
Mathcamp 2022 Szemerédi’s {theorem, regularity lemma} Homework #1

1. Are arbitrarily long arithmetic progressions the same as infinite arithmetic progressions?

(a) Construct a subset S ⊆ N with arbitrarily long arithmetic progressions, but no
infinite arithmetic progressions.

(b) For some r ≥ 2, construct an r-coloring of N with no infinite monochromatic arith-
metic progressions.

2. In class, I motivated the Erdős–Turán conjecture (and thus Szemerédi’s theorem) from
van der Waerden’s theorem, plus the intuition that the “largest” set should be the one
with the k-AP. In this problem, you’ll see that this intuition is not always right. Along
the way, you’ll see another cool connection between graph theory and number theory.

(a) For every integer r ≥ 1, prove the following. If N ≥ 3r! and we color the edges of
the complete graph KN with r colors, then there is a monochromatic triangle.
Hint: Induction on r.

(b) Using part (a), prove the following. If N ≥ 3r! and we color [N ] with r colors, then
there is a monochromatic solution to x+ y = z (i.e. there exist three numbers, not
necessarily distinct, such that x+ y = z and x, y, z receive the same color).

(c) For every r ≥ 2 and every N , construct an r-coloring of [N ] so that the r−1 largest
color classes have no solution to x+ y = z. In other words, in the result from part
(b), it is possible that the monochromatic solution is in the smallest color.

? (d) Can you improve the bound in part (a) from 3r! to some smaller quantity?

? (e) Using the result in part (b), prove that the modular form of Fermat’s last theorem
is false. Namely, prove that if k ≥ 2 is fixed and p is a sufficiently large prime, then
there do exist non-zero a, b, c ∈ Z/pZ with

ak + bk ≡ ck (mod p).

? 3. We stated two equivalent forms of Roth’s theorem. One says that if T ⊆ N has positive
density, then T contains a three-term arithmetic progression (henceforth, 3-AP). The
other says that if ε > 0 is fixed and N0 is large enough, then any S ⊆ [N ] with N ≥ N0

and |S| ≥ εN contains a three-term arithmetic progression.

(a) Prove that these two statements are equivalent.

(b) State two such versions of Szemerédi’s theorem, and prove that they are equivalent.

? (c) State two such versions of van der Waerden’s theorem, and prove that they are
equivalent.

4. The following result is called the diamond-free lemma. For every ε > 0 there exists some
n0 ∈ N such that the following holds for every n ≥ n0 and every n-vertex graph G. If
every edge of G lies in exactly one triangle, then G has at most ε

(
n
2

)
edges.

? means that this problem is harder than the others. Also, stars are additive: two extra stars in a part of
a starred multi-part problem correspond to three normal stars.

means that this problem is not directly related to the content of the class, and is for general breadth
and edification.
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(a) Prove the diamond-free lemma, using the triangle removal lemma.

(b) Prove Roth’s theorem using the diamond-free lemma. In other words, we don’t need
the full force of the triangle removal lemma to prove Roth’s theorem.

Tomorrow, you’ll see several other equivalent formulations of the diamond-free lemma.

5. In this problem you will find a construction of a large 3-AP-free subset of [N ], originally
due to Behrend. I sketched this construction in my colloquium in Week 1.

(a) Let m, d be positive integers to be chosen later, and let Γdm := {0, . . . ,m−1}d be the
m×m× · · · ×m grid in Rd. Say that a subset X ⊆ Γdm is 3-AP-free if there do not
exist x, y, z ∈ X with x + z = 2y. Consider the map ϕ : Γdm → {0, . . . , (2m)d − 1}
given by

ϕ((x1, . . . , xd)) =
d∑
i=1

xi(2m)i−1.

In other words, ϕ converts a vector to an integer by treating the vector as a base-
(2m) representation of an integer.

Prove that if X ⊆ Γdm is 3-AP-free, then so is ϕ(X) ⊆ {0, . . . , (2m)d − 1}.
(b) Prove that there is a (d− 1)-dimensional sphere S ⊆ Rd centered at the origin with

|S ∩ Γdm| ≥
md

dm2
.

