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In the bibliography I’ve included all the major sources from which I learned the topics
of this lecture. The most accessible to me (and thus the ones I would most recommend for
those seeking more information) are the surveys [1, 8] and the lecture notes [4, 5].

1 Background

The subspace theorem is a fundamental result proved by Schmidt in 1972. Although he
originally developed it in order to prove bounds on the number of solutions of norm form
equations (which we’ll return to later), it has since found applications in a huge range of
areas, including extremal combinatorics, which is the topic I’ll focus on. However, at the
end, I’ll touch on some of the more “classical” topics of application, such as Diophantine
approximation and number theory.

At an enormously high level, the subspace theorem is a result that says that certain
systems of equations, which are in general underdetermined (and thus have infinitely many
solutions), will only have finitely many solutions that are restricted in some way (e.g. solu-
tions of bounded “size”, or solutions in the integers or in some other substructure). Moreover,
in many instances, this qualitative statement can actually be made quantitative, obtaining
an effective bound on the number of solutions (usually in a way that depends only on the
basic parameters of the problem, as opposed to other features like the specific coefficients
involved).

To start with, we will use the following result as our main tool. It is a (highly non-trivial)
consequence of the subspace theorem; later on, I will sketch how to derive such a result from
the subspace theorem. Such a result was first proved independently by Evertse and by van
der Poorten and Schlickewei, though the following theorem is due to Amoroso and Viada,
and gives the best known quantitative estimate. Recall that every finitely generated abelian
group is isomorphic to Zr×T for some finite group T and some non-negative integer r, which
is called its rank. I’m stating this result for C, but it actually holds for any algebraically
closed field of characteristic 0.

Theorem 1. Let Γ be a subgroup of C∗ of rank r, and let a1, . . . , an ∈ C. Then the number
of solutions to the equation

a1x1 + · · ·+ anxn = 1 (1)

with x1, . . . , xn ∈ Γ and no subsum on the left-hand side vanishing is at most

A(n, r) := (8n)4n4(n+nr+1).

Solutions (x1, . . . , xn) with no vanishing subsum
∑

i∈I aixi = 0 for ∅ ( I ( [n] are called
non-degenerate solutions. Note that some sort of non-degeneracy assumption is necessary in
order to obtain a finite bound; for instance, if a1 = a3 = 1 and a2 = −1, then for any x ∈ Γ,
the vector (x, x, 1) is a solution to (1), so this equation will have infinitely many solutions in
general. However, such solutions are ignored in the bound of Theorem 1.
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2 “Purely combinatorial” applications

2.1 The sum-product phenomenon

Recall that for a finite subset X of a ring, we denote by X + X and XX, respectively, the
sum-set {x + x′ : x, x′ ∈ X} and the product-set {xx′ : x, x′ ∈ X}. We have the trivial
bounds

|X| ≤ |X +X|, |XX| ≤ |X|
2

2
+O(|X|).

Erdős and Szemerédi initiated the study of the sum-product phenomenon, which is a meta-
statement of the form “no non-trivial set can have both its sum-set and its product-set be
very small”. The outstanding open problem here is the following conjecture of Erdős and
Szemerédi.

Conjecture 2 (Sum-product conjecture). For any finite X ⊆ R, we have

max{|X +X|, |XX|} ≥ |X|2−o(1)

as |X| → ∞.

Note that the o(1) in the exponent is necessary; for instance, if X = [n], then it is easy
to see that |X +X| = 2n− 1 = O(|X|), while Erdős showed that |XX| ≤ |X|2/(log|X|)Ω(1).

In general, Conjecture 2 remains wide open. Major progress was made by Elekes and
later by Solymosi, and the current record, due to Rudnev and Stevens, is that

max{|X +X|, |XX|} ≥ |X|
4
3

+ 2
1167
−o(1).

However, one can obtain much stronger lower bounds in certain special cases. For instance,
Elekes and Ruzsa showed that if X+X is very small (i.e. within a constant factor of its trivial
minimum value 2|X| − 1), then XX is very large, namely at least |X|2−o(1). The following
result, due to Chang, is the “complement” of this Elekes–Ruzsa theorem (and obtains an
even stronger bound): it asserts that if XX is within a constant factor of its trivial lower
bound, then X + X is within an additive O(|X|) of its trivial upper bound. Although the
sum-product conjecture is usually stated for subsets of R, Chang’s theorem actually works
even for subsets of C.

Theorem 3 (Chang). For every c > 0, there exists some C > 0 such that the following
holds. If X ⊆ C is finite and |XX| ≤ c|X|, then

|X +X| ≥ |X|
2

2
− C|X|.

Unlike many of the known results about the sum-product phenomenon, such as the
Elekes–Ruzsa result mentioned above, Chang’s proof does not use any connection to discrete
geometry. Instead, she obtains this theorem as a consequence of Theorem 1.
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Proof of Theorem 3. First, by deleting at most one element of X, we may assume without
loss of generality that X ⊆ C∗, which we will do from now on.

We begin by applying the following result, sometimes called Freiman’s lemma (e.g. in
Lemma 5.3 of Tao and Vu’s Additive Combinatorics). It can be seen as a simple special case
of the more general Freiman–Ruzsa theorem.

Lemma 4 (Freiman). If X ⊆ C∗ satisfies |XX| ≤ c|X|, then there exists a group Γ ⊆ C∗
of rank r ≤ c such that X ⊆ Γ.

We now fix a subgroup Γ ⊆ C∗ of rank r ≤ c with X ⊆ Γ. In order to bound |X+X|, we
will bound the additive energy of X. In fact, for technical reasons, it’ll be easier to bound
the restricted additive energy

E ′(X) = |{(x1, x2, x3, x4) ∈ X4 : x1 + x2 6= 0 and x1 + x2 = x3 + x4}|.

Note that we have the trivial bounds 2|X|2 − 2|X| ≤ E ′(X) ≤ |X|3. The following simple
consequence of Cauchy–Schwarz shows that it suffices to prove that E ′(X) is close to its
trivial lower bound in order to conclude that |X + X| is close to its trivial upper bound of
|X|2/2 +O(|X|).

Lemma 5. For any X ⊆ C, we have |X + X| ≥ (|X|2 − |X|)2/E ′(X). In particular, if
E ′(X) ≤ 2|X|2 + C|X| for some C ≥ 1, then |X +X| ≥ 1

2
|X|2 − C|X|.

