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1 Introduction

For a graph H, we let ex(n,H) denote the extremal number of H, that is, the maximum
number of edges in an H-free graph on n vertices. When χ(H) > 2, the Erdős–Stone–
Simonovits theorem gives us a precise asymptotic for ex(n,H), namely

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

However, when H is bipartite, all this tells us is that ex(n,H) = o(n2), and much of the
modern study of extremal numbers is concerned with understanding ex(n,H) for bipartite
H.

Perhaps the most basic result about the extremal numbers of bipartite graphs is the
Kővári–Sós–Turán theorem, which gives an upper bond on ex(n,Ks,t).

Theorem 1.1 (Kővári, Sós, Turán 1954). For all integers t ≥ s ≥ 1, we have that
ex(n,Ks,t) = Ot(n

2−1/s).

It is known that this bound is asymptotically tight if t � s. The Kővári–Sós–Turán
theorem also immediately gives an upper bound on ex(n,H) for an arbitrary bipartite graph
H. Namely, if H has parts of sizes s and t, then ex(n,H) ≤ ex(n,Ks,t) = O(n2−1/min{s,t}).

However, we expect that in general, this bound will be very weak. For example, if
H = C2k is an even cycle, then Bondy and Simonovits proved that ex(n,C2k) = O(n1+1/k),
whereas the reduction to the Kővári–Sós–Turán theorem above would only yield the much
weaker bound ex(n,C2k) = O(n2−1/k). The issue, it seems, is that even if a graph has the
same vertex set as Ks,t, it may have many fewer edges, and thus we would expect its extremal
number to be much smaller.

One of the most important results confirming this intuition is the following result of
Füredi.

Theorem 1.2 (Füredi 1991). Let H be a bipartite graph in which all the vertices on one
side have degree at most r. Then ex(n,H) = OH(n2−1/r).

This is a huge improvement over the Kővári–Sós–Turán bound in case H is sparse, as
the exponent on n depends on the maximum degree of a side, rather than the number of
vertices in that side. Also, as the Kővári–Sós–Turán bound on ex(n,Ks,t) is known to be
sharp when t� s, we see that Theorem 1.2 is best possible in general.

About a decade later, Theorem 1.2 was reproved by Alon, Krivelevich, and Sudakov,
using the technique of dependent random choice, and this is the proof that I will present.
We begin with the following lemma, which is a standard consequence of the dependent
random choice technique.

Lemma 1.3. For all positive integers a, b, there exists some constant C > 0 such that the
following holds. Let G be an n-vertex graph with average degree d ≥ Cn1−1/r. Then there
exists U ⊆ V (G) with |U | ≥ a so that every r-tuple of vertices in U has at least a+b common
neighbors.
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Proof. Let x1, . . . , xr be iid uniformly random vertices of G, and let X be the common
neighborhood of x1, . . . , xr. By linearity of expectation and Jensen’s inequality, we have

E[|X|] =
∑

u∈V (G)

Pr(u ∈ X) =
∑

u∈V (G)

(
deg(u)

n

)r
≥ n

(
d

n

)r
=

dr

nr−1
≥ Cr.

Now, let Y count the number of r-tuples of vertices in X with fewer than a + b common
neighbors. There are at most

(
n
r

)
total such r-tuples, and each one appears in X with

probability less than ((a+ b)/n)r. So we have that

E[Y] <

(
n

r

)(
a+ b

n

)r
< (a+ b)r.

Therefore, we see that E[|X| − Y] > Cr − (a + b)r ≥ a, by picking C sufficiently large
with respect to a and b. Therefore, there exists some set X ⊆ V (G) so that if Y denotes
the number of r-tuples in X with fewer than a + b common neighbors, then |X| − Y ≥ a.
By deleting one vertex from every “bad” r-tuple in X, we obtain a set U with the desired
properties.

Using this lemma, we can give the short proof of Theorem 1.2 due to Alon, Krivelevich,
and Sudakov.