Hint: Pigeonhole principle.

(c) Let X = S ∩ Γdm. Prove that X is 3-AP-free, and conclude that so is 1 + ϕ(X) ⊆
[(2m)d].

? (d) Let N = (2m)d. Pick m and d to make |ϕ(X)| as large as you can.
Hint: You should be able to get |ϕ(X)| ≥ N/2C

√
logN for some constant C > 0.

? 6. In this problem you will construct a “bad graph” for the triangle removal lemma, namely
you will show that δ cannot be taken too large as a function of ε in the triangle removal
lemma.

(a) In class, we proved Roth’s theorem from the triangle removal lemma. Using the
same construction, as well as the previous problem, show that for every N , there is
an N -vertex graph G0 with at least N2/2C

√
logN triangles, and at least N2/2C

√
logN

edges must be deleted to make G0 triangle-free, where C > 0 is an absolute constant.

(b) Given a graph G and an integer s, let G[s] denote the s-blowup of G, which obtained
from G by replacing every vertex by an independent set of size s, and replacing
each edge of G by a copy of Ks,s. Prove that if G has t triangles, then G[s] has ts3

triangles.

? (c) Prove that if at least m edges must be removed to make G triangle-free, then at
least ms2 edges must be removed to make G[s] triangle-free.

? (d) Using the previous three parts, show that the following holds for every ε > 0
and every sufficiently large N . There exists an N -vertex G with at most δ

(
N
3

)
triangles, but at least ε

(
N
2

)
edges must be removed to make G triangle-free, where

δ ≤ εC log(1/ε).
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1. Let ε > 0 and 0 < α ≤ 1
2
. Suppose that a pair of vertex sets (A,B) is ε-regular, and let

X ⊆ A, Y ⊆ B satisfy |X| ≥ α|A|, |Y | ≥ α|B|. Prove that (X, Y ) is (ε/α)-regular.

Why is the assumption α ≤ 1
2

necessary?

2. On yesterday’s homework, you proved the diamond-free lemma: For every ε > 0 there
exists some n0 ∈ N such that the following holds for every n ≥ n0 and every n-vertex
graph G. If every edge of G lies in exactly one triangle, then G has at most ε

(
n
2

)
edges.

? (a) Prove that the diamond-free lemma is equivalent to the following statement, called
the induced matching theorem.

For every ε > 0 there exists some n0 ∈ N such that the following holds for every
n ≥ n0 and every n-vertex graph G. If the edges of G can be decomposed into n
induced matchings, then G has at most ε

(
n
2

)
edges.

(A matching is a collection of edges which have no vertices in common. It is induced
if there are no other edges of G going between its vertices.)

(b) Prove that the diamond-free lemma is equivalent to the following statement, called
the (6,3) theorem. This was the original problem Ruzsa and Szemerédi set out to
solve when they formulated the triangle removal lemma. Recall that a 3-uniform
hypergraph consists of a set of vertices, and some triples of vertices called hyperedges.

For every ε > 0 there exists some n0 ∈ N such that the following holds for every
n ≥ n0 and every n-vertex 3-uniform hypergraph G. If that every 6-tuple of vertices
of G contains at most 2 edges, then G has at most εn2 edges.

? (c) Prove the (7,4) conjecture: If every 7-tuple of vertices of G contains at most 3 edges,
then G has at most εn2 edges.

In fact, the (k + 3, k) conjecture is open for all k ≥ 4: If every (k + 3)-tuple of
vertices of G contains fewer than k edges, then G has at most εn2 edges.

3. Let S ⊆ [N ]2. A corner in S is three points of the form (x, y), (x + d, y), (x, y + d) for
some d 6= 0.

? (a) Prove the following result, called the corners theorem.

For every ε > 0 there exists some N0 ∈ N such that for every N ≥ N0 and every
S ⊆ [N ]2 with |S| ≥ εN2 contains a corner.

