Recent results on size Ramsey numbers

David Conlon

SIAM Conference on Discrete Mathematics

$$
\text { June 14, } 2022
$$

Joint with Jacob Fox and Yuval Wigderson

Recent results on size Ramsey numbers

David Conlon Yuval Wigderson

SIAM Conference on Discrete Mathematics

$$
\text { June 14, } 2022
$$

Joint with Jacob Fox and Wual Wigderson David Conlon

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)
Which graphs G are Ramsey for a given H ?

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)
Which graphs G are Ramsey for a given H ?
Among all such G, which one is the smallest?

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)
Which graphs G are Ramsey for a given H ?
Among all such G, which one is the smallest?
Ramsey number: $\quad r(H):=\min \{v(G): G$ is Ramsey for $H\}$

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H ?
Among all such G, which one is the smallest?

$$
\begin{aligned}
\text { Ramsey number: } & r(H):=\min \{v(G): G \text { is Ramsey for } H\} \\
\text { size Ramsey number: } & \hat{r}(H):=\min \{e(G): G \text { is Ramsey for } H\}
\end{aligned}
$$

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)

Which graphs G are Ramsey for a given H ?
Among all such G, which one is the smallest?
Ramsey number: $\quad r(H):=\min \{v(G): G$ is Ramsey for $H\}$
size Ramsey number: $\quad \hat{r}(H):=\min \{e(G): G$ is Ramsey for $H\}$
Size Ramsey numbers were introduced by Erdős, Faudree, Rousseau, and Schelp in 1978.

Graph Ramsey theory

For graphs G and H, we say that G is Ramsey for H if every red/blue coloring of $E(G)$ contains a monochromatic copy of H.

Central question(s)
Which graphs G are Ramsey for a given H ?
Among all such G, which one is the smallest?

$$
\begin{aligned}
\text { Ramsey number: } & r(H):=\min \{v(G): G \text { is Ramsey for } H\} \\
\text { size Ramsey number: } & \hat{r}(H):=\min \{e(G): G \text { is Ramsey for } H\}
\end{aligned}
$$

Size Ramsey numbers were introduced by Erdős, Faudree, Rousseau, and Schelp in 1978.

Observation (Erdős-Faudree-Rousseau-Schelp)

If H has no isolated vertices, then

$$
\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}
$$

Linear or quadratic?

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Linear or quadratic?

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
The starburst graph $S_{n}^{(k)}$ consists of a K_{k} and n pendant edges off each vertex of the K_{k}.

Linear or quadratic?

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
The starburst graph $S_{n}^{(k)}$ consists of a K_{k} and n pendant edges off each vertex of the K_{k}.

Every n-vertex tree T has $r(T)=\Theta(n)$, so $r\left(S_{n}^{(1)}\right), r\left(S_{n}^{(2)}\right)=\Theta(n)$.

Linear or quadratic?

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
The starburst graph $S_{n}^{(k)}$ consists of a K_{k} and n pendant edges off each vertex of the K_{k}.

Every n-vertex tree T has $r(T)=\Theta(n)$, so $r\left(S_{n}^{(1)}\right), r\left(S_{n}^{(2)}\right)=\Theta(n)$. However:

Proposition

$\hat{r}\left(S_{n}^{(1)}\right)=2 n-1$. On the other hand, $\hat{r}\left(S_{n}^{(2)}\right)=\Theta\left(n^{2}\right)$.

Complete graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Complete graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Theorem (Chvátal)

$$
\hat{r}\left(K_{t}\right)=\binom{r\left(K_{t}\right)}{2}
$$

Complete graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Theorem (Chvátal)

$$
\hat{r}\left(K_{t}\right)=\binom{r\left(K_{t}\right)}{2}
$$

Proof.

Exercise!

Complete graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Theorem (Chvátal)

$$
\hat{r}\left(K_{t}\right)=\binom{r\left(K_{t}\right)}{2}
$$

Proof.

Exercise!
Hint: Prove that if G is Ramsey for K_{t}, then $X(G) \geq r\left(K_{t}\right)$.

Complete graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Theorem (Chvátal)

$$
\hat{r}\left(K_{t}\right)=\binom{r\left(K_{t}\right)}{2}
$$

Proof.