Proof. We note that

|X|2 =
∑

z∈X+X

|{(x1, x2) ∈ X2 : x1+x2 = z}| ≤ |X|+
∑

z∈(X+X)\{0}

|{(x1, x2) ∈ X2 : x1+x2 = z}|

since there are at most |X| pairs (x1, x2) ∈ X summing to 0. By Cauchy–Schwarz, we have
that

(|X|2 − |X|)2 ≤

 ∑
z∈(X+X)\{0}

|{(x1, x2) ∈ X2 : x1 + x2 = z}|

2

≤ |X +X|
∑

z∈(X+X)\{0}

|{(x1, x2) ∈ X2 : x1 + x2 = z}|2

= |X +X|
∑

z∈(X+X)\{0}

|{(x1, x2, x3, x4) ∈ X4 : x1 + x2 = z = x3 + x4}|

= |X +X|E ′(X),

which proves the first claim. If we plug in E ′(X) ≤ 2|X|2 + C|X|, then

|X +X| ≥ (|X|2 − |X|)2

E ′(X)
≥ (|X| − 1)2

2
· 1

1 + C/(2|X|)
≥ (|X| − 1)2

2

(
1− C

2|X|

)
=
|X|2

2
− C + 4

4
|X| > |X|

2

2
− C|X|,

using the fact that 1/(1 + y) ≥ 1− y for any y ∈ R, and our assumption that C ≥ 1.
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Thus, to obtain our desired bound, it suffices to prove that E ′(X) ≤ 2|X|2 + O(|X|).
Given an equation x1 +x2 = x3 +x4 with xi ∈ X and x1 +x2 6= 0, we may use our assumption
that 0 /∈ X to rearrange this as

x1

x4

+
x2

x4

− x3

x4

= 1.

If there is a vanishing subsum on the left, then we must have either x1 = x3 (which yields at
most |X|2 solutions), or x2 = x3 (which yields at most another |X|2 solutions), or x1 = −x2

(which can’t happen by our assumption). If there is no vanishing subsum on the left, then
Theorem 1 shows that for any fixed x4 ∈ X, the number of solutions x1, x2, x3 ∈ Γ is at most
A(3, r), so we get at most A(3, r)|X| solutions in total. Since A(3, r) ≤ A(3, c), we may set
C = A(3, c) = 241296+972c, and find that in total,

E ′(X) ≤ 2|X|2 + C|X|,

which yields the desired bound by Lemma 5.

2.2 Unit distances

Erdős’s unit distance problem asks to understand the function u(n), defined as the maximum
number of unit distances among n points in R2. Equivalently, if we identify R2 with C, we
can define this as

u(n) = max
S⊆C,|S|=n

∣∣∣∣{{s1, s2} ∈
(
S

2

)
: |s1 − s2| = 1

}∣∣∣∣ .
Erdős gave a very elegant construction showing that u(n) ≥ n1+c/ log logn for some fixed c > 0.
His construction is to take a

√
n×
√
n grid and then carefully scale it so that there are many

unit distances. The appropriate scaling is given by finding an integer m ∈ [n] that can be
represented as the sum of two squares in many ways, and then dilating the grid by a factor
of 1/

√
m; the precise lower bound on u(n) comes from classical number-theoretic estimates

on the number of ways to represent an integer as the sum of two squares. Erdős conjectured
that this lower bound is close to optimal, namely that u(n) ≤ n1+o(1).

The best known upper bound is u(n) = O(n4/3), originally proven by Spencer, Szemerédi,
and Trotter. At this point, there are at least three rather different proofs of this bound, and
there appears to be a real barrier at the exponent 4/3. It seems that a major obstruction is
that all known techniques work if we replace the Euclidean metric by any strictly convex norm
on R2, and there exist such norms for which Ω(n4/3) unit distances are actually attainable
by a set of size n. It would be a major breakthrough to prove u(n) = o(n4/3).

Because improving the upper bound seems so difficult, some people have focused on
restricted problems. A fairly natural one is to try to restrict the directions of the unit
distances we are interested in. Namely, for a given set of directions D ⊆ {z ∈ C : |z| = 1},
we define the restricted unit distances function by

uD(n) = max
S⊆C,|S|=n

∣∣∣∣{{s1, s2} ∈
(
S

2

)
: s1 − s2 ∈ D

}∣∣∣∣ .
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Here, let’s assume for simplicity that −D = D, so that this is well-defined even when
considering unordered pairs. Note that if we take D to equal the circle {z ∈ C : |z| = 1},
then we simply recover u(n).

Perhaps the most natural special case, first considered by Schwartz, Solymosi, and de
Zeeuw, is when we let D = {e2πiα : α ∈ Q}, i.e. when we only consider unit distances which
form rational angles with the x axis. This choice of D is a subgroup of C∗ of rank 0 (since
every element in it is torsion), which suggests that it may also be fruitful to let D be a
multiplicative subgroup of C of bounded rank. This was done by Schwartz, who proved the
following theorem.

Theorem 6 (Solymosi–Schwartz–de Zeeuw for r = 0, Schwartz for general r). For every
ε > 0, there exist c = c(ε) > 0 and a positive integer n0 = n0(ε) such that the following holds.
For every n > n0 and every subgroup Γ ⊆ C∗ of rank r < c log n, we have uΓ(n) ≤ n1+ε.

In other words, Erdős’s conjecture u(n) ≤ n1+o(1) is true if we restrict ourselves to
configurations where all unit distances come from a multiplicative group whose rank is not
too large. The reason this result is interesting is that in Erdős’s grid-based construction of
a lower bound for u(n), it turns out that all the unit distances lie in a subgroup of rank
O(log n/ log log n). Since it is natural to expect that any extremal construction for u(n)
should be “structured” in some way (e.g. look somewhat like a grid), it seems plausible that
Schwartz’s result might yield the conjectured bound u(n) ≤ n1+o(1).

I won’t go into too many details, but I will sketch a proof of Theorem 6.

Proof sketch of Theorem 6. Let S be an extremal configuration for uΓ(n). We form a graph
G0 whose vertex set is S, and where two vertices are adjacent if their difference is an element
of Γ. Then G0 has n vertices and uΓ(n) edges.

By repeatedly deleting vertices of low degree, we may pass to a subgraph G with m ≥
√
n

vertices and minimum degree Ω(nε). We fix some parameter k depending only on ε, to be
chosen later. We wish to count the number of non-degenerate paths of k edges in G, where
we call a path s0, s1, . . . , sk non-degenerate if

∑
i∈I(si − si−1) 6= 0 for every ∅ 6= I ⊆ [k].

On the one hand, we can build such a path greedily as follows, using the minimum degree
condition. Pick some vertex s0 of G to be the first vertex. Having picked s0, . . . , si, we have
at least deg(si)− i−2i options for si+1, since at most 2i choices of a neighbor of si will cause
the path to become degenerate, and at most i neighbors of si have already been used in the
path. As long as nε > 2k+1, all these numbers are Ω(nε), so in total we have at least Ω(nkε)
non-degenerate paths of length k in G.