(b) Deduce Roth’s theorem from the corners theorem.

4. A pair (A,B) of vertex sets is called ε-homogeneous if for all A′ ⊆ A,B′ ⊆ B, we have
that

|e(A′, B′)− d(A,B)|A′||B′|| < ε|A||B|.

Prove that if (A,B) is ε-regular, then it is ε-homogeneous. Conversely, prove that if
(A,B) is ε3-homogeneous, then it is ε-regular.

? means that this problem is harder than the others. Also, stars are additive: two extra stars in a part of
a starred multi-part problem correspond to three normal stars.

means that this problem is not directly related to the content of the class, and is for general breadth
and edification.

? means that this is an open problem.
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? 5. This problem is stolen verbatim from my Extremal graph theory class; you should prob-
ably skip it if you weren’t in that class.

? (a) Consider the following two 3-partite 3-graphs:

K
(3)
1,1,2 = T =

Prove that ex(n,K
(3)
1,1,2) = Θ(n2) and ex(n, T ) = Θ(n2).

(b) Prove that ex(n, {K(3)
1,1,2, T}) = o(n2). This shows that the compactness conjecture

fails for hypergraphs.
Hint: Use the (6,3) theorem from Problem 2(b).

? 6. In this problem you will construct an ε-regular pair in a graph without using randomness
at all. This problem requires some knowledge of how quadratic residues work mod p.

(a) Fix an odd prime p. Prove that for any T ⊆ Z/pZ, we have that

∑
z∈Z/pZ

∣∣∣∣∣∑
t∈T

e2πitz/p

∣∣∣∣∣
2

= p|T |.

(b) Let χ : Z/pZ→ {−1, 0, 1} be the quadratic character mod p, namely the function

χ(x) =


1 if x is a quadratic residue mod p,

−1 if x is a quadratic non-residue mod p,

0 if x = 0.

Prove the Gauss sum formula,∣∣∣∣∣∣
∑

z∈Z/pZ

χ(z)e2πiz/p

∣∣∣∣∣∣ =
√
p.

? (c) Prove that for all X, Y ⊆ Z/pZ, we have that∣∣∣∣∣∑
x∈X

∑
y∈Y

χ(x− y)

∣∣∣∣∣ ≤√p|X||Y |.

Hint: Use parts (a) and (b), as well as Cauchy–Schwarz.

(d) Define the following graph, called the (bipartite) Paley graph. Its vertex set is AtB,
where A = B = Z/pZ. For vertices a ∈ A, b ∈ B, we join them by an edge if and
only if b− a is a quadratic residue mod p.

Fix some ε > 0. Prove that if p is sufficiently large with respect to ε, then the pair
(A,B) is ε-regular.
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1. Read and understand the statements of the general counting lemma and removal lemma
from Section 4 of today’s notes.

(a) Prove the K4 counting lemma.

Hint: The hereditary property of regularity, from problem 1 in yesterday’s home-
work, may be useful.

? (b) Prove that general counting lemma, or convince yourself that the same idea will
work in general.

(c) Prove the general removal lemma.

2. Prove that for every 0 < ε1 < ε2, there exists some δ > 0 so that the following holds.
Suppose (A,B) is ε1-regular, and suppose we “perturb” the graph by adding or subtract-
ing at most δ|A| vertices from A, adding or subtracting at most δ|B| vertices from B,
and adding or subtracting at most δ|A||B| edges, then the resulting pair is ε2-regular.

3. In the statement of Szemerédi’s regularity lemma (and thus in the definition of an ε-
regular partition), we had to allow a small fraction of the pairs of parts to be not ε-regular.
For many years after Szemerédi proved the regularity lemma, people were unsure if such
a condition was necessary, or if we could ensure that all pairs of parts are ε-regular. It
turns out this condition is necessary.

(a) The half graph with parameter k, denoted Hk, is the bipartite graphs with parts
A = {a1, . . . , ak} and B = {b1, . . . , bk}, where ai is adjacent to bj if and only if i < j.