Proof of Theorem 1.2. Let the bipartition of H be A∪B where |A| = a, |B| = b, and suppose
that every vertex in B has degree at most r. Let C be the constant from Lemma 1.3, and let
G be an n-vertex graph with at least Cn2−1/r edges. Then G has average degree d ≥ Cn1−1/r,
so by Lemma 1.3, we may find a set U ⊆ V (G) with |U | ≥ a and so that every r-tuple of
vertices in U has at least a + b common neighbors. We can now greedily embed H in G,
as follows. We first arbitrarily embed the vertices of A into U . Now, we go through the
vertices of B one by one. For a given vertex v ∈ B, it has at most r neighbors in A, and
the embeddings of those neighbors have at least a + b common neighbors. So there are at
least a + b options for how to embed v, and fewer than a + b of these have been used by
previously-embedded vertices. Thus, there is at least one valid choice for v, and by iterating
this argument, we can embed H in G. This shows that ex(n,H) ≤ Cn2−1/r, as claimed.

Recall that a graph H is called r-degenerate if every subgraph of H has a vertex of degree
at most r. Equivalently, H is r-degenerate if and only if there is a linear ordering of its vertices
so that every vertex has at most r neighbors which precede it. The degeneracy of H is the
minimum r for which H is r-degenerate. Erdős conjectured the following strengthening of
Theorem 1.2.

Conjecture 1.4 (Erdős). If H is bipartite and r-degenerate, then ex(n,H) = OH(n2−1/r).

If true, then Conjecture 1.4 immediately implies Theorem 1.2, as a bipartite graph in
which one side has maximum degree r is clearly r-degenerate. However, it is much stronger;
for example, a double star (a tree consisting of an edge plus many pendant edges on each of
its endpoints) is 1-degenerate, but can have arbitrarily high degrees on both sides.

Conjecture 1.4 remains open, but the following approximate form of it was proved by
Alon, Krivelevich, and Sudakov.

2



Yuval Wigderson Extremal numbers of subdivisions (and friends) Spring 2022

Theorem 1.5 (Alon, Krivelevich, Sudakov 2003). If H is bipartite and r-degenerate, then
ex(n,H) = O(n2−1/(4r)).

The proof of Theorem 1.5 is similar to the proof of Theorem 1.2 presented above, but
with an extra twist. Namely, one applies the dependent random choice technique twice in
order to find in G two sets U1, U2 so that every r-tuple of vertices in U1 has many common
neighbors in U2, and similarly every r-tuple of vertices in U2 has many common neighbors
in U1. We can then greedily embed H in G by arranging the vertices of H according to the
degenerate ordering, and one by one placing vertices of A in U1 and vertices of B in U2.
However, the fact that we have to apply dependent random choice twice means that we lose
something, which is why the exponent in Theorem 1.5 does not match Conjecture 1.4.

Before moving on, we remark that Conjecture 1.4 and Theorem 1.5 are essentially best
possible for every graph H. This follows from the following lower bound, which is proved
using the method of alterations. Recall that the 2-density of a graph H is defined by

m2(H) = max
F⊆H

e(F )− 1

v(F )− 2
,

where the maximum is taken over all subgraphs F of H with at least three vertices.

Proposition 1.6. For any graph H, we have

ex(n,H) = ΩH(n2−1/m2(H)).

In particular, if H has degeneracy r, then

ΩH

(
n2− 2

r

)
≤ ex(n,H) ≤ OH

(
n2− 1

4r

)
.

Proof sketch. Let p = cn−1/m2(H) for a constant c > 0 to be chosen later, and let G ∼ G(n, p)
be an Erdős–Rényi random graph. With high probability, G has Θ(cn2−1/m2(H)) edges. Let
F ⊆ H be a subgraph so that

m2(H) =
e(F )− 1

v(F )− 2
.

The expected number of copies of F in G is at most nv(F )pe(F ) = ce(F )nv(F )−e(F )/m2(H). Note
that

v(F )− e(F )

m2(H)
= v(F )− e(F )(v(F )− 2)

e(F )− 1

=
v(F )(e(F )− 1)− e(F )(v(F )− 2)

e(F )− 1

=
2e(F )− v(F )

e(F )− 1

= 2− v(F )− 2

e(F )− 1

= 2− 1

m2(H)
.
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Therefore, the expected number of copies of F in G is at most ce(F )n2−1/m2(H). By picking
c sufficiently small, we see that this quantity is at most half the number of edges of G.
So by deleting one edge from every copy of F in G, we obtain an F -free graph G′ with
Θ(n2−1/m2(H)) edges. Since G′ is F -free and F ⊆ H, we see that G′ is H-free, and thus
ex(n,H) = ΩH(n2−1/m2(H)).