So by picking k = 3/ε and by averaging over the endpoints, we can find two vertices
u, v ∈ V (G) which have many (say Ω(n)) non-degenerate paths between them. However, if
we let a = v − u (treating the vertices as complex numbers again), then we see that every
non-degenerate path is a solution to the equation

1

a
x1 + · · ·+ 1

a
xk = 1

with no vanishing subsum on the left, and with x1, . . . , xk ∈ Γ. If Γ has constant rank r,
then Theorem 1 yields a contradiction, since there can be at most A(k, r) = O(1) solutions
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to this equation. Moreover, if one works through the numerical dependencies carefully, it is
not hard to see that we may even take r = Oε(log n) and obtain the same contradiction.

2.3 Linear recurrence relations

A linear recurrence relation of order k is defined by k complex numbers c1, . . . , ck ∈ C and
k initial values R1, . . . , Rk ∈ C, and later values in the sequence are determined inductively
by the rule

Rn = c1Rn−1 + c2Rn−2 + · · ·+ ckRn−k

for every n > k. The most well-known example is the Fibonacci sequence, where we take
R1 = R2 = c1 = c2 = 1. We will always assume that ck 6= 0, for otherwise the recurrence
relation could be taken to have order k − 1.

We may encode the structure of a linear recurrence relation in matrix form, as
Rn+k

Rn+k−1
...

Rn+2

Rn+1

 =


c1 c2 · · · ck−1 ck
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


n

Rk

Rk−1
...
R2

R1

 .

Let T be the matrix above, called the transition matrix. Let its eigenvalues be λ1, . . . , λr,
with λi having multiplicity mi, and

∑
mi = k. Note that all eigenvalues are non-zero since

we assumed ck 6= 0 and thus T is invertible. The recurrence relation is called simple if r = k,
i.e. every eigenvalue has multiplicity 1 and thus λ1, . . . , λk are all distinct, and it is called
non-degenerate if |λi| 6= |λj| for all i 6= j. The importance of the eigenvalues comes from the
fact that if the recurrence is simple, then we may diagonalize T and find that

Rn = a1λ
n
1 + a2λ

n
2 + · · ·+ akλ

n
k (2)

for some constants a1, . . . , ak ∈ C and all n ≥ 1.
It is natural to study the zero set Z(Rn) of the recurrence relation, that is the set of

n such that Rn = 0. A famous theorem of Skolem, Mahler, and Lech states that Z(Rn)
is the union of a finite set and finitely many arithmetic progressions. Moreover, if the
recurrence is non-degenerate, then it is not hard to show that in fact the Z(Rn) is finite;
indeed, if it’s non-degenerate, then some λi has maximum absolute value, and thus |Rn|
is asymptotic to |ai||λi|n as n → ∞, and in particular it cannot be zero infinitely often1.
It was conjectured that in fact, for non-degenerate recurrence relations, |Z(Rn)| should be
bounded by a constant depending only on the order k of the recurrence, and this conjecture
was proved by Schmidt as a consequence of the subspace theorem. Below is an easier special
case, where we restrict to simple recurrences.

1This proof sketch only works if the recurrence is simple, but a similar proof works without that assump-
tion, by using a Jordan decomposition rather than a diagonalization as in equation (2).
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Theorem 7 (Evertse–Schlickewei–Schmidt). Let {Rn} be a simple, non-degenerate recur-

rence relation of order k. Then |Z(Rn)| ≤ Ck, where we may take Ck = 2k
O(1)

Proof sketch. By (2), the set Z(Rn) consists of solutions to the equation

a1λ
n
1 + a2λ

n
2 + · · ·+ akλ

n
k = 0 (3)

for some constants a1, . . . , ak. First, consider those solutions where there is no vanishing sub-
sum on the left-hand side. Letting x1 = (λ1/λk)

n, . . . , xk−1 = (λk−1/λk)
n, these correspond

to solutions to (
−a1

ak

)
x1 + · · ·+

(
−ak−1

ak

)
xk−1 = 1,

where all xi lie in the group Γ generated by λ1, . . . , λk, which has rank at most k. Therefore,
by Theorem 1, there are at most A(k − 1, k) ≤ 2k

O(1)
such solutions. Moreover, by our

non-degeneracy assumption, we can recover n from such a solution (x1, . . . , xk−1).
On the other hand, suppose that (3) has some vanishing subsum on the left, corresponding

to some non-empty subset I ⊆ [k]. Then the subsum corresponding to [k] \ I must also
vanish. Moreover, each of these subsums corresponds to an element of Z(R′n), for some
other recurrence R′n of order strictly less than k. By induction on k, the total number of

times this can happen is at most C|I|Ck−|I| = 2k
O(1)

. Adding up over all 2k choices for I still

yields a bound of 2k
O(1)

on the number of such solutions with vanishing subsums. Combining
this with the bound above, we get the desired result.

3 The subspace theorem and its classical applications

So far, I haven’t said what the subspace theorem actually is, and we’ve only used its (quanti-
tative) consequence Theorem 1. In this section, I want to state the “real” subspace theorem,
and sketch some of its more standard applications, in the fields of Diophantine approxima-
tion, transcendence theory, and counting integer points on varieties.

Here is the original statement of the subspace theorem.

Theorem 8 (Schmidt). Let L1, . . . , Ln be linearly independent linear forms in n variables
with algebraic coefficients. For any ε > 0, the set of x = (x1, . . . , xn) ∈ Zn satisfying the
inequality

|L1(x) · · ·Ln(x)| ≤ 1

(max|xi|)ε
(4)

lies in a union of finitely many proper subspaces of Qn.

Loosely, there can only be finitely many “reasons” (linear relations) for why the polyno-
mial L1(x) · · ·Ln(x) can be “very small” (tending to 0 as a polynomial in the `∞ norm of
x) when we restrict x to the integer lattice Zn.

Note that this is very false if we allow x to be an arbitrary point of Rn. For instance,
if L1(x) = x1, L2(x) = x2, then any point on the curve x1x

2
2 = 1 with x2 ≥ 1 will satisfy

7
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|L1(x)L2(x)| = |1/x2| = (max|xi|)−1, even though this curve is not contained in a linear
subspace. Crucially, however, this curve does not have many integer points on it (as it must
not, by the subspace theorem).

We can easily find n subspaces where the inequality (4) holds. Namely, each linear form
Li vanishes on some codimension-one subspace Vi, so clearly any integer point on any Vi will
yield a solution to (4). One might expect that these are actually the only subspaces where
solutions can come from, but that turns out to be false. One example is given for n = 3 and

L1(x) = x1 +
√

2x2 +
√

3x3 L2(x) = x1 −
√

2x2 +
√

3x3 L3(x) = x1 −
√

2x2 −
√

3x3.

