
Recent results on size Ramsey numbers

David Conlon Yuval Wigderson

SIAM Conference on Discrete Mathematics
June 14, 2022

Joint with Jacob Fox and Yuval Wigderson David Conlon



Recent results on size Ramsey numbers

David Conlon Yuval Wigderson

SIAM Conference on Discrete Mathematics
June 14, 2022

Joint with Jacob Fox and Yuval Wigderson David Conlon



Graph Ramsey theory
For graphs G and H, we say that G is Ramsey for H if every red/blue
coloring of E(G) contains a monochromatic copy of H.

Central question(s)
Which graphs G are Ramsey for a given H?
Among all such G, which one is the smallest?

Ramsey number: r(H) := min{v(G) : G is Ramsey for H}

size Ramsey number: r̂(H) := min{e(G) : G is Ramsey for H}

Size Ramsey numbers were introduced by Erdős, Faudree,
Rousseau, and Schelp in 1978.

Observation (Erdős–Faudree–Rousseau–Schelp)
If H has no isolated vertices, then

r(H)
2 ≤ r̂(H) ≤

(r(H)
2

)
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Linear or quadratic?
If H has no isolated vertices, then r(H)

2 ≤ r̂(H) ≤
(r(H)

2
)
.

The starburst graph S(k)n consists of a Kk and n pendant edges off
each vertex of the Kk.

S(1)4 S(2)4 S(3)4

Every n-vertex tree T has r(T) = Θ(n), so r(S(1)n ), r(S(2)n ) = Θ(n).
However:
Proposition
r̂(S(1)n ) = 2n − 1. On the other hand, r̂(S(2)n ) = Θ(n2).
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Complete graphs

If H has no isolated vertices, then r(H)
2 ≤ r̂(H) ≤

(r(H)
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.

Theorem (Chvátal)

r̂(Kt) =
(r(Kt)

2

)

Proof.
Exercise!
Hint: Prove that if G is Ramsey for Kt, then χ(G) ≥ r(Kt).

Theorem (Erdős, Erdős–Szekeres)
2t/2 ≤ r(Kt) ≤ 22t
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The four questions
Problem (Erdős–Faudree–Rousseau–Schelp)
Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, Ks,t

EFRS, ER: Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s) for s ≤ t.
CFW: r̂(Ks,t) ≥ Ω(s2− s

t t2s); in particular,
r̂(Ks,t) = Θ(s2t2s) for t = Ω(s log s).

K3,4

Book graphs, B(k)
n

EFRS: Ω(k2n2) ≤ r̂(B(k)
n ) ≤ O(16kn2) for n ≫ k ≥ 2.

CFW: r̂(B(k)
n ) = Θ(k2kn2) for n ≫ k ≥ 2.

B(3)
4

Starburst graphs, S(k)n

EFRS: Ω(k3n2) ≤ r̂(S(k)n ) ≤ O(k4n2) for n ≫ k ≥ 2.
CFW: r̂(S(k)n ) = Θ(k3n2) for n ≫ k ≥ 2.

S(3)4

Path graphs, Pn

EFRS: Ω(n) ≤ r̂(Pn) ≤ O(n2).
Beck: r̂(Pn) = Θ(n).

P4
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Path graphs

If H has no isolated vertices, then r(H)
2 ≤ r̂(H) ≤

(r(H)
2

)
.

Thus, Ω(n) ≤ r̂(Pn) ≤ O(n2), since r(Pn) = Θ(n).

Theorem (Beck)
r̂(Pn) = Θ(n)

Proof.
Any good expander G on Θ(n) vertices is Ramsey for Pn.
In particular, we may take G = G(N,p) for N = Θ(n),p = Θ(1n ).

Much subsequent work on size Ramsey numbers begins here,
studying size Ramsey numbers of bounded-degree H.
Often, one takes G to be a sparse (pseudo)random graph. To prove
that G is Ramsey for H, one uses techniques like sparse regularity.
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Complete bipartite graphs

Theorem (Erdős–Faudree–Rousseau–Schelp, ER)
For s ≤ t,
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Complete bipartite graphs
Theorem (Erdős–Faudree–Rousseau–Schelp, ER)
For s ≤ t,

Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s).

The lower bound relies on the following lemma.

Lemma (Erdős–Rousseau)
For any s ≤ t and any graph G,

#{copies of Ks,t in G} ≤
(100e(G)

st

)t
.

Proof of lower bound: Let G be any graph with ≤ st2s/100 edges.
Color E(G) red or blue randomly. The expected number of
monochromatic Ks,t is 21−st · #{copies of Ks,t in G}.
By the lemma, this is < 1, so there exists a coloring with no
monochromatic Ks,t.
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Complete bipartite graphs
Theorem (Erdős–Faudree–Rousseau–Schelp, ER)
For s ≤ t,

Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s).

For the upper bound, let’s guess a graph G which we hope is
Ramsey for Ks,t.

A good guess is KS,T for appropriate S, T.
Fix a red/blue coloring of E(KS,T). The number of monochromatic
K1,s centered at a vertex v on the right is(degR(v)

s

)
+

(degB(v)
s

)
≥ 2

(S/2
s

)
.

So for a random s-subset and a random color, the expected number
of vertices monochromatic to that set in that color is ≥ T

(S/2
s

)
/
(S
s
)
.