For the second claim, the upper bound is simply Theorem 1.5. For the lower bound, note
that if H has degeneracy r, then there is a subgraph F of H with minimum degree at least
r. This subgraph F then has at least r

2
v(F ) edges. This implies that

m2(H) ≥ e(F )− 1

v(F )− 2
≥

r
2
v(F )− 1

v(F )− 2
=
r

2
·
v(F )− 2

r

v(F )− 2
≥ r

2
.

Thus,
ex(n,H) = ΩH(n2−1/m2(H)) = ΩH(n2−2/r),

as claimed.

2 Subdivisions

Recall Theorem 1.2, which says that ex(n,H) = O(n2−1/r) if H is bipartite and every vertex
on one side of H has degree at most r. As mentioned, this bound is tight in general, since
ex(n,Ks,t) = Θ(n2−1/s) if t� s. In fact, it has long been conjectured that the Kővári–Sós–
Turán bound is tight even for s = t, i.e. that ex(n,Ks,s) = Θ(n2−1/s). The truth of this
has been known for decades for s ∈ {2, 3}, and nowadays, some people think that it may be
false in general. But in any case, one might expect that “the reason” why Theorem 1.2 is
tight in general is the presenence of copies of Kr,r. This is the motivation for the following
conjecture of Conlon and Lee.

Conjecture 2.1 (Conlon, Lee 2021). Suppose H is a bipartite graph with every vertex on
one side having degree at most r. If Kr,r * H, then ex(n,H) = O(n2−1/r−ε) for some ε > 0.

This conjecture remains open for all r ≥ 3, but Conlon and Lee proved it for r = 2. Before
stating their result, let us think about which K2,2-free bipartite graphs have maximum degree
2 on one side. Let H be such a graph with bipartition A ∪ B, and let every vertex in B
have degree at most 2. By adding dummy vertices to A, we may assume that actually every
vertex in B has degree 2. Then the fact that H is K2,2-free means that every pair of vertices
in A has at most a single common neighbor. If we define a graph Γ on A by connecting those
pairs with a common neighbor in B, we see that H is a subgraph of the 1-subdivision of Γ.
Since Γ is a subgraph of K|A|, we conclude that every K2,2-free bipartite graph in which one

side has maximum degree 2 is a subgraph of K̂t for some t, where Γ̂ denotes the 1-subdivision
of Γ.

In this language, Conlon and Lee proved that ex(n, K̂t) = O(n3/2−6−t
), which implies

Conjecture 2.1 in the case r = 2. Their result was shortly afterwards strengthened by
Janzer, who proved the following theorem.

Theorem 2.2 (Janzer 2019). For every t ≥ 3, we have ex(n, K̂t) = O
(
n

3
2
− 1

4t−6

)
=

O
(
n1+ t−2

2t−3

)
.
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Proof. We pick an absolute constant C > 0 to be chosen later. Let G be a bipartite graph
with bipartition A ∪ B, where |A| = |B| = n, and suppose that G is d-regular, where

d = Cn
t−2
2t−3 . We will show that G contains a copy of K̂t. Note that we made two simplifying

assumptions, namely that G is balanced bipartite, and that G is d-regular. Both of these
assumptions are essentially without loss of generality: every graph contains a balanced bi-
partite subgraph with at least half its edges, and a useful lemma of Erdős and Simonovits
shows that for extremal problems, we may assume the host graph is almost regular, meaning
that the minimum and maximum degrees are within a constant factor of each other. But for
simplicity, I will just assume that G is d-regular.