By Dirichlet’s theorem on Diophantine approximation, there eixst infinitely many pairs
(x1, x2) ∈ Z2 such that ∣∣∣∣√2− x1

x2

∣∣∣∣ ≤ |x2|−2,

and for such solutions max{|x1|, |x2|} = Θ(|x2|). Then if we set x3 = 0 and (x1, x2) to be
such a solution, we can compute that

|L1(x)L2(x)L3(x)| = |x1 +
√

2x2||x1 −
√

2x2|2 ≤ |x1 +
√

2x2||x2|−2 = O(max{|x1|, |x2|})−1,

even though L1(x)L2(x)L3(x) 6= 0. In other words, the subspace x3 = 0 yields infinitely
many solutions to (4), even though none of the three linear forms L1, L2, L3 vanish on it. This
example demonstrates that the finite list of subspaces given by the subspace theorem is highly
non-trivial, and contains information about the arithmetic properties of the coefficients of
the linear forms (rather than simply linear-algebraic information about where these forms
vanish).

The original proof of the subspace theorem did not give any effective bound on how
many subspaces one needs. However, several such quantitative results were developed later,
none of which I will state. But roughly speaking, they all obtain a bound on the number of
subspaces in terms of ε and in terms of the “complexity” of the coefficients of L1, . . . , Ln.
These sorts of quantitative estimates are of course needed to deduce other quantitative results
like Theorem 1.

The proof of the subspace theorem is quite difficult, and I will not say anything about it.

3.1 Diophantine approximation and Roth’s theorem

Recall that Dirichlet proved, as a simple application of the pigeonhole principle, that for any
α ∈ R, there exist infinitely many pairs (x, y) ∈ Z2 such that∣∣∣∣α− x

y

∣∣∣∣ ≤ 1

|y|2
.

In other words, any irrational number can be approximated by rationals “quadratically well”.
Roth’s theorem, a seminal result in Diophantine approximation, says that for algebraic

numbers, Dirichlet’s theorem is essentially best possible.
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Theorem 9 (Roth). Let α be a real algebraic number that is not rational. Then for any
ε > 0, there exist finitely many pairs (x, y) ∈ Z2 with∣∣∣∣α− x

y

∣∣∣∣ ≤ 1

|y|2+ε
. (5)

It turns out that Roth’s theorem is an easy corollary of the subspace theorem.

Proof of Theorem 9. Given a solution (x, y) to (5), we multiply both sides by |y|2 to find
that

|y(αy − x)| ≤ 1

|y|ε
. (6)

The linear forms L1(x, y) = y and L2(x, y) = αy − x are linearly independent, and they
both have algebraic coefficients by our assumption that α is algebraic. So we are essentially
in the n = 2 setup of the subspace theorem, except that the right-hand side is |y|−ε as
opposed to max(|x|, |y|)−ε. But this is easily solved since |x/y| ≤ |α|+ |y|−2 ≤ |α|+ 1, which
implies that |x| = Oα(|y|). By absorbing the constant factor into the ε in the exponent, we
find that the subspace theorem implies that the solutions (x, y) to (6) lie in a finite union
of proper subspaces of Q2. Since the zero-dimensional subspace can’t yield any solutions,
all these subspaces must be one-dimensional, i.e. the span of some fixed (x0, y0). But all
integer points (x, y) in such a subspace have x/y = x0/y0, and thus all have the same value
of |α− x/y|, which is strictly positive since α is irrational. Since only finitely many of these
points will have this value less than |y|−2−ε, we deduce that there are only finitely many
solutions to (5).

Since Roth’s theorem is already a difficult and important result, it is perhaps not very
surprising that the subspace theorem is hard to prove. In fact, one can view the subspace
theorem as a higher-dimensional generalization of Roth’s theorem, and Schmidt’s proof of
the subspace theorem is related to and modeled on Roth’s proof of Theorem 9.

3.2 Integer points on varieties and norm form equations

Let F ∈ Q[x, y] be a homogeneous polynomial in two variables. We’re interested in studying
integer solutions to the equation F (x, y) = m for some given m ∈ Q.

If degF = 1, then it’s easy to see that F (x, y) = m has either zero or infinitely many
integer solutions, depending on whether m is divisible by the gcd of the coefficients of F ,
after clearing denominators (this is sometimes called Bézout’s theorem2, and it’s an easy
consequence of the general Euclidean algorithm).

For degF = 2, the situation is somewhat more complicated. It is still true (and a
well-known exercise in elementary algebraic geometry) that F (x, y) = m has either zero
or infinitely many rational solutions; in fact, the same holds for any degree-2 equation.
However, it may have only finitely many integer solutions, such as the equation x2 + y2 = 1.
It may also have infinitely many integer solutions, such as the Pell equation x2 − 2y2 = 1.

2Note that this is unrelated to Bézout’s theorem about the number of intersection points of varieties.
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It turns out that once degF ≥ 3, the situation becomes much simpler. Indeed, Thue
proved that if F ∈ Q[x, y] is an irreducible homogeneous polynomial of degree d ≥ 3, then
the equation F (x, y) = m has only finitely many integer solutions, for any m ∈ Q.

(It’s worth remarking here about Faltings’s famous theorem, proving the well-known
Mordell conjecture. This theorem says that any smooth curve of genus g > 1 defined over
Q has only finitely many rational points. Roughly speaking, a curve of high degree should
have high genus, and vice versa, which suggests that Faltings’s theorem is more general than
Thue’s. However, as far as I can tell, there is probably no formal reduction between them.)

Schmidt originally developed the subspace theorem to prove a generalization of Thue’s
theorem for homogeneous polynomials in more than 2 variables. To motivate this class
of equations, known as norm form equations, let’s return briefly to the setup of Thue’s
theorem. Let’s assume without loss of generality that the coefficient of xd in F (x, y) is 1,
and let f(x) = F (x, 1). By the irreducibility of F , we can see that f has distinct roots in C,
say ρ1, . . . , ρd. But then we may write f(x) = (x− ρ1) · · · (x− ρd), which shows that

F (x, y) =
d∏
i=1

(x− ρiy). (7)

Moreover, if we let K be the splitting field of f over Q, then the numbers ρ1, . . . , ρd are all
Galois conjugates in K. If x, y ∈ Q, then they are fixed by all elements of the Galois group
of K over Q. So in short, we see that (7) is expressing F (x, y) as a product of all Galois
conjugates of x− ρ1y.

Recall that the field norm NK/Q : K → Q is a multiplicative function defined by multi-
plying together all the Galois conjugates of an element of K. From this and the above, we
see that we can equivalently express the polynomial F (x, y) as F (x, y) = NK/Q(x − ρ1y).
Then the Thue equation F (x, y) = m becomes the norm form equation NK/Q(x− ρ1y) = m,
and we are searching for integer solutions x, y.