Optimizing, a good choice is S = Θ(s2), T = Θ(t2s).
Pikhurko proved that if t ≫ s, then this construction (appropriately
optimized) is optimal. In particular, r̂(Ks,t) = Θ(s2t2s) if t ≫ s.
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Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s).
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If t ≫ s, then r̂(Ks,t) = Θ(s2t2s).

Theorem (Conlon–Fox–W.)
r̂(Ks,t) ≥ Ω(s2− s

t t2s). In particular, r̂(Ks,t) = Θ(s2t2s) if t = Ω(s log s).

Proof idea: For the lower bound, Erdős–Rousseau use a uniformly
random coloring. But the upper bound argument is tight if all
vertices have equal degrees in red and blue.
So rather than uniform, it’s better to use a (dyadically iterated)
hypergeometric random coloring.
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The four questions
Problem (Erdős–Faudree–Rousseau–Schelp)
Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, Ks,t
EFRS, ER: Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s) for s ≤ t.
CFW: r̂(Ks,t) ≥ Ω(s2− s

t t2s); in particular,
r̂(Ks,t) = Θ(s2t2s) for t = Ω(s log s).

K3,4

Book graphs, B(k)
n

EFRS: Ω(k2n2) ≤ r̂(B(k)
n ) ≤ O(16kn2) for n ≫ k ≥ 2.

CFW: r̂(B(k)
n ) = Θ(k2kn2) for n ≫ k ≥ 2.

B(3)
4

Starburst graphs, S(k)n

EFRS: Ω(k3n2) ≤ r̂(S(k)n ) ≤ O(k4n2) for n ≫ k ≥ 2.
CFW: r̂(S(k)n ) = Θ(k3n2) for n ≫ k ≥ 2.

S(3)4

Path graphs, Pn
EFRS: Ω(n) ≤ r̂(Pn) ≤ O(n2).
Beck: r̂(Pn) = Θ(n).

P4



Book graphs
The book graph B(k)

n consists of n copies of Kk+1 glued along a
common Kk.

Book Ramsey numbers are closely related to Ramsey
numbers of cliques.

Theorem (Erdős–Faudree–Rousseau–Schelp, Thomason)
2kn − o(n) ≤ r(B(k)

n ) ≤ 4kn.

If H has no isolated vertices, then r(H)
2 ≤ r̂(H) ≤

(r(H)
2

)
.

Theorem (Erdős–Faudree–Rousseau–Schelp)
For n ≫ k ≥ 2,

Ω(k2n2) Ω(2kn) ≤ r̂(B(k)
n ) ≤ 16kn2 O(4kn2)

Theorem (Conlon)
r(B(k)

n ) = 2kn+ o(n)
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Upper bound: Let’s guess that B(K)
N is Ramsey for B(k)

n for large N,K.

If N < 2kn/10, a random coloring of B(K)
N avoids monochromatic B(k)

n .
If K < (k − 1)n, a Turán coloring of B(K)

N avoids monochromatic B(k)
n .

Lemma (Conlon–Fox–W.)
These are the only obstructions to finding monochromatic books.
In particular, B(K)

N is Ramsey for B(k)
n if N = 2k+1n,K = 2kn.
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Our goal is to color E(G) in a way that is simultaneously Turán-like
and random-like.
Let V0 consist of the n/10 highest-degree vertices, V1 the next n/10
highest-degree vertices, and so on until Vs, where s = k/3. Color:

• All edges in Vi red, all edges between Vi and Vj blue,
• All other edges incident to Vi red with probability pi = 1

2 (i/s)1/k,
• All remaining edges red or blue with probability 1
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EFRS, ER: Ω(st2s) ≤ r̂(Ks,t) ≤ O(s2t2s) for s ≤ t.
CFW: r̂(Ks,t) ≥ Ω(s2− s

t t2s); in particular,
r̂(Ks,t) = Θ(s2t2s) for t = Ω(s log s).

K3,4

Book graphs, B(k)
n

EFRS: Ω(k2n2) ≤ r̂(B(k)
n ) ≤ O(16kn2) for n ≫ k ≥ 2.

CFW: r̂(B(k)
n ) = Θ(k2kn2) for n ≫ k ≥ 2.

B(3)
4

Starburst graphs, S(k)n

EFRS: Ω(k3n2) ≤ r̂(S(k)n ) ≤ O(k4n2) for n ≫ k ≥ 2.
CFW: r̂(S(k)n ) = Θ(k3n2) for n ≫ k ≥ 2.

S(3)4

Path graphs, Pn
EFRS: Ω(n) ≤ r̂(Pn) ≤ O(n2).
Beck: r̂(Pn) = Θ(n).

P4



Starburst graphs

Theorem (Erdős–Faudree–Rousseau–Schelp)
For n ≫ k ≥ 2,

Ω(k3n2) ≤ r̂(S(k)n ) ≤ O(k4n2).

The lower bound uses a variant of the Turán coloring. For the upper
bound, they determined r(S(k)n ):

Theorem (Erdős–Faudree–Rousseau–Schelp)
For n ≫ k ≥ 2,

r(S(k)n ) = Θ(k2n).

In other words, if N = Θ(k2n), then KN is Ramsey for S(k)n .

Theorem (Conlon–Fox–W.)
If N = Θ(k2n) and p = Θ(1k ), then G(N,p) is Ramsey for S(k)n whp.
Therefore, r̂(S(k)n ) = Θ(k3n2) for n ≫ k ≥ 2.
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Thank you!