For vertices u, v ∈ A, let codeg(u, v) denote the number of common neighbors of u and
v in B. For a pair of vertices u, v ∈ A, we say that (u, v) is heavy if codeg(u, v) ≥

(
t
2

)
,

and we say that (u, v) is light if 1 ≤ codeg(u, v) <
(
t
2

)
. The first key observation is that

if we can find u1, . . . , ut ∈ A so that (ui, uj) is heavy for all i 6= j, then G contains a copy

of K̂t. Indeed, each pair (ui, uj) has at least
(
t
2

)
common neighbors, so by the same greedy

embedding argument as above, we can find a copy of K̂t.
To say this differently, let’s define an edge-weighted graph WG with vertex set A, in which

two vertices are adjacent if they have at least one common neighbor in B. Additionally, we
assign the edge (u, v) weight codeg(u, v). Then the argument above shows that ifWG contains

a copy of Kt consisting of heavy edges, then K̂t ⊆ G. Because of this, we henceforth assume
that there is no heavy Kt in WG (i.e. a Kt containing only heavy edges). The idea now is
that a light Kt in WG can also be helpful for us: two different light edges both have few
common neighbors, so we can hope to find pairs of light edges whose common neighborhoods
are disjoint. By doing this carefully, we can find a light Kt in WG such that distinct pairs
of vertices have disjoint common neighborhoods, and then we can embed K̂t by using such
a light Kt. In other words, while a heavy Kt is very helpful for us, a light Kt is also helpful
for an essentially complementary reason. We now show have to find such a “good” light
Kt. The key lemma which enables us to do this is the following, which shows that any large
subset of A contains many light edges.

Lemma 2.3. If U ⊆ A satisfies |U | ≥ 2tn/d, then the number of light edges in U is at least
d2

t3n

(|U |
2

)
.

Proof. Fix some b ∈ B. Every pair of vertices in NU(b) has at least one common neighbor
(namely b), so every pair in NU(b) is either a light or a heavy edge. Additionally, there can
be no heavy Kt in NU(b). So by Turán’s theorem, the number of light edges in NU(b) is at
least

(t− 1)

(degU (b)
t−1
2

)
.

Now note that every light edge can appear in NU(b) for at most
(
t
2

)
choices of b, by the

definition of light. Therefore, the total number of light edges is at least

t− 1(
t
2

) ∑
b∈B

(degU (b)
t−1
2

)
≥ 2n

t

(
1
n

∑
b∈B

degU (b)
t−1

2

)
≥ 2n

t

(d|U |
nt

2

)
≥ n

t
·
(
d

nt

)2(|U |
2

)
=

d2

t3n

(
|U |
2

)
,
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where the first inequality uses the convexity of the binomial coefficient, the second inequality
uses the fact that

∑
b∈B degU(b) = d|U | since both count the number of edges incident to U ,

and the third inequality uses the observation that if λx ≥ 2, then
(
λx
2

)
≥ λ2

2

(
x
2

)
, as well as

the assumption |U | ≥ 2nt/d.

We are now ready to complete the proof. The idea is to find a collection u1, . . . , ut of
vertices in A with the property that all pairs (ui, uj) are light, and such that N(ui)∩N(uj)∩
N(uk) = ∅ for all distinct i, j, k. Because all pairs are light, every pair ui, uj has at least
one common neighbor in B, and these common neighbors are distinct across all

(
t
2

)
pairs,

thanks to the second condition. Therefore, by choosing one such common neighbor for every
pair (ui, uj), we find a copy of K̂t in G.

In order to do this, we will pick out vertices one by one. We will also maintain a sequence
A = S1 ⊇ S2 ⊇ · · · of “candidate vertices”, where Si is the set of all possible vertices we can
choose to be ui. Namely, Si is the set of vertices v so that (uj, v) is light for all 1 ≤ j ≤ i−1.
We will inductively maintain the property that

|Si| ≥
(

d2

4t3n

)i−1
n.

Note that this holds trivially for i = 1, since |S1| = |A| = n. To begin the induction, note
that by Lemma 2.3, the number of light edges in S1 is at least d2

t3n

(|S1|
2

)
, so there is a vertex

u1 ∈ S1 incident to at least d2

t3n
(|S1| − 1) ≥ ( d2

4t3n
)1n light edges. We let S2 be this set of light

neighbors of u1.
Inductively, suppose we’ve defined u1, . . . , ui−1, and have a set Si of candidate vertices,

i.e. (uj, v) is light for all v ∈ Si and j ≤ i − 1. Let U ⊆ Si consist of those vertices v with
N(uj) ∩ N(uk) ∩ N(v) = ∅ for all 1 ≤ j < k ≤ i − 1. Since (uj, uk) is light, we know that
codeg(uj, uk) <

(
t
2

)
. Additionally, if b is a common neighbor of uj and uk, then b has at most

d neighbors in Si. So the total number of vertices in Si that are “ruled out” by (uj, uk) is at
most

(
t
2

)
d. Adding this up over all pairs j, k, we see that

|Si \ U | ≤
(
i− 1

2

)(
t

2

)
d = Ot(d).

