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Among all such G, which one is the smallest?
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Linear or quadratic?

If H has no isolated vertices, then ") < #(H) < (4.

The starburst graph S¥) consists of a K and n pendant edges off
each vertex of the K.

521 ) 5512) 5513)

Every n-vertex tree T has r(T) = ©(n), so r(SY"), (5?) = ©(n).
However:

Proposition

#(SV) = 2n — 1. On the other hand, #S?) = ©(n?).
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Complete graphs

If H has no isolated vertices, then 42 < #(H) < (4.

Theorem (Chvatal)

Proof.

Exercise!
Hint: Prove that if G is Ramsey for K, then x (G) > r(Ky).

Theorem (Erdds, Erdés-Szekeres)

2t/2 < r(Kt) < 22t



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.

- 3

Complete bipartite graphs, K



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)
Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K
K3,4

B

Book graphs, B g



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)
Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, K

K3,4

Book graphs, B

Starburst graphs, S,(,k)

&VX\V& %



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)
Determine the size Ramsey numbers of the following graph families.

Complete bipartite graphs, K

Book graphs, B
e

Starburst graphs, S,(,k)

Path graphs, P,
P4

e



Path graphs

If H has no isolated vertices, then @ < F(H) < (r(g)).



Path graphs

If H has no isolated vertices, then @ < F(H) < (r(g)).

Thus, Q(n) < #(P,) < O(n?), since r(P,) = O(n).



Path graphs

If H has no isolated vertices, then " < #(H) < ("4)).

Thus, Q(n) < #(P,) < O(n?), since r(P,) = O(n).
Theorem (Beck)



Path graphs

If H has no isolated vertices, then @ < F(H) < (r(gl)).
Thus, Q(n) < #(P,) < O(n?), since r(P,) = O(n).

Theorem (Beck)

Proof.

Any good expander G on ©(n) vertices is Ramsey for P,,.
In particular, we may take G = G(N, p) for N = ©(n), p = ©(}).



Path graphs

If H has no isolated vertices, then @ < F(H) < (r(gl)).
Thus, Q(n) < #(P,) < O(n?), since r(P,) = O(n).
Theorem (Beck)

Proof.
Any good expander G on ©(n) vertices is Ramsey for P,,.
In particular, we may take G = G(N, p) for N = ©(n), p = ©(}).

Much subsequent work on size Ramsey numbers begins here,
studying size Ramsey numbers of bounded-degree H.



Path graphs

If H has no isolated vertices, then @ < F(H) < (r(g)).
Thus, Q(n) < #(P,) < O(n?), since r(P,) = O(n).
Theorem (Beck)

Proof.

Any good expander G on ©(n) vertices is Ramsey for P,,.
In particular, we may take G = G(N, p) for N = ©(n), p = ©(}).

Much subsequent work on size Ramsey numbers begins here,
studying size Ramsey numbers of bounded-degree H.

Often, one takes G to be a sparse (pseudo)random graph. To prove
that G is Ramsey for H, one uses techniques like sparse regularity.
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Theorem (Erd8s-Faudree-Rousseau-Schelp, ER)
Fors <t
Q(st2°%) < H(Kse) < O(s%t2%).

The lower bound relies on the following lemma.

Lemma (Erd&s-Rousseau)

Forany s < tand any graph G,

st

t
#{copies of K5+ in G} < <100e(G)) )

Proof of lower bound: Let G be any graph with < st2°/100 edges.
Color E(G) red or blue randomly. The expected number of
monochromatic K is 2"t - #{copies of K, in G}.

By the lemma, this is < 1, so there exists a coloring with no
monochromatic K.
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Theorem (Erd8s-Faudree-Rousseau-Schelp, ER)
Fors <t
Q(st2%) < H(Kse) < O(s°t2°).

For the upper bound, let's guess a graph G which we hope is
Ramsey for K. A good guess is Ks 1 for appropriate S, T.

Fix a red/blue coloring of E(Ks 7). The number of monochromatic
Ky s centered at a vertex v on the right is

((o351) . (Se38l) - o(2),

So for a random s-subset and a random color, the expected number
of vertices monochromatic to that set in that color is > T(Séz)/(g)
Optimizing, a good choice is S = ©(s?), T = O(t29).