Exercise!
Hint: Prove that if G is Ramsey for K_{t}, then $X(G) \geq r\left(K_{t}\right)$.
Theorem (Erdős, Erdős-Szekeres)

$$
2^{t / 2} \leq r\left(K_{t}\right) \leq 2^{2 t}
$$

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)
Determine the size Ramsey numbers of the following graph families.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$

Book graphs, $B_{n}^{(k)}$

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$

Book graphs, $B_{n}^{(k)}$

Starburst graphs, $S_{n}^{(k)}$

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$

Book graphs, $B_{n}^{(k)}$

Starburst graphs, $S_{n}^{(k)}$

Path graphs, P_{n}

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Thus, $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$, since $r\left(P_{n}\right)=\Theta(n)$.

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Thus, $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$, since $r\left(P_{n}\right)=\Theta(n)$.
Theorem (Beck)

$$
\hat{r}\left(P_{n}\right)=\Theta(n)
$$

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Thus, $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$, since $r\left(P_{n}\right)=\Theta(n)$.
Theorem (Beck)

$$
\hat{r}\left(P_{n}\right)=\Theta(n)
$$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_{n}. In particular, we may take $G=G(N, p)$ for $N=\Theta(n), p=\Theta\left(\frac{1}{n}\right)$.

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Thus, $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$, since $r\left(P_{n}\right)=\Theta(n)$.
Theorem (Beck)

$$
\hat{r}\left(P_{n}\right)=\Theta(n)
$$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_{n}. In particular, we may take $G=G(N, p)$ for $N=\Theta(n), p=\Theta\left(\frac{1}{n}\right)$.

Much subsequent work on size Ramsey numbers begins here, studying size Ramsey numbers of bounded-degree H.

Path graphs

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Thus, $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$, since $r\left(P_{n}\right)=\Theta(n)$.
Theorem (Beck)

$$
\hat{r}\left(P_{n}\right)=\Theta(n)
$$

Proof.

Any good expander G on $\Theta(n)$ vertices is Ramsey for P_{n}. In particular, we may take $G=G(N, p)$ for $N=\Theta(n), p=\Theta\left(\frac{1}{n}\right)$.

Much subsequent work on size Ramsey numbers begins here, studying size Ramsey numbers of bounded-degree H.
Often, one takes G to be a sparse (pseudo)random graph. To prove that G is Ramsey for H, one uses techniques like sparse regularity.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$

Book graphs, $B_{n}^{(k)}$

Starburst graphs, $S_{n}^{(k)}$

Path graphs, P_{n}
EFRS: $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$.
P_{4}

Beck: $\hat{r}\left(P_{n}\right)=\Theta(n)$.

Complete bipartite graphs

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

The lower bound relies on the following lemma.
Lemma (Erdős-Rousseau)
For any $s \leq t$ and any graph G,

$$
\#\left\{\text { copies of } K_{s, t} \text { in } G\right\} \leq\left(\frac{100 e(G)}{s t}\right)^{t} .
$$

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

The lower bound relies on the following lemma.
Lemma (Erdős-Rousseau)
For any $s \leq t$ and any graph G,

$$
\#\left\{\text { copies of } K_{s, t} \text { in } G\right\} \leq\left(\frac{100 e(G)}{s t}\right)^{t} .
$$

Proof of lower bound: Let G be any graph with $\leq s t 2^{s} / 100$ edges.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

The lower bound relies on the following lemma.
Lemma (Erdős-Rousseau)
For any $s \leq t$ and any graph G,

$$
\#\left\{\text { copies of } K_{s, t} \text { in } G\right\} \leq\left(\frac{100 e(G)}{s t}\right)^{t} .
$$

Proof of lower bound: Let G be any graph with $\leq s t 2^{s} / 100$ edges. Color $E(G)$ red or blue randomly. The expected number of monochromatic $K_{s, t}$ is $2^{1-s t}$. \#\{copies of $K_{s, t}$ in $\left.G\right\}$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

The lower bound relies on the following lemma.
Lemma (Erdős-Rousseau)
For any $s \leq t$ and any graph G,

$$
\#\left\{\text { copies of } K_{s, t} \text { in } G\right\} \leq\left(\frac{100 e(G)}{s t}\right)^{t} .
$$

