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1 Arithmetic Progressions

Our story begins with the following very famous result in Ramsey Theory:

Theorem 1.1 (van der Waerden 1927). For any r, k ∈ N, and any coloring of N with r
colors (namely, for any function f : N → {1, . . . , r}), there is a monochromatic k-term
arithmetic progression, namely a sequence a, a+ d, a+ 2d, . . . , a+ (k − 1)d such that

f(a) = f(a+ d) = · · · = f(a+ (k − 1)d).

We won’t prove this theorem, but the basic idea is that you apply a very clever induction
argument on both r and k. A few decades after van der Waerden, Hales and Jewett real-
ized you could “abstract away” the inductive argument, and prove an abstract statement
now called the Hales–Jewett theorem, which implies van der Waerden’s theorem as an easy
consequence.

This theorem guarantees that whenever we partition N into subsets S1, . . . , Sr (these are
just Si = f−1(i)), then for any k, some Si will contain a k-term arithmetic progression. A
natural question to ask is: which one? Additionally, a natural guess is that the “biggest” one
will be the one that contains a k-term arithmetic progression. To formalize this, we make
the following definition.

Definition 1.2. Given a set S ⊆ N, its density is defined as

d(S) = lim
N→∞

|S ∩ [N ]|
N

,

where [N ] = {1, 2, . . . , N}, assuming that this limit exists.

Example 1.3. The set of even numbers has density 1/2, as does the set of odd numbers.
The set of squares has density 0, since if S is the set of squares, then

|S ∩ [N ]| ≈
√
N,

so

d(S) ≈ lim
N→∞

√
N

N
= lim

N→∞

1√
N

= 0.

Similarly, the set P of primes also has density 0; this is because the Prime number theorem
says that

|P ∩ [N ]| ≈ N

logN
,

and thus

d(P) ≈ lim
N→∞

N/ logN

N
= lim

N→∞

1

logN
= 0.

Finally, N itself has density 1.
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Lemma 1.4. If S, T ⊆ N are disjoint sets, then

d(S ∪ T ) = d(S) + d(T ).

Proof.

d(S ∪ T ) = lim
N→∞

|(S ∪ T ) ∩ [N ]|
N

= lim
N→∞

|S ∩ [N ]|+ |T ∩ [N ]|
N

= d(S) + d(T ).

One consequence of this lemma is that when we color N with r colors, then one of the
color classes Si must have strictly positive density. So one way of phrasing our “biggest”
conjecture above is the following:

Conjecture 1.5 (Erdős–Turán 1936). If S ⊆ N has positive density, then it contains a
k-term arithmetic progression for any k ∈ N.

The first progress towards this theorem was made almost 20 years later:

Theorem 1.6 (Roth 1953). If S ⊆ N has positive density, then it contains a 3-term arith-
metic progression.

Finally, the full Erdős–Turán Conjecture was resolved by Szemerédi:

Theorem 1.7 (Szemerédi 1969 (k = 4), Szemerédi 1975 (all k)). If S ⊆ N has positive
density, then it contains a k-term arithmetic progression for any k ∈ N.

A key component of Szemerédi’s proof is now called Szemerédi’s regularity lemma, which
is actually a statement about graphs. In addition to being an extremely deep and important
statement in and of itself, it also demonstrates a remarkable and surprising connection be-
tween number theory and graph theory. We won’t state or prove the regularity lemma yet,
but will begin with one of its most important consequences.

Before that, it is worthwhile to mention two more major ideas related to Szemerédi’s
theorem. The first is the following result, which is considered one of the most important
advances in number theory of recent years:

Theorem 1.8 (Green–Tao, 2004). For every k, there is a k-term arithmetic progression in
the primes, namely some a, d ∈ N such that a, a+ d, a+ 2d, . . . , a+ (k − 1)d are all prime.

This was a real breakthrough, and took many years and several hundred pages to prove.
Note that this is not at all implied from Szemerédi’s Theorem, since the primes have density
0, as discussed above. However, many of the ideas that go into the proof of the Green–Tao
theorem are closely related to ideas we will discuss in this class; I hope to return to the
Green–Tao theorem by the end of the class.

