with probability $p_i = \frac{1}{2}(i/s)^{1/k}$,
- All remaining edges red or blue with probability $\frac{1}{2}$.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, $K_{s,t}$ EFRS, ER: $\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s)$ for $s \leq t$. CFW: $\hat{r}(K_{s,t}) \geq \Omega(s^{2-\frac{s}{t}}t2^s)$; in particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ for $t = \Omega(s \log s)$.

Book graphs,
$$B_n^{(k)}$$

EFRS: $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(16^kn^2)$ for $n \gg k \ge 2$. $B_4^{(3)}$
CFW: $\hat{r}(B_n^{(k)}) = \Theta(k2^kn^2)$ for $n \gg k \ge 2$.

S₄⁽³⁾

P₄

Path graphs, P_n EFRS: $\Omega(n) \le \hat{r}(P_n) \le O(n^2)$. Beck: $\hat{r}(P_n) = \Theta(n)$.

Starburst graphs, $S_n^{(k)}$

Starburst graphs

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2).$
Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2).$

The lower bound uses a variant of the Turán coloring.

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2).$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r(S_n^{(k)})$:

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $r(S_n^{(k)}) = \Theta(k^2n).$

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2).$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r(S_n^{(k)})$:

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $r(S_n^{(k)}) = \Theta(k^2n)$.

In other words, if $N = \Theta(k^2 n)$, then K_N is Ramsey for $S_n^{(k)}$.

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2).$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r(S_n^{(k)})$:

Theorem (Erdős-Faudree-Rousseau-Schelp) For $n \gg k \ge 2$, $r(S_n^{(k)}) = \Theta(k^2n)$.

In other words, if $N = \Theta(k^2 n)$, then K_N is Ramsey for $S_n^{(k)}$.

Theorem (Conlon-Fox-W.) If $N = \Theta(k^2n)$ and $p = \Theta(\frac{1}{k})$, then G(N, p) is Ramsey for $S_n^{(k)}$ whp. Therefore, $\hat{r}(S_n^{(k)}) = \Theta(k^3n^2)$ for $n \gg k \ge 2$.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, $K_{s,t}$ EFRS, ER: $\Omega(st2^s) \leq \hat{r}(K_{s,t}) \leq O(s^2t2^s)$ for $s \leq t$. CFW: $\hat{r}(K_{s,t}) \geq \Omega(s^{2-\frac{s}{t}}t2^s)$; in particular, $\hat{r}(K_{s,t}) = \Theta(s^2t2^s)$ for $t = \Omega(s \log s)$.

Book graphs,
$$B_n^{(k)}$$

EFRS: $\Omega(k^2n^2) \le \hat{r}(B_n^{(k)}) \le O(16^kn^2)$ for $n \gg k \ge 2$. $B_4^{(3)}$
CFW: $\hat{r}(B_n^{(k)}) = \Theta(k2^kn^2)$ for $n \gg k \ge 2$.

Starburst graphs, $S_n^{(k)}$ EFRS: $\Omega(k^3n^2) \le \hat{r}(S_n^{(k)}) \le O(k^4n^2)$ for $n \gg k \ge 2$. $S_4^{(3)}$ CFW: $\hat{r}(S_n^{(k)}) = \Theta(k^3n^2)$ for $n \gg k \ge 2$.

Path graphs, P_n EFRS: $\Omega(n) \le \hat{r}(P_n) \le O(n^2)$. Beck: $\hat{r}(P_n) = \Theta(n)$.

P₄

Thank you!