Proof of lower bound: Let G be any graph with $\leq s t 2^{s} / 100$ edges. Color $E(G)$ red or blue randomly. The expected number of monochromatic $K_{s, t}$ is $2^{1-s t}$. \#\{copies of $K_{s, t}$ in $\left.G\right\}$. By the lemma, this is <1, so there exists a coloring with no monochromatic $K_{s, t}$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{s, t}$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{S, t}$. A good guess is $K_{S, T}$ for appropriate S, T.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{S, t}$. A good guess is $K_{S, T}$ for appropriate S, T. Fix a red/blue coloring of $E\left(K_{S, T}\right)$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{s, t}$. A good guess is $K_{S, T}$ for appropriate S, T. Fix a red/blue coloring of $E\left(K_{S, T}\right)$. The number of monochromatic $K_{1, s}$ centered at a vertex v on the right is

$$
\binom{\operatorname{deg}_{R}(v)}{s}+\binom{\operatorname{deg}_{B}(v)}{s}
$$

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{s, t}$. A good guess is $K_{S, T}$ for appropriate S, T.
Fix a red/blue coloring of $E\left(K_{S, T}\right)$. The number of monochromatic $K_{1, s}$ centered at a vertex v on the right is

$$
\binom{\operatorname{deg}_{R}(v)}{s}+\binom{\operatorname{deg}_{B}(v)}{s} \geq 2\binom{S / 2}{s} .
$$

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{s, t}$. A good guess is $K_{S, T}$ for appropriate S, T. Fix a red/blue coloring of $E\left(K_{S, T}\right)$. The number of monochromatic $K_{1, s}$ centered at a vertex v on the right is

$$
\binom{\operatorname{deg}_{R}(v)}{s}+\binom{\operatorname{deg}_{B}(v)}{s} \geq 2\binom{S / 2}{s} .
$$

So for a random s-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T\binom{S / 2}{s} /\binom{S}{s}$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)

For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{S, t}$. A good guess is $K_{S, T}$ for appropriate S, T. Fix a red/blue coloring of $E\left(K_{S, T}\right)$. The number of monochromatic $K_{1, s}$ centered at a vertex v on the right is

$$
\binom{\operatorname{deg}_{R}(v)}{s}+\binom{\operatorname{deg}_{B}(v)}{s} \geq 2\binom{S / 2}{s} .
$$

So for a random s-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T\binom{S / 2}{s} /\binom{S}{s}$. Optimizing, a good choice is $S=\Theta\left(s^{2}\right), T=\Theta\left(t 2^{s}\right)$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

For the upper bound, let's guess a graph G which we hope is Ramsey for $K_{S, t}$. A good guess is $K_{S, T}$ for appropriate S, T. Fix a red/blue coloring of $E\left(K_{S, T}\right)$. The number of monochromatic $K_{1, s}$ centered at a vertex v on the right is

$$
\binom{\operatorname{deg}_{R}(v)}{s}+\binom{\operatorname{deg}_{B}(v)}{s} \geq 2\binom{S / 2}{s} .
$$

So for a random s-subset and a random color, the expected number of vertices monochromatic to that set in that color is $\geq T\binom{S / 2}{s} /\binom{S}{s}$. Optimizing, a good choice is $S=\Theta\left(s^{2}\right), T=\Theta\left(t 2^{s}\right)$.
Pikhurko proved that if $t \gg s$, then this construction (appropriately optimized) is optimal. In particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$ if $t \gg s$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2}+2^{s}\right) .
$$

Theorem (Pikhurko)
Ift $\gg \mathrm{s}$, then $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2}+2^{s}\right) .
$$

Theorem (Pikhurko)
Ift $\gg \mathrm{s}$, then $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$.
Theorem (Conlon-Fox-W.)
$\hat{r}\left(K_{s, t}\right) \geq \Omega\left(s^{2-s} t 2^{s}\right)$. In particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2}+2^{s}\right)$ if $t=\Omega(s \log s)$.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2}+2^{s}\right) .
$$

Theorem (Pikhurko)
If $t \gg s$, then $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$.
Theorem (Conlon-Fox-W.)
$\hat{r}\left(K_{s, t}\right) \geq \Omega\left(s^{2-s} t 2^{s}\right)$. In particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2}+2^{s}\right)$ if $t=\Omega(s \log s)$.
Proof idea: For the lower bound, Erdős-Rousseau use a uniformly random coloring. But the upper bound argument is tight if all vertices have equal degrees in red and blue.

Complete bipartite graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, ER)
For $s \leq t$,

$$
\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right) .
$$

Theorem (Pikhurko)
If $t \gg s$, then $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$.
Theorem (Conlon-Fox-W.)

Proof idea: For the lower bound, Erdős-Rousseau use a uniformly random coloring. But the upper bound argument is tight if all vertices have equal degrees in red and blue. So rather than uniform, it's better to use a (dyadically iterated) hypergeometric random coloring.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$ EFRS, ER: $\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2}+2^{s}\right)$ for $s \leq t$.
CFW: $\hat{r}\left(K_{s, t}\right) \geq \Omega\left(s^{2-\frac{s}{t}}+2^{s}\right)$; in particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$ for $t=\Omega(s \log s)$.