Moreover, both Szemerédi’s Theorem and the Green–Tao Theorem are implied by the
following conjecture, which is perhaps the biggest open problem in this entire field.
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Conjecture 1.9 (Erdős). If S = {s1, s2, . . .} ⊆ N, and

∞∑
i=1

1

si
=∞

then for every k, S contains a k-term arithmetic progression.

This implies the Green–Tao Theorem because Euler proved that the sum of the reciprocals
of the primes diverges. Additionally, it implies Szemerédi’s Theorem: intuitively, a set of
density δ “should” be just a set of numbers that are each roughly 1/δ apart, so we expect
that

∞∑
i=1

1

si
≈

∞∑
n=1

1

n/δ
= δ

∞∑
n=1

1

n
=∞

Thus, if Erdős’s Conjecture were proved, then it would imply both Szemerédi’s Theorem and
the Green–Tao Theorem.

2 Triangle Removal

In order to both prove Roth’s theorem and demonstrate the powerful and surprising con-
nection between graphs and arithmetic progressions, we will begin with a very important
consequence of Szemerédi’s regularity lemma, known as the triangle removal lemma. Recall
that a triangle in a graph G is a collection of three vertices that are all connected by edges.

Lemma 2.1 (Ruzsa–Szemerédi 1978). For every ε > 0, there exists a δ > 0 such that the
following holds. If G is an n-vertex graph with at most δ

(
n
3

)
triangles, we may remove at

most ε
(
n
2

)
edges from G in order to make it triangle-free.

Note that G may have up to
(
n
2

)
edges, and up to

(
n
3

)
triangles. Thus, what the triangle

removal lemma says is that if our graph has some small constant fraction of all possible
triangles, then we can remove some small constant fraction of the edges to make it triangle-
free. Said differently, the triangle removal lemma says that the only way to construct a
graph with few triangles is to start with a graph with no triangles and then to sprinkle in a
few extra edges.

A key thing to note about the triangle removal lemma is the growth rates with n. It is
easy to see that if G has at most t triangles, then we can make G triangle-free by removing
at most t edges: simply pick an arbitrary edge from each triangle and remove it. But if we
apply this simple argument, then it only tells us that if G has at most δ

(
n
3

)
triangles, then

it can be made triangle-free by removing at most δ
(
n
3

)
edges. But if n is large enough, then

δ
(
n
3

)
>
(
n
2

)
, which is the most number of edges G could possibly have. So this is not a very

interesting statement: for large n, removing at most δ
(
n
3

)
edges amounts to removing all

edges from G, and obviously this will make G triangle-free!
The triangle removal lemma may seem innocuous, but it is remarkably powerful. Indeed,

we will now derive Roth’s theorem (namely the k = 3 case of Szemerédi’s theorem) from it.
First, we give a different (but equivalent) formulation of the theorem:
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Theorem 2.2 (Roth 1953). For every ε > 0, there is some integer N0 ∈ N such that for all
N ≥ N0 and any subset S ⊆ [N ] with |S| ≥ εN , S contains a 3-term arithmetic progression.

This is equivalent to the previous formulation for the following reason: if T ⊆ N is a
set of positive density, then its density is greater than some ε, so by setting S = T ∩ [N0],
we conclude that it has a 3-term arithmetic progression. Conversely, by gluing together
translated copies of a set S ⊆ [N ] with |S| ≥ εN , we get a set of positive density in N, which
must contain a 3-term arithmetic progression, and we can conclude that S contains one as
well. On the homework, you’ll formalize this proof sketch.

One simple and useful remark is that integers a, b, c form a 3-term arithmetic progression
if and only if a + c = 2b. Indeed, this is equivalent to the condition b − a = c − b, which is
precisely the condition of being an arithmetic progression.