Suppose that m | k, and we partition the vertices of Hk into A1 t · · · t Am t B1 t
· · · tBm, where

A1 = {a1, . . . , ak/m}, A2 = {ak/m+1, . . . , a2k/m}, . . . , Am = {a(m−1)k/m+1, . . . , ak}

and similarly for B1, . . . , Bm. This is a partition of V (Hk) into 2m equally-sized
parts; prove that at least m of the (2m)2 pairs of parts are not ε-regular, assuming
k is sufficiently large with respect to ε.

? (b) Prove that for every fixed ε > 0 and every fixed m ∈ N, if k is large enough, then
for every partition V (Hk) = V1 t · · · t Vm,∑

(i,j)∈[m]2

(Vi,Vj) not ε-regular

|Vi||Vj| ≥ ck,

where c > 0 is an absolute constant. In other words, it is impossible to get rid of
the assumption that some pairs of parts are irregular.

? 4. In this problem, you’ll prove the Erdős–Stone theorem, which was the main result in my
Extremal graph theory class (but this problem will be interesting whether or not you
were in that class).

(a) Turán’s theorem implies the following. If ε > 0 and r ∈ N are fixed and n is
sufficiently large, then any n-vertex graph G with

e(G) ≥
(

1− 1

r − 1
+ ε

)(
n

2

)
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edges has a copy of Kr.

If you haven’t seen Turán’s theorem before, prove this! Or accept that it is true.

(b) Let Kr[s] denote the s-blowup of Kr, also known as the complete r-partite graph
with parts of size s. Prove that if ε > 0 and r, s ∈ N are fixed, n is large enough,
and G is an n-vertex graph with

e(G) ≥
(

1− 1

r − 1
+ ε

)(
n

2

)
,

then G contains a copy of Kr[s].

Hint: Apply the regularity lemma, delete edges as in the proof of the removal
lemma, apply Turán’s theorem, then apply the Kr[s] counting lemma.

5. Let G be an n-vertex graph, and let Γ be an m-vertex graph. For ε > 0, an ε-approximate
homomorphism G → Γ is a function ϕ : V (G) → V (Γ) that sends all but at most ε

(
n
2

)
edges of G to edges of Γ. More formally, it has the property that

|{(u, v) ∈ E(G) : (ϕ(u), ϕ(v)) /∈ E(Γ)}| ≤ ε

(
n

2

)
.

(a) Prove the strong triangle removal lemma: For every ε > 0, there exists some δ > 0
and some m ∈ N so that the following holds for all n ∈ N. If G is an n-vertex graph
with at most δ

(
n
3

)
triangles, then there exists a triangle-free graph Γ on m vertices

such that G has an ε-approximate homomorphism to Γ.

(b) Conclude from part (a) the triangle-free lemma: For every ε > 0, there exists some
m ∈ N so that the following holds for all n ∈ N. If G is an n-vertex triangle-free
graph, then there exists some triangle-free graph Γ on m vertices such that G has
an ε-approximate homomorphism to Γ.

?? (c) Fix m ∈ N and α, ε ∈ (0, 1). Prove that for sufficiently large n, there exists some
n-vertex G with α

(
n
2

)
edges so that G has no ε-approximate homomorphism to any

m-vertex graph Γ.

[In general, ε-approximate homomorphisms are pretty rare, so the triangle-free
lemma is pretty amazing: the class of triangle-free graphs is rich in ε-approximate
homomorphisms.]

? 6. In this problem, you’ll count how many triangle-free graphs there are. Recall Mantel’s
theorem, which says that every n-vertex triangle-free graph has at most n2/4 edges.

(a) Fix ε > 0. Prove that if n is sufficiently large, then there are at least 2( 1
4
−ε)n2

labeled
n-vertex triangle-free graphs.

?? (b) Prove a matching upper bound: if n is sufficiently large, then there are at most

2( 1
4
+ε)n2

labeled n-vertex triangle-free graphs.