However, we also know that

|Si| ≥
(

d2

4t3n

)i−1
n ≥

(
d2

4t3n

)t−1
n = Ωt

(
d2t−2

nt−2

)
.

Since d = Cn
t−2
2t−3 , by choosing C large enough, we can guarantee that |U | ≥ 1

2
|Si| for

sufficiently large n.
If i = t, then we may simply pick an arbitrary ut ∈ U and be done. If i ≤ t− 1, then the

same computation shows that

|U | ≥ 1

2
|Si| ≥

(
d2

4t3n

)t−2
n = Ωt

(
d2t−4

nt−3

)
.
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On the other hand, 2tn/d = Ot(n/d), so by picking C large, we can ensure that |U | ≥ 2tn/d,
so we are in the position to apply Lemma 2.3. We conclude that U contains at least d2

t3n

(|U |
2

)
light edges, so there is a vertex ui ∈ U incident to at least d2

t3n
(|U |− 1) ≥ d2

4t3n
|Si| light edges.

By letting Si+1 be this set of light neighbors of ui, we conclude the induction.

Though Janzer’s bound is somewhat strange, there is actually good reason to expect that
it is tight. One reason is that it is tight in case t = 3, as K̂3 = C6, and it is known that
ex(n,C6) = Θ(n4/3). Another reason is a little harder to explain, since it requires setup.
A famous result of Alon is that there exist “optimally pseudorandom triangle-free graphs”.
Namely, there exists a family of n-vertex triangle-free graphs with average degree Θ(n2/3) and
second eigenvalue Θ(n1/3). This is called optimally pseudorandom, because in any graph,
the second eigenvalue must be at least roughly the square root of the average degree, and the
smaller the second eigenvalue is, the more pseudorandom the graph is. Additionally, this is
optimal in another way: one can prove that a graph with average degree Θ(n2/3+ε) and second
eigenvalue Θ(n1/3+ε/2) must contain a triangle, for any ε > 0. So Alon’s graphs are as dense
as possible, given the constraints that they be triangle-free and optimally pseudorandom.

It is a major open problem to construct, analogously, optimally pseudorandom Kt-free
graphs for any t ≥ 4. If such graphs exist, they would have numerous applications. Perhaps
most notably, due to a result of Mubayi and Verstraëte, if an optimally Kt-free pseudorandom
graph exists, then the off-diagonal Ramsey number r(t, n) grows as nt−1−o(1), matching up to
lower-order terms the Erdős–Szekeres upper bound from 1935. It turns out that an optimally
pseudorandom Kt-free graph, if it exists, has average degree Θ(n1−1/(2t−3)); any denser one
must contain a Kt, as above.

In addition to Alon’s original construction, we now know of several other ways of con-
structing optimally pseudorandom triangle-free graphs. One of the ways, due to Conlon, is
as follows. We begin with a C6-free bipartite graph G with Θ(n4/3) edges, which is known
to exist. In fact, since constructions for such graphs come from discrete geometry, we can
even pick such a graph which is itself very pseudorandom. Now, if the bipartition of G is
A ∪ B, we build a new graph F on vertex set A as follows. For every b ∈ B, we randomly
partition N(b) in two, and put a complete bipartite graph between these two halves. Since

G is C6-free1, one can check that F is triangle-free; basically, since C6 = K̂3, and since we
are essentially “un-subdividing” G, the C6-freeness of G guarantees the triangle-freeness of
F . Additionally, since G was very pseudorandom and since we used these random partitions,
one can check that F is pseudorandom2 as well. Finally, for a given vertex a ∈ A, it has
Θ(n1/3) neighbors b ∈ B, and each of these yield Θ(n1/3) neighbors of a in F [N(b)], so F
has average degree Θ(n2/3).