Proof of Theorem 2.2. We will pick N0 later. From such a set S ⊆ [N ], we construct a graph
G as follows. Let X, Y, Z be three copies of the set [3N ], and then the vertices of G will be
X ∪ Y ∪ Z. We put no edges inside X or Y or Z. Additionally, we connect x ∈ X to y ∈ Y
if and only if y − x ∈ S, and we connect y ∈ Y and z ∈ Z if and only if z − y ∈ S. Finally,
we connect x ∈ X and z ∈ Z if and only if z − x ∈ 2S, namely z − x = 2S for some s ∈ S.

Now, for every x ∈ [N ] and s ∈ S, we automatically get a triangle in G, namely the
triangle x ∈ X, x + s ∈ Y, x + 2s ∈ Z; indeed, by definition, all three of these vertices are
pairwise adjacent. Therefore, each s ∈ S yields at least N triangles in G, so we have at
least N |S| ≥ εN2 triangles in G. Moreover, all of these triangles are edge-disjoint, so in
order to eliminate all of them, we’d need to delete at least εN2 ≥ ε

100

(
9N
2

)
edges. Since G

is a graph on 9N vertices, we can apply the contrapositive of the triangle removal lemma
(with parameter ε/100) to conclude that there is some δ > 0 such that G has at least δ

(
9N
3

)
triangles. Now, we choose N0 large enough that δ

(
9N0

3

)
> ε

100

(
9N0

2

)
. Then we conclude that

if N ≥ N0, there must be some triangle in G that we haven’t yet accounted for.
Since there is no edge within X, Y , or Z, this additional triangle must consist of some

x ∈ X, y ∈ Y, z ∈ Z. Additionally, we necessarily have that y − x 6= z − y, for if these were
both equal to some s, then this triangle would just be one of the “simple” triangles we’ve
already considered.

Therefore, we can define a = y − x, b = z−x
2
, c = z − y. Then by the definition of the

edges of G, we know that a, b, c ∈ S. On the other hand, we have that

a+ c = (y − x) + (z − y) = z − x = 2b,

which implies that a, b, c form a 3-term arithmetic progression contained entirely within S,
as claimed.
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3 Regularity

The key notion in Szemerédi’s regularity lemma is, shockingly, called regularity. It is defined
for pairs of vertex sets in a graph, and roughly speaking, a pair of vertex sets is called regular
if the set of edges between them “looks random”. We will formalize this shortly.

Definition 3.1. Let G be a graph, and let A,B ⊆ V (G) be sets of vertices. By e(A,B), we
denote the number of edges with one endpoint in A and the other in B, namely

e(A,B) := |{(u, v) ∈ A×B : uv ∈ E(G)}|.

Note that in case A ∩ B 6= ∅, then every edge in A ∩ B is actually counted twice in this
definition. If this bothers you, you can pretend that A and B are disjoint.

Additionally, the edge density between A and B is defined as

d(A,B) =
e(A,B)

|A||B|
.

Thus, d(A,B) measures what fraction of all possible edges between A and B are actually
present.

Definition 3.2. Given a graph G, some parameter ε > 0, and two sets of vertices A,B ⊆
V (G), we say that the pair (A,B) is ε-regular if for every A′ ⊆ A,B′ ⊆ B with |A′| ≥
ε|A|, |B′| ≥ ε|B|, we have

|d(A,B)− d(A′, B′)| < ε.

In other words, (A,B) is ε-regular if all the edges between A and B are “well-distributed”
throughout A and B; no matter where we look in A and B, we see roughly the same density
of edges.

Example 3.3 (Basically the only example). Suppose we fix some parameter p ∈ (0, 1), and
we put edges between A and B by picking them randomly: for every a ∈ A, b ∈ B, we
connect a to b by flipping a p-biased coin and connecting them if and only if it comes up
heads. Then one can check that if ε isn’t too small (namely ε & 1/

√
|A|+ |B|), then the pair

(A,B) will be ε-regular in this graph we’ve defined (with very high probability). Intuitively,
this is because the edges are indeed “well-distributed”—they were placed randomly, so how
could they not be?