Book graphs, $B_{n}^{(k)}$

Starburst graphs, $S_{n}^{(k)}$

Path graphs, P_{n}
EFRS: $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$.
P_{4}

Beck: $\hat{r}\left(P_{n}\right)=\Theta(n)$.

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}.

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(2^{k} n\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq 16^{k} n^{2}
$$

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq 16^{k} n^{2}
$$

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq 16^{k} n^{2}
$$

Theorem (Conlon)

$$
r\left(B_{n}^{(k)}\right)=2^{k} n+o(n)
$$

Book graphs

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} glued along a common K_{k}. Book Ramsey numbers are closely related to Ramsey numbers of cliques.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n .
$$

If H has no isolated vertices, then $\frac{r(H)}{2} \leq \hat{r}(H) \leq\binom{ r(H)}{2}$.
Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq I k^{2} O\left(4^{k} n^{2}\right)
$$

Theorem (Conlon)

$$
r\left(B_{n}^{(k)}\right)=2^{k} n+o(n)
$$

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Upper bound: Let's guess that $B_{N}^{(K)}$ is Ramsey for $B_{n}^{(k)}$ for large N, K.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Upper bound: Let's guess that $B_{N}^{(K)}$ is Ramsey for $B_{n}^{(k)}$ for large N, K. If $N<2^{k} n / 10$, a random coloring of $B_{N}^{(K)}$ avoids monochromatic $B_{n}^{(k)}$.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Upper bound: Let's guess that $B_{N}^{(K)}$ is Ramsey for $B_{n}^{(k)}$ for large N, K. If $N<2^{k} n / 10$, a random coloring of $B_{N}^{(K)}$ avoids monochromatic $B_{n}^{(k)}$. If $K<(k-1) n$, a Turán coloring of $B_{N}^{(K)}$ avoids monochromatic $B_{n}^{(k)}$.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Upper bound: Let's guess that $B_{N}^{(K)}$ is Ramsey for $B_{n}^{(k)}$ for large N, K. If $N<2^{k} n / 10$, a random coloring of $B_{N}^{(K)}$ avoids monochromatic $B_{n}^{(k)}$. If $K<(k-1) n$, a Turán coloring of $B_{N}^{(K)}$ avoids monochromatic $B_{n}^{(k)}$.

Lemma (Conlon-Fox-W.)

These are the only obstructions to finding monochromatic books. In particular, $B_{N}^{(K)}$ is Ramsey for $B_{n}^{(k)}$ if $N=2^{k+1} n, K=2 k n$.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.
Our goal is to color $E(G)$ in a way that is simultaneously Turán-like and random-like.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.
Our goal is to color $E(G)$ in a way that is simultaneously Turán-like and random-like.
Let V_{0} consist of the $n / 10$ highest-degree vertices, V_{1} the next $n / 10$ highest-degree vertices, and so on until V_{s}, where $s=k / 3$.

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.
Our goal is to color $E(G)$ in a way that is simultaneously Turán-like and random-like.
Let V_{0} consist of the $n / 10$ highest-degree vertices, V_{1} the next $n / 10$ highest-degree vertices, and so on until V_{s}, where $s=k / 3$. Color:

- All edges in V_{i} red, all edges between V_{i} and V_{j} blue,

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.
Our goal is to color $E(G)$ in a way that is simultaneously Turán-like and random-like.
Let V_{0} consist of the $n / 10$ highest-degree vertices, V_{1} the next $n / 10$ highest-degree vertices, and so on until V_{s}, where $s=k / 3$. Color:

- All edges in V_{i} red, all edges between V_{i} and V_{j} blue,
- All other edges incident to V_{i} red with probability $p_{i}=\frac{1}{2}(i / s)^{1 / k}$,

Book graphs

Theorem (Erdős-Faudree-Rousseau-Schelp, Conlon)

For $n \gg k \geq 2$,

$$
\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(4^{k} n^{2}\right) .
$$

Theorem (Conlon-Fox-W.)
For $n \gg k \geq 2$,

$$
\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right) .
$$

Lower bound: Fix a graph G with $k 2^{k} n^{2} / 1000$ edges.
Our goal is to color $E(G)$ in a way that is simultaneously Turán-like and random-like.
Let V_{0} consist of the $n / 10$ highest-degree vertices, V_{1} the next $n / 10$ highest-degree vertices, and so on until V_{s}, where $s=k / 3$. Color:

- All edges in V_{i} red, all edges between V_{i} and V_{j} blue,
- All other edges incident to V_{i} red with probability $p_{i}=\frac{1}{2}(i / s)^{1 / k}$,
- All remaining edges red or blue with probability $\frac{1}{2}$.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$ EFRS, ER: $\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2}+2^{s}\right)$ for $s \leq t$.
CFW: $\hat{r}\left(K_{s, t}\right) \geq \Omega\left(s^{2-\frac{s}{t}}+2^{s}\right)$; in particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$ for $t=\Omega(s \log s)$.