Now, suppose that Janzer’s bound in Theorem 2.2 is tight, and suppose too that we

had some construction of a bipartite graph G with Θ
(
n1+ t−2

2t−3

)
edges, no copy of K̂t, and

such that G is pseudorandom (as it likely is, if it somehow “algebraic” in nature). By “un-
subdividing” G à la Conlon, we would obtain a pseudorandom Kt-free graph with average

1Really, for this to work, we need G to be {C4, C6}-free. But most of the constructions coming from
discrete geometry are indeed {C4, C6}-free.

2Actually, Conlon’s proof yields that F is slightly worse than optimally pseudorandom, but it is still
pseudorandom enough for all the applications of such graphs (and he conjectured that the problem is his
analysis, and that the construction actually is optimally pseudorandom).
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degree Θ
(
n2· t−2

2t−3

)
= Θ(n1−1/(2t−3)). Thus, a matching lower bound for Theorem 2.2 could

yield optimally pseudorandom Kt-free graphs, and this is one reason to expect (or hope)
that Theorem 2.2 is tight.

3 Beyond r = 2

We have seen that Conjecture 2.1 is true for r = 2, namely that we can get a power saving
on the bound ex(n,H) = O(n2−1/r) in case H has maximum degree r on one side but does
not contain a copy of Kr,r. Conjecture 2.1 remains open for all r ≥ 3, but in this section, I
will present the following result which proves a weak version of Conjecture 2.1 for all r.

Theorem 3.1 (Sudakov, Tomon 2020). Let H be a bipartite graph with every vertex on one
side having degree at most r, and suppose that Kr,r * H. Then ex(n,H) = o(n2−1/r).

Proof. For k ≥ r, let Hk be a bipartite graph whose first part X has k vertices, whose second
part Y has (r− 1)

(
k
r

)
vertices, and where for every S ∈

(
X
r

)
, there are exactly r− 1 vertices

in Y whose neighborhood is S. Every H as in the theorem statement is a subgraph of Hk for
some k, so it suffices to prove that ex(n,Hk) = o(n2−1/r) for any fixed k. This is basically

the same argument that allowed us to only work with K̂t when proving Conjecture 2.1 in
the case r = 2.

Let G be a bipartite graph with partition A∪B, where |A| = |B| = n, and suppose that
G is d-regular where d = εn1−1/r. We think of ε > 0 as fixed, and want to show that if n
is sufficiently large, then Hk ⊆ G. As before, our simplifying assumptions are essentially
without loss of generality.

Our goal is now to “densify” the problem. To do so, we will pass to an induced subgraph
by restricting A to some subset U ⊆ A, and we want to do this in such a way that on
average, the common neighborhood in U of an (r − 1)-tuple of vertices in B is a large
constant. For a set C ⊆ B, let NU(C) denote the common neighborhood of C in U , and let
L =

∑
C∈( B

r−1)
|NU(C)|. Our goal is to ensure that L ≥ Mnr−1, where M is the two-color

hypergraph Ramsey number of K
(r)
k , i.e. every two-coloring of the edges of K

(r)
M contains a

monochromatic K
(r)
k .

To do so, for any p ∈ (n−1/r, 1), suppose we sample a p-random subset U ⊆ A. Note that

L =
∑
u∈U

(
d

r − 1

)
=
∑
u∈U

(
εn1−1/r

r − 1

)
≥ |U | ·

(
ε

r − 1

)r−1
nr−2+1/r = cε,r|U |nr−2+1/r.

Now, we pick p = (2M/cε,r)n
−1/r. Then with high probability, we have that |U | ≈ pn =

(2M/cε,r)n
1−1/r, and thus that L ≥ Mnr−1. We also have that with high probability, every

vertex in B has degree ≈ pd into U . For simplicity, we assume that |U | = pn and that every
vertex in B has degree exactly pd into U .

Now, let W be the r-uniform hypergraph with vertex set U in which an r-tuple is an edge
if and only if it has at least r − 1 common neighbors in B. Let us call an edge of W heavy
if it has at least (r − 1)

(
k
r

)
common neighbors in B, and light otherwise. As in the proof of

Theorem 2.2, we see that if there is a copy of K
(r)
k in W made up of heavy edges, then G

8
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contains Hk, as we may embed one side of Hk in this K
(r)
k , and greedily embed the other

side in the appropriate common neighborhoods in B. Therefore, we henceforth assume that
there is no heavy K

(r)
k in W .