Indeed, this is more or less the only example: if a pair (A,B) is ε-regular, then we can
pretty much pretend that it was obtained by putting edges in randomly with probability
p = d(A,B).

3.1 Counting

As it turns out, ε-regularity is a very strong and useful condition. For instance, it allows
us to compute a huge number of quantities associated to the graph, by pretending that our
graph is random and counting the associated quantities there. As an example, suppose we

5
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construct a random graph as follows. We start with disjoint sets A,B,C of vertices, and we
place edges randomly between A and B with some probability r = d(A,B), between B and
C with some probability s = d(B,C), and between A and C with probability t = d(A,C).
Then if we fix some vertices a ∈ A, b ∈ B, c ∈ C, the probability that they form a triangle is
exactly rst. Because of this, one can show that in this random graph, with high probability
the number of triangles is very close to∑

a∈A

∑
b∈B

∑
c∈C

rst = rst|A||B||C|.

Our next result, known as the triangle counting lemma, says that in any graph with appro-
priate regularity conditions, the number of triangles is very close to what it would be in a
random graph with the same densities. For vertex sets A,B,C, let T (A,B,C) denote the
number of triangles with one vertex in each of A,B,C.

Lemma 3.4 (Triangle counting lemma). Let A,B,C ⊆ V (G) be disjoint sets of vertices in
some graph G, and suppose that each of the three pairs (A,B), (B,C), (A,C) is ε-regular.
Let

r = d(A,B), s = d(B,C), t = d(A,C).

If r, s, t ≥ 2ε, then

T (A,B,C) ≥ (1− 2ε)(r − ε)(s− ε)(t− ε)|A||B||C|.

Similarly,
T (A,B,C) ≤ (1 + 8ε)(r + ε)(s+ ε)(t+ ε)|A||B||C|.

Before proving this, we will state and prove a simple and useful property about the notion
of ε-regularity. For a vertex a and a vertex set B, let degB(a) denote the number of neighbors
of a in B.

Lemma 3.5. Suppose (A,B) is an ε-regular pair of vertex sets in some graph. Then fewer
than ε|A| vertices in A have fewer than (d(A,B)−ε)|B| neighbors in B, and fewer than ε|A|
vertices in A have more than (d(A,B) + ε)|B| neighbors in B.

Proof. Let A′ ⊆ A be the set of vertices with fewer than (d(A,B) − ε)|B| neighbors in B.
Note that

e(A′, B) =
∑
a∈A′

degB(a) <
∑
a∈A′

(d(A,B)− ε)|B| = (d(A,B)− ε)|A′||B|,

which implies that

d(A′, B) =
e(A′, B)

|A′||B|
< d(A,B)− ε.

So if |A′| ≥ ε|A|, we get a contradiction to the definition of ε-regularity, which implies that
|A′| < ε|A|, as claimed.

The second statement is proved in exactly the same way, simply replacing all minus signs
by plus signs.
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With this in hand, we can pretty quickly prove the triangle counting lemma.

Proof of Lemma 3.4. We only prove the first inequality in Lemma 3.4 (i.e. the lower bound
on T (A,B,C)); the upper bound is proved in essentially the same way. First, let

A′ = {a ∈ A : degB(a) ≥ (r − ε)|B| and degC(a) ≥ (t− ε)|C|}.

By Lemma 3.5, the number of a ∈ A with degB(a) < (r−ε)|B| is at most ε|A|, and similarly
for the number with degC(a) < (t− ε)|C|. So we have that |A′| ≥ (1− 2ε)|A|.

Now, fix some a ∈ A′. Then let Ba ⊆ B be the set of neighbors of a in B, and define
Ca ⊆ C similarly. Then since we assumed that r, t ≥ 2ε, we get that |Ba| ≥ ε|B|, |Ca| ≥ ε|C|,
so by regularity of the pair (B,C), we know that

|d(Ba, Ca)− s| < ε,

and thus
d(Ba, Ca) ≥ s− ε.