The natural generalization of this setup, which was considered by Schmidt, is the follow-
ing. Let K/Q be a Galois extension of degree d, and let σ1, . . . , σd be the elements of the
Galois group of K/Q. For some 1 ≤ n ≤ d, fix elements α1, . . . , αn ∈ K which are linearly
independent over Q (note that we need n ≤ d since the dimension of K as a Q-vector space
is d). Then we can define the associated norm form by

F (x1, . . . , xn) = NK/Q(α1x1 + · · ·+ αnxn) =
d∏
i=1

[σi(α1)x1 + · · ·+ σi(αn)xn].

Then F is a homogeneous polynomial of degree d. Moreover, we see that every element of
the Galois group of K/Q permutes the linear factors of F , which shows that the coefficients
of F are in Q. The norm form equation we will be interested in studying is the equation
F (x1, . . . , xn) = m for some fixed m ∈ Q, and we are searching for solutions (x1, . . . , xn) ∈
Zn.

Schmidt proved a necessary and sufficient condition for the equation F (x1, . . . , xn) = m to
have finitely many integer solutions (x1, . . . , xn) ∈ Zn. Roughly speaking, it is “usually” the
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case that there are only finitely many solutions—the only way for infinitely many solutions
to arise is if there is some hidden algebraic structure that yields them. I’ll give a precise
statement of this shortly, but first I want to explain how the subspace theorem can be used
to count solutions to such norm form equations. It will be convenient to have a slightly more
general form of the subspace theorem, which can be proved from Theorem 8 by a simple
induction argument.

Corollary 10 (Subspace theorem for more forms than variables). Let 1 ≤ n ≤ d, and
let L1, . . . , Ld be linear forms in n variables that are in general position (i.e. any n-subset
is linearly independent) with algebraic coefficients. For any ε > 0 and C > 0, the set of
x = (x1, . . . , xn) ∈ Zn satisfying the inequality

|L1(x) · · ·Ld(x)| ≤ C (max|xi|)d−n−ε

lies in a union of finitely many proper subspaces of Qn.

Given this, we can try to prove that NK/Q(α1x1 + · · · + αnxn) = m has finitely many
solutions, as follows. We induct on n, with the n = 1 case being trivial since any degree-d
polynomial in one variable has at most d roots, and thus there are only a finite number of
solutions. For the inductive step, let us write Li(x1, . . . , xn) = σi(αi)xi + · · ·+ σi(αn)xn for
i ∈ [d]. The linear forms L1, . . . , Ld certainly have algebraic coefficients, and let’s assume for
a moment that they’re in general position (which certainly seems plausible, since we picked
α1, . . . , αn to be linearly independent). Moreover, let’s assume for simplicity that n < d.

Now, we claim that the solutions x = (x1, . . . , xn) ∈ Zn to the norm form equation
NK/Q(α1x1 + · · ·+αnxn) = m lie in finitely many proper subspaces of Qn. Indeed, any such
solution is either the zero vector or satisfies

|L1(x) · · ·Ld(x)| = |NK/Q(α1x1 + · · ·+ αnxn)| = |m| ≤ |m|(max|xi|)d−n−
1
2 ,

by our assumption that n < d. Applying Corollary 10 with C = |m| and ε = 1
2
, we find

that the solutions to the norm form equation lie in finitely many subspaces of Qn. If V is
such a subspace, then on V , some linear combination of the xi vanishes. Without loss of
generality, this means that we may write xn = c1x1 + · · ·+ cn−1xn−1 as a linear combination
of x1, . . . , xn−1. So if we define β1 = α1 + c1αn, then we see that on V , we can reduce to the
norm form equation NK/Q(β1x1 + · · · + βn−1xn−1) = m, which has n − 1 variables. By the
inductive assumption, there are finitely many solutions to such an equation (since the βi are
also linearly independent). Since there were only finitely many options for V , this proves
that there are finitely many solutions in total.

We made two assumptions in this proof sketch. The first was that n < d, which turns
out to not really matter and can be eliminated with a bit more work. The second was that
the forms L1, . . . , Ld are in general position. However, this turns out to just be false in full
generality, as must be the case since there do exist norm form equations with infinitely many
solutions. In fact, we already saw such an example, the Pell equation x2 − 2y2 = 1.

What is the general phenomenon here? Recall that every algebraic extension K of Q
has a ring of integers OK , consisting of all elements of K that are the roots of monic
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polynomials with integer coefficients. It is a well-known fact that an element ε ∈ OK is a
unit of the ring OK if and only if NK/Q(ε) = ±1. Moreover, an important result in algebraic
number theory is Dirichlet’s unit theorem, which implies that OK will have infinitely many
units unless K is equal to Q or to an imaginary quadratic field (i.e. equal to Q(

√
d) for

some integer d < 0). Therefore, if OK is a subset of the lattice Λ = {α1x1 + · · · + αnxn :
x1, . . . , xn ∈ Z}, then there will be infinitely many solutions to the norm form equation
NK/Q(α1x1 + · · · + αnxn) = 1. More generally, essentially the same argument shows that if
there is a subfield Q ( L ⊆ K such that L is not imaginary quadratic, and if there exists
some γ ∈ K∗ such that γOL ⊆ Λ, then there will be infinitely many solutions to the norm
form equation NK/Q(α1x1 + · · · + αnxn) = m, where m = NK/Q(γ). Schmidt proved that
this is in fact the only obstruction.

Theorem 11 (Schmidt). Let K/Q be a finite extension of degree d, and let α1, . . . , αn be
linearly independent elements of K. Then the following are equivalent.

1. There do not exist γ ∈ K∗ and a subfield Q ( L ⊆ K which is not imaginary quadratic
such that γOL ⊆ {α1x1 + · · ·+ αnxn : x1, . . . , xn ∈ Z}.

2. For every m ∈ Q, there are only finitely many integer solutions x1, . . . , xn to the norm
form equation NK/Q(α1x1 + · · ·+ αnxn) = m.

3.3 Transcendence theory

One of the earliest results in Diophantine approximation is Liouville’s theorem (a very weak
form of Roth’s theorem), which Liouville developed in order to prove that certain explicit
real numbers are transcendental. Given this, it is not surprising that stronger results in
Diophantine approximation like the subspace theorem can be used to prove that larger
classes of number are transcendental.

Let’s say that an infinite sequence u1, u2, . . . has long repetitions if there exists some
ε > 0 such that the word u1u2 . . . uN has two disjoint equal subwords of length εN , for
infinitely many choices of N . Similarly, for any b ≥ 2, we say that a real number α ∈ (0, 1)
has b-ary long repetitions if its expansion in base b has long repetitions. For instance, if α is
rational, then its b-ary expansion is eventually periodic, and thus has long repetititions.