Our goal now, as in the proof of Theorem 2.2, is to find very many light copies of K
(r)
k

in W . By doing so, we will be able to find a specific light copy of K
(r)
k so that all pairs of

edges have disjoint common neighborhoods. Once we find that, we again see that Hk ⊆ G.
For a fixed C ∈

(
B
r−1

)
, let D = NU(C). Note that every r-tuple of vertices in D has

at least r − 1 common neighbors in B (namely the set C), so D induces a clique in the
hypergraph W . We partition D into |D|/M sets of size M , each of which is itself a clique in

W . Since M is the hypergraph Ramsey number of K
(r)
k , and since we have colored the edges

of each such clique “light” or “heavy”, and since there is no heavy K
(r)
k in W , we conclude

that D contains at least |D|/M disjoint light copies of K
(r)
k . Let ZC be the set of these light

copies, and let Z =
⋃
C ZC be the multiset of all light copies that arise in this way. Then we

have that |ZC | ≥ |D|/M , so

|Z| =
∑

C∈( B
r−1)

|ZC | ≥
∑

C∈( B
r−1)

|NU(C)|
M

=
L

M
≥ nr−1.

Now, we form an auxiliary graph Γ with vertex set Z, where we connect S, T ∈ Z if
|S ∩ T | ≥ r. We now claim that the maximum degree in Γ is at most

(
k
r

)(
u
k−1

)
, where

u = (r − 1)
(
k
r

)
, i.e. that Γ has maximum degree Ok,r(1). To see this, fix some S ∈ Z, and

let R ⊆ S be an r-subset. Since S spans a light clique, R must form a light edge in W , so
the common neighborhood of R has size at most u. So there are at most

(
u
r−1

)
sets C so

that R ⊆ NU(C), and for each such C, at most one element of ZC contains R. Since there
are

(
k
r

)
choices for R ⊆ S, the degree of S in Γ is at most

(
k
r

)(
u
r−1

)
, as claimed. Therefore, Γ

contains an independent set Z ′ of order

|Z|(
k
r

)(
u
r−1

)
+ 1
≥ δ0n

r−1 ≥ δ1|U |r,

for constants δ0, δ1 that do not depend on n. In the final step, we used the fact that
|U | = pn = Ω(n1−1/r). Note too that since Z ′ is an independent set in Γ, every pair
S, T ∈ Z ′ intersect on fewer than r elements, and thus Z ′ consists of edge-disjoint copies of
K

(r)
k in W .

We now recall the hypergraph removal lemma, which says (in one of its equivalent forms)
that if an r-uniform hypergraph W on vertex set U contains at least δ1|U |r edge-disjoint

copies of K
(r)
k , then W must contain at least γ|U |k total copies of K

(r)
k , for some γ depending

only on δ1, k, and r. Therefore, we conclude that W contains at least γ|U |k copies of K
(r)
k .

Finally, let’s say that a copy Q of K
(r)
k in W is bad if it contains two r-tuples R,R′ ⊆ Q

with N(R) ∩N(R′) 6= ∅. If we can prove that not all copies are bad, then we have found a

copy of K
(r)
k in which all pairs of edges of have disjoint common neighborhoods, and thus we

can embed a copy of Hk in G. So to conclude, it suffices to count the number of bad copies
and show that it is less than γ|U |k. Note that

γ|U |k = γ(pn)k = c(n1−1/r)k = cnk−k/r

9
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for some constant c independent of n.
Fix a bad copy Q of K

(r)
k , and let R,R′ ⊆ Q be edges with non-disjoint common neigh-

borhoods. Let b ∈ N(R) ∩ N(R′), and note that |NU(b) ∩ Q| ≥ |R ∪ R′| ≥ r + 1. In other

words, a bad copy Q of K
(r)
k is witnessed by a vertex b ∈ B with |NU(b) ∩ Q| ≥ r + 1. By

summing over all witnessing vertices in B, we conclude that the total number of bad copies
of K

(r)
k in W is at most∑

b∈B

(
pd

r + 1

)
|U |k−r−1 ≤ n · (pd)r+1(pn)k−r−1 = pkdr+1nk−r = Cnk−k/r−1/r

for some constant C independent of n. For sufficiently large n, this is less than cnk−k/r,
showing that Hk ⊆ G for sufficiently large n.
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