Pikhurko proved that if t > s, then this construction (appropriately
optimized) is optimal. In particular, #(Ks) = ©(s%t2°) if t > s.
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Complete bipartite graphs

Theorem (Erd8s-Faudree-Rousseau-Schelp, ER)

Fors <t
Q(st2°%) < H(Kse) < O(s%t2%).

Theorem (Pikhurko)
Ift > s, then #(Ky;) = ©(s?t2%).

Theorem (Conlon-Fox-W.)
F(Kst) > Q(s?7t2%). In particular, }(Ks:) = ©(s%t2°) ift = Q(slogss).

Proof idea: For the lower bound, Erdés-Rousseau use a uniformly
random coloring. But the upper bound argument is tight if all
vertices have equal degrees in red and blue.

So rather than uniform, it's better to use a (dyadically iterated)
hypergeometric random coloring.
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Theorem (Erd&s-Faudree-Rousseau-Schelp, Conlon)

Forn>k > 2,
Q(k%n?) < #(BY) < O(4*n?).

Theorem (Conlon-Fox-W.)
Forn >k > 2,
HBY) = ©(k2*n?).

Upper bound: Let's guess that B,(VK) is Ramsey for B for large N, K.
If N < 2’<n/’IO, a random coloring of B,(VK) avoids monochromatic B,(,k).
If K< (k— 1)n, a Turdn coloring of B,(\,K) avoids monochromatic BY".

Lemma (Conlon-Fox-W.)

These are the only obstructions to finding monochromatic books.
In particular, B,(\,K) is Ramsey for B,(f) if N = 2n K = 2kn.
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Theorem (Erd&s-Faudree-Rousseau-Schelp, Conlon)

Forn>k > 2,
Q(k%n?) < #(BY) < O(4*n?).

Theorem (Conlon-Fox-W.)

Forn >k > 2,
HBY) = ©(k2*n?).
Lower bound: Fix a graph G with k2kn? /1000 edges.
Our goal is to color E(G) in a way that is simultaneously Turan-like
and random-like.

Let Vj consist of the n/10 highest-degree vertices, V7 the nextn/10
highest-degree vertices, and so on until V, where s = k/3. Color:

* All edgesinV; red, all edges between V; and V; blue,
* All other edges incident to V; red with probability p; = 5 (i/s)!/¥,

* All remaining edges red or blue with probability 5.
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Problem (Erd6s-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, K
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Starburst graphs

Theorem (Erdés-Faudree-Rousseau-Schelp)
Forn>> k> 2,
Q(k3n?) < #(SY) < O(K*n?).

The lower bound uses a variant of the Turan coloring. For the upper
bound, they determined r(S,(,k)):

Theorem (Erdés-Faudree-Rousseau-Schelp)
Forn>> k> 2,
r(SY) = o(k?n).

In other words, if N = ©(k?n), then Ky is Ramsey for S&.

Theorem (Conlon-Fox-W.)
IfN = ©(k?n) and p = ©(7), then G(N, p) is Ramsey for s whp.
Therefore, ?(S,gk)) = O(k3n?) forn > k > 2.



The four questions

Problem (Erd6s-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, K

EFRS, ER: Q(st2%) < #(K,,) < O(s%t2%) fors < t.

CFW: 7(Ks;) > Q(s?~1t2%); in particular,

F(Kst) = ©(s%t2°) for t = Q(slogs).

Book graphs, B
EFRS: Q(k2n2) < #(BY) < O(16*n2) forn > k > 2. BY) %
CFW: #(B(Y) = ©(k2*n?) forn > k > 2.

Starburst graphs, S ':§'
EFRS: Q(kn?) < #(SW) < OK*n?) forn > k>2. S 3| e<t
CFW: #(S%) = ©(k3n?) forn > k > 2. ':?

Path graphs, P,
EFRS: Q(n) < #(P,) < O(n?). Py
Beck: 7(P,) = ©(n

(



Thank you!