Theorem 12 (Adamczewski–Bugeaud–Luca). Let b ≥ 2 and α ∈ (0, 1). If α has b-ary long
repetitions, then α is either rational or transcendental.

The proof of Theorem 12 uses a version of the subspace theorem, as I’ll soon sketch.
But for the moment, let’s see some applications. One easy consequence is a new proof that
Liouville numbers are transcendental, as in the following result.

Corollary 13. The number α =
∑

n≥1 2−2n is transcendental.

Proof. The binary representation of α is 0.0101000100000001 . . .. This is never periodic,
so α is irrational. Moreover, the initial segment of length N has two disjoint blocks of 0
of length at least N/8, so α has binary long repetitions. So by Theorem 12, it must be
transcendental.

12
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In fact, using Theorem 12, Adamczewski and Bugeaud proved a major generalization
of this fact, which is that every automatic number is either rational or transcendental. An
automatic number is one whose b-ary representation (for some b) is the output of some finite
automaton, when we give it as input the sequence of binary representations of the natural
numbers. This follows from Theorem 12, since automatic numbers are known to have b-ary
long repetitions, which is hopefully intuitive: a fixed finite automaton can only generate a
sequence of “bounded complexity”, so we would expect to have long repeated blocks if we
run it on the sequence of binary representations of the natural numbers.

Moreover, Theorem 12 can also be used to say interesting things about algebraic numbers.
Recall that a real number α is called b-normal if every pattern appears in its b-ary expansion
with equal asymptotic density, i.e. every word in [b]n appears in the b-ary expansion of α a
b−n fraction of the time, for every n ≥ 1. Moreover, α is called normal if it is b-normal for
every b ≥ 2.

Although it is easy to prove that almost every real number is normal, there are very
few explicit examples of normal numbers. However, it has long been conjectured that every
irrational algebraic number is normal. This conjecture appears totally out of reach at the
moment, but Adamczewski and Bugeaud were able to prove a (very) weak version of it using
Theorem 12. Given α ∈ (0, 1) and integers n and b ≥ 2, we define the complexity function
ρ(α, b, n) as the number of words in [b]n that appear in the b-ary representation of α. So
1 ≤ ρ(α, b, n) ≤ bn. Moreover, having ρ(α, b, n) = bn is a weakened version of normality
(where every word in [b]n appears in the b-ary expansion of α, but we say nothing about its
density).

Theorem 14 (Adamczewski–Bugeaud). Let b ≥ 2 and α ∈ (0, 1). If α is irrational and
algebraic, then

lim
n→∞

ρ(α, b, n)

n
=∞.

Again, the truth is probably that ρ(α, b, n) = bn, so this superlinearity result is not so
shocking, but it is one of the strongest results we can prove in the direction of showing that
irrational algebraic numbers are normal.

Theorem 14 is actually a pretty simple consequence of Theorem 12. Indeed, it’s fairly
easy to show that if ρ(α, b, n) = O(n), then α has b-ary long repetitions: only O(n) patterns
of length n appear in any initial segment, so one can argue that two disjoint ones have to
be equal. But if α has b-ary long repetitions then it must be rational or transcendental by
Theorem 12, and the contrapositive yields Theorem 14.

To prove Theorem 12, we will need a p-adic extension of the subspace theorem, originally
due to Schlickewei (and in fact, most applications of the subspace theorem need this gener-
alization). Recall that for a prime p, the p-adic norm | · |p on Q is defined by |x|p = p−vp(x),
where vp(x) is the largest power of p which divides x (which is taken to be negative if there
are powers of p in the denominator of x). An important (and easy) fact is the product
formula, which says that for any x ∈ Q,

|x|
∏
p

|x|p = 1,
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where the product runs over all primes p. Note that |x|p 6= 1 for only finitely many primes
p, so that this infinite product is really finite and there are no convergence issues.

With these preliminaries, we can state Schlickewei’s p-adic extension of the subspace
theorem. It is usually stated for n linearly independent forms in n variables, but for conve-
nience, we state the following more general result where the number of forms can be larger
than the number of variables, just like Corollary 10.

Theorem 15 (Schlickewei). Let n ≥ 2 and C, ε > 0, and let p1, . . . , ps be distinct primes.
Let L1,∞, . . . , Ld,∞ (with d ≥ n) be linear forms in n variables with algebraic coefficients
that are in general position. Similarly, for each j ∈ [s], let L1,pj , . . . , Ldj ,pj (with dj ≥ n)
be a collection of linear forms in n variables that are in general position and have algebraic
coefficients. Then the set of solutions x = (x1, . . . , xn) ∈ Zn to the inequality

|L1,∞(x) · · ·Ld,∞(x)|
s∏
j=1

|L1,pj(x) · · ·Ldj ,pj(x)|pj ≤ (max|xi|)d−n−ε

lies in a union of finitely many proper subspaces of Qn.

(One subtlety I’ve swept under the rug is the fact that I haven’t defined | · |p for algebraic
numbers, so it’s not clear that quantities like |L1,pj(x)|pj make sense. One way of getting

around this is to insist that the coefficients of each Li,pj lie in Q ∩ Qpj , which is indeed
what will always happen in our applications (in fact, these coefficients will just be rational).
However, it turns out that one can also just pick an extension of the p-adic norm to Q, which
is perhaps conceptually easier to think about.)

Once we have the p-adic subspace theorem, it is not too hard to prove Theorem 12.

Proof of Theorem 12. Let α ∈ (0, 1), and let’s assume that α is algebraic; our goal is to
prove that in this case, it is rational. Since α has b-ary long repetitions, we can pick some
fixed ε > 0 and some N such that the first N b-ary digits of α have disjoint identical blocks
of length εN . This means that the b-ary expansion of α starts 0.ABCB, where A and C
may be empty strings, and the length of B, denoted `(B), is εN .

The goal is now to pick a rational number that approximates α very well, and to derive
a contradiction if they are actually distinct. Namely, we take ξ to be the number with b-
ary expansion 0.ABCBCBCBC . . ., and note that ξ is rational since it has an eventually
periodic b-ary expansion. Let r = `(A) and s = `(BC). Then brξ = A.BCBC . . . and brbsξ =
ABC.BCBC . . ., which shows that br(bs − 1)ξ = ABC.0− A.0 is an integer. Therefore, we
may write

ξ =
M

br(bs − 1)
=

M

br+s − br

for some M ∈ Z. Moreover, since ξ agrees with α on the first `(ABCB) = r + s + `(B) =
r + s+ εN b-ary digits, we have that

|α− ξ| ≤ b−r−s−εN .
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Combining the last two equations, we find that

|br+sα− brα +M | = (br+s − br)|α− ξ| ≤ br+s|α− ξ| ≤ b−εN .