Book graphs, $B_{n}^{(k)}$
EFRS: $\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(16^{k} n^{2}\right)$ for $n \gg k \geq 2$. $B_{4}^{(3)}$
CFW: $\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right)$ for $n \gg k \geq 2$.
Starburst graphs, $S_{n}^{(k)}$

Path graphs, P_{n}
EFRS: $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$.
P_{4}

Beck: $\hat{r}\left(P_{n}\right)=\Theta(n)$.

Starburst graphs

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right) .
$$

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right) .
$$

The lower bound uses a variant of the Turán coloring.

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right) .
$$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r\left(S_{n}^{(k)}\right)$:

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
r\left(S_{n}^{(k)}\right)=\Theta\left(k^{2} n\right) .
$$

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right) .
$$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r\left(S_{n}^{(k)}\right)$:

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
r\left(S_{n}^{(k)}\right)=\Theta\left(k^{2} n\right)
$$

In other words, if $N=\Theta\left(k^{2} n\right)$, then K_{N} is Ramsey for $S_{n}^{(k)}$.

Starburst graphs

Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right) .
$$

The lower bound uses a variant of the Turán coloring. For the upper bound, they determined $r\left(S_{n}^{(k)}\right)$:
Theorem (Erdős-Faudree-Rousseau-Schelp)
For $n \gg k \geq 2$,

$$
r\left(S_{n}^{(k)}\right)=\Theta\left(k^{2} n\right)
$$

In other words, if $N=\Theta\left(k^{2} n\right)$, then K_{N} is Ramsey for $S_{n}^{(k)}$.
Theorem (Conlon-Fox-W.)
If $N=\Theta\left(k^{2} n\right)$ and $p=\Theta\left(\frac{1}{k}\right)$, then $G(N, p)$ is Ramsey for $S_{n}^{(k)}$ whp.
Therefore, $\hat{r}\left(S_{n}^{(k)}\right)=\Theta\left(k^{3} n^{2}\right)$ for $n \gg k \geq 2$.

The four questions

Problem (Erdős-Faudree-Rousseau-Schelp)

Determine the size Ramsey numbers of the following graph families.
Complete bipartite graphs, $K_{s, t}$
EFRS, ER: $\Omega\left(s t 2^{s}\right) \leq \hat{r}\left(K_{s, t}\right) \leq O\left(s^{2} t 2^{s}\right)$ for $s \leq t$.
CFW: $\hat{r}\left(K_{s, t}\right) \geq \Omega\left(s^{2-\frac{s}{t}}+2^{s}\right)$; in particular, $\hat{r}\left(K_{s, t}\right)=\Theta\left(s^{2} t 2^{s}\right)$ for $t=\Omega(s \log s)$.

Book graphs, $B_{n}^{(k)}$
EFRS: $\Omega\left(k^{2} n^{2}\right) \leq \hat{r}\left(B_{n}^{(k)}\right) \leq O\left(16^{k} n^{2}\right)$ for $n \gg k \geq 2$. $B_{4}^{(3)}$
CFW: $\hat{r}\left(B_{n}^{(k)}\right)=\Theta\left(k 2^{k} n^{2}\right)$ for $n \gg k \geq 2$.
Starburst graphs, $S_{n}^{(k)}$
EFRS: $\Omega\left(k^{3} n^{2}\right) \leq \hat{r}\left(S_{n}^{(k)}\right) \leq O\left(k^{4} n^{2}\right)$ for $n \gg k \geq 2 . \quad S_{4}^{(3)}$
CFW: $\hat{r}\left(S_{n}^{(k)}\right)=\Theta\left(k^{3} n^{2}\right)$ for $n \gg k \geq 2$.
Path graphs, P_{n}
EFRS: $\Omega(n) \leq \hat{r}\left(P_{n}\right) \leq O\left(n^{2}\right)$.

Beck: $\hat{r}\left(P_{n}\right)=\Theta(n)$.

Thank you!