Let p1, . . . , ps be the set of primes dividing b, and let Li,pj(x1, x2, x3) = xi for every i ∈ [3]
and j ∈ [s]. Additionally, let

L1,∞(x1, x2, x3) = x1, L2,∞(x1, x2, x3) = x2, L3,∞(x1, x2, x3) = αx1 − αx2 − x3.

Since α is algebraic and since each triple of linear forms is linearly independent, we are in a
position to apply Theorem 15.

Now, let x = (br+s, br,M), and note that |M | ≤ br+s since ξ ∈ (0, 1). Therefore, we have
that max|xi| = br+s ≤ bN . Additionally, by our choices of linear forms, we have that

|L1,∞(x)L2,∞(x)L3,∞(x)|
s∏
j=1

|L1,pj(x)L2,pj(x)L3,pj(x)|pj =

=

(
|br|

s∏
j=1

|br|pj

)(
|br+s|

s∏
j=1

|br+s|pj

)
|αbr+s − αbs −M |

(
s∏
j=1

|M |pj

)

Note that the first two factors equal 1 by the product formula and the choice of p1, . . . , ps
as the set of primes dividing b. Moreover, since M ∈ Z, we have that |M |pj ≤ 1 for every
pj. So we find that

|L1,∞(x)L2,∞(x)L3,∞(x)|
s∏
j=1

|L1,pj(x)L2,pj(x)L3,pj(x)|pj ≤ |αbr+s − αbs −M |

≤ b−εN

≤ (max|xi|)−ε (8)

by our computations above.
Note that this argument worked for any N such that the initial segment of length

N of the b-ary expansion of α has long repeated blocks. By assumption, there are in-
finitely many such N . Therefore, we may construct an infinite sequence of vectors x(N) =
(br(N)+s(N), br(N),M(N)), with r, s,M defined as above. Infinitely many of these vectors will
actually be distinct, since s(N) ≥ εN tends to infinity with N , and thus we’ll see infinitely
many distinct first coordinates of x(N). For all of them, (8) will hold with the same value of ε
(since it’s the value given by the long repetititions assumption). Therefore, by Theorem 15,
this set of x(N) must lie in a finite union of proper subspaces of Q3, and in particular some
infinite subsequence must lie in a single proper subspace. So that means that there exist
rational numbers β, γ, δ, not all equal to 0, such that for infinitely many N ,

βbr(N) + γbr(N)+s(N) + δM(N) = 0

15



Yuval Wigderson Applications of the subspace theorem July 1 and 8, 2021

If δ = 0, then we could factor out br(N) from this equation and obtain a contradiction since
s(N)→∞ and b ≥ 2. If we divide by br(N)(bs(N) − 1), then we find that

β
1

bs(N) − 1
+ γ

bs(N)

bs(N) − 1
+ δξ(N) = 0

If we let N → ∞ (and thus s(N) → ∞), then the first term vanishes and the second term
tends to γ, while ξ(N) → α by our definition of ξ as a good approximation of α. So in the
limit, we find that γ + δα = 0, which means that α = −γ/δ ∈ Q, as desired.

3.4 Back to the beginning

In all our earlier applications, we didn’t use the subspace theorem, but rather its consequence
Theorem 1. In this section, I want to sketch how the subspace theorem (or rather, its p-adic
version, Theorem 15) can be used to prove such a result. Recall that we fix a1, . . . , an ∈ C
and group Γ ⊂ C∗ of rank r, and are trying to count solutions to

a1x1 + · · ·+ anxn = 1 (9)

with x1, . . . , xn ∈ Γ and no subsum on the left-hand side vanishing.
For simplicity, let’s assume that a1, . . . , an are algebraic and our group Γ is actually

a subgroup of Q∗, meaning that searching for solutions xi ∈ Γ is the same as searching
for solutions xi ∈ Q whose numerators and denominators are only divisible by a fixed set
p1, . . . , pr of primes, where r is the rank of Γ. (This is not a huge simplifying assumption:
one can reduce from the case the general case to the case of Γ ⊂ Q∗ and algebraic coefficients
using a straightforward argument from algebraic geometry. It then suffices to work in a fixed
number field containing Γ and a1, . . . , an, and it turns out that the entire machinery of the
subspace theorem works over number fields as well as over Q.)

We apply Theorem 15 with d = n+ 1 and the linear forms

L1,∞(x) = L1,pj(x) = x1, L2,∞(x) = L2,pj(x) = x2, . . . Ln,∞(x) = Ln,pj(x) = xn

and
Ln+1,∞(x) = Ln+1,pj(x) = a1x1 + · · ·+ anxn,

and these forms are in general position because we may assume without loss of generality
that all ai are non-zero. Moreover, by the product formula, we see that any solution x =
(x1, . . . , xn) ∈ Γn to (9) satisfies

|L1,∞(x) · · ·Ln+1,∞(x)|
s∏
j=1

|L1,pj(x) · · ·Ln+1,pj(x)|pj = 1.

We can’t quite apply Theorem 15 yet, because the vector x does not lie in Zn. However, if
we let D be the least common denominator of x1, . . . , xn and observe that D is an integer
divisible only by p1, . . . , ps, we see that we can set y = Dx ∈ Zn and have that

|L1,∞(y) · · ·Ln+1,∞(y)|
s∏
j=1

|L1,pj(y) · · ·Ln+1,pj(y)|pj = 1 ≤ (max|yi|)
1
2 = (max|yi|)d−n−

1
2 .
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So by Theorem 15, all such solutions y lie in a finite union of proper subspaces of Qn,
and therefore the same is true of solutions x to (9). On any such subspace, we have a
linear relation among x1, . . . , xn, which means that we can replace one of them by a linear
combination of the others and obtain (upon some rearrangement) another equation of the
form (9), except this time with n − 1 variables. Moreover, one can check that vanishing
subsums in the original equation correspond to vanishing subsums in the new equation, which
means that by induction, there are only finitely many non-degenerate solutions coming from
any such subspace. Since there are only finitely many such subspaces, we deduce the desired
result.

4 Magic

In this section, I just want to remark on a few other applications of the subspace theorem
that I find totally amazing. I won’t really get into any of the proofs, because it’s somewhat
far afield from the main topic of the talk.

4.1 Sub-exponential GCDs

It is an easy fact that if b is a power of a, then an− 1 divides bn− 1 for every n ≥ 1. Indeed,
if b = ak, then bn− 1 = ank−1 = (an− 1)(an(k−1) + an(k−2) + · · ·+ an + 1). Moreover, it turns
out3 that this is an if and only if condition: if an − 1 divides bn − 1 for all n ≥ 1, then b is a
power of a.

Similarly, if a and b are both powers of some c, then gcd(an− 1, bn− 1) ≥ cn− 1, for the
same reason. However, it is reasonable to expect that apart from this “obvious” obstruction,
we should have that gcd(an − 1, bn − 1) is fairly small as n → ∞; indeed, the set of primes
dividing an − 1 and bn − 1 should have “little to do with one another”, and thus the gcd
should be small.

This vague intuition is correct, as shown by the following remarkable theorem of Bugeaud,
Corvaja, and Zannier, whose proof uses the subspace theorem.

Theorem 16 (Bugeaud–Corvaja–Zannier). Suppose that a and b are positive integers that
are not both powers of some fixed c. Then gcd(an − 1, bn − 1) = 2o(n). In other words, for
every ε > 0, there exists some n0 = n0(ε) ∈ N such that gcd(an − 1, bn − 1) ≤ 2εn for all
n ≥ n0.

Their proof is ineffective, meaning that they get no control on how fast the o(n) term
tends to 0 (or equivalently, on how large n0(ε) is). I believe that one should be able to make
their theorem effective by using a quantitative version of the subspace theorem, but it is
possible that there are some subtleties that I’m missing.

How good is this barely sub-exponential upper bound? Well, we always have that gcd(a−
1, b − 1) divides gcd(an − 1, bn − 1). Ailon and Rudnick conjectured that this bound is

3Bugeaud, Corvaja, and Zannier say that this “is a known amusing elementary problem”, but I actually
have no idea how to prove it.

17



Yuval Wigderson Applications of the subspace theorem July 1 and 8, 2021

tight infinitely often, i.e. that there exist infinitely many n such that gcd(an − 1, bn − 1) =
gcd(a− 1, b− 1). However, one can also show that gcd(an− 1, bn− 1) is quite large for some
n. Namely, there exist infinitely many n such that

gcd(an − 1, bn − 1) = 22Ω(log n/ log log n)

.

Since 2logn/ log logn is just barely sub-polynomial, this lower bound is barely sub-exponential,
which shows that Theorem 16 is in some sense fairly close to best possible. To see how to
get such a lower bound, a fairly simple argument in analytic number theory shows that we
can pick infinitely many integers n such that n is divisible by p−1 for at least 2Ω(logn/ log logn)

choices of a prime p. By Fermat’s little theorem, for any such p, we have that an − 1 and
bn − 1 are both divisible by p. Therefore gcd(an − 1, bn − 1) is at least the product over all

such p, which is at least 22Ω(log n/ log log n)
since each such p is at least 2.

I won’t say much about the proof of Theorem 16, except that it’s somewhat similar to the
proof of Theorem 12 which I presented above. Let dn be the denominator of (bn−1)/(an−1),
and assume for contradiction that dn ≤ a(1−ε)n for infinitely many n (which is equivalent to
gcd(an − 1, bn − 1) ≥ aεn). For j ≥ 1, let

zj(n) =
bjn − 1

an − 1
,

and note that the denominator of zj(n) is also dn since bjn− 1 is divisible by bn− 1. We use
the geometric series to approximate

1

an − 1
=
∞∑
i=1

1

ain
≈

M∑
i=1

1

ain

for some large cutoff M . By multiplying both sides by bjn− 1 and rearranging, we find that

zj(n) ≈
M∑
i=1

(
bj

ai

)n
−

M∑
i=1

1

ain
=⇒

∣∣∣∣∣zj(n)−
M∑
i=1

(
bj

ai

)n
+

M∑
i=1

1

ain

∣∣∣∣∣ ≈ 0

This says that a linear form in the variables zj(n), (bj/a1)n, . . . , (bj/aM)n, 1/an, . . . , 1/aMn is
small, and this holds for every fixed j. By applying this for many j at once, we get many
linear forms whose evaluation is small. Additionally, we define linear forms for every prime
dividing ab, with the ith linear form just equalling the ith variable. Then all of these linear
forms are p-adically bounded by dn, since the only denominators that can appear in our
variables are the denominators dn in zj(n). Working all of this out carefully, one can check
that we are in a position to apply Theorem 15, and to conclude that all the vectors we
produce from this operation (when we run over all n for which gcd(an − 1, bn − 1) is large)
lie in a finite union of proper subspaces. Again by passing to a subsequence which all lies in
a single subspace, we can then derive a contradiction to our assumption that a and b were
not both powers of a fixed c.
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4.2 Nearby irreducible polynomials

A consequence of Hilbert’s irreducibility theorem, first observed by van der Waerden, is that
if P is a polynomial whose coefficients are randomly chosen integers in [−N,N ], then P will
be irreducible over Q with high probability as N → ∞. In other words, almost all integer
polynomials are irreducible.

It is natural to wonder if there is a “local” version of this fact, i.e. if every integer
polynomial is “close” to an irreducible one. One version of this question was posed by Turán,
who asked whether there exists a constant C such that for every polynomial P ∈ Z[x], there
exists some irreducible Q ∈ Z[x] such that degQ ≤ degP and such that the sum of the
absolute differences of the coefficients of P and Q is at most C. In other words, Turán asked
if we can perturb the coefficients of P by at most C in order to make it irreducible, while
also ensuring that we don’t raise the degree. If we drop the degree condition, then Schinzel
proved that we may take C = 3: for every P ∈ Z[x], one of the polynomials xm + xn +P (x)
and xm + xn + P (x) + 1 is irreducible for infinitely many choices of m and n. However, the
full version of Turán’s problem is still open.

In a different direction, Szegedy asked whether we can find a nearby irreducible poly-
nomial by changing only the constant coefficient of P . Namely, he asked whether for every
d ≥ 1, there exists some Cd > 0 such that for every P ∈ Z[x] of degree d, one of the shifts
P (x) − Cd, Px − Cd + 1, . . . , P (x) + Cd − 1, P (x) + Cd is irreducible. While this question
remains open, Győry was able to prove it for monic polynomials. In fact, he proved the
following stronger result.

Theorem 17 (Győry). For all integers a, d ≥ 0, there exists a constant Ca,d such that the
following holds. If P ∈ Z[x] has leading coefficient a and degree d, then there is some integer
b ∈ [−Ca,d, Ca,d] such that P (x) + b is irreducible.

The result about monic polynomials follows from setting a = 1 for all d, while Szegedy’s
conjecture is that one may remove the dependence on a entirely. I won’t say much about the
proof of Győry’s result; at a high level, he uses the theory of resultants to understand the
set of b for which P (x)+ b is reducible, and then uses a consequence of the subspace theorem
to conclude that the relevant resultant equations have a bounded number of solutions. This
implies that if Ca,d is sufficiently large, some b ∈ [−Ca,d, Ca,d] cannot be a solution, and hence
P (x) + b must be irreducible.
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