This, in turn, implies that

e(Ba, Ca) ≥ (s− ε)|Ba||Ca| ≥ (s− ε)(r − ε)(t− ε)|B||C|.

However, every edge between Ba and Ca yields a triangle containing a, since a is adjacent
to all vertices in Ba, Ca.

Finally, we sum this result over all a ∈ A′ to conclude that

T (A,B,C) ≥
∑
a∈A′

e(Ba, Ca) ≥ |A′| · (s− ε)(r − ε)(t− ε)|B||C|

≥ (1− 2ε)(r − ε)(s− ε)(t− ε)|A||B||C|.

3.2 Szemerédi’s regularity lemma

Hopefully you have been convinced that ε-regularity is a very strong and very useful notion:
if we know that some pair of vertex sets in our graph is ε-regular, then we can more or less
pretend that that part of the graph is random. This makes the following result, Szemerédi’s
regularity lemma, so surprising. It says that every graph can be cut up into parts so that
almost every pair of parts is ε-regular. In other words, we can approximate more or less the
whole graph as a random graph. To formalize this, we make the following definition.

Definition 3.6. Let G be an n-vertex graph, and let P : V = V1 t · · · t Vm be a partition
of its vertex set into m parts. We say that P is ε-regular if∑

(i,j)∈[m]2

(Vi,Vj) is not ε-regular

|Vi||Vj| ≤ εn2.

Said differently, at most an ε-fraction of the pairs of vertices lie in irregular pairs of parts.
Note that if |Vi| = n/m for all i, then this simply means that at most εm2 pairs (Vi, Vj) are
not ε-regular.

7
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Theorem 3.7 (Szemerédi’s regularity lemma). For every ε > 0, there exists some M ∈ N
so that every graph has an ε-regular partition of its vertex set into at most M parts.

In other words, we can always partition any graph into a collection of “clusters”, in such a
way that almost all of the pairs of clusters are ε-regular. Crucially, the number m of clusters
is bounded by M , which depends only on ε; thus, the “complexity” of the partition depends
only on how regular we require our partition to be. In particular, once n = v(G) is much
larger than M , then all graphs on n vertices are basically the same: they are composed of at
most M clusters, and look like they were randomly generated from these clusters. In other
words, all big graphs are basically the same.

Before talking about the proof of the regularity lemma, let’s see how it implies the triangle
removal lemma. Recall that that lemma said that for any ε > 0, there is some δ > 0 such
that if an n-vertex graph G has at most δ

(
n
3

)
triangles, then we can remove at most ε

(
n
2

)
edges and make it triangle-free.

Proof of the triangle removal lemma. First, using the regularity lemma, we can find some
(ε/12)-regular partition P : V (G) = V1 t · · · tVm of G. Now, we’re going to remove a bunch
of edges from G:

1. For every pair (Vi, Vj) which is not (ε/12)-regular, we remove all edges between Vi and
Vj. The number of edges removed at this step is, by the definition of an (ε/12)-regular
partition, at most ∑

(i,j)∈[m]2

(Vi,Vj) is not (ε/12)-regular

|Vi||Vj| ≤
ε

12
n2.

2. Between every pair of clusters (Vi, Vj) with d(Vi, Vj) < ε/6, we remove all edges. The
number of edges removed at this step is∑

(i,j)∈[m]2

d(Vi,Vj)<ε/6

e(Vi, Vj) =
∑

(i,j)∈[m]2

d(Vi,Vj)<ε/6

d(Vi, Vj)|Vi||Vj| <
∑

(i,j)∈[m]2

ε

6
|Vi||Vj| =

ε

6
n2.

3. Finally, we remove all edges between Vi and Vj if min{|Vi|, |Vj|} ≤ εn/(12m). The
number of edges removed at this step is at most

∑
(i,j)∈[m]2

min{|Vi|,|Vj |}≤εn/(12m)

|Vi||Vj| ≤
∑
i∈[m]

|Vi|≤εn/(12m)

m∑
j=1

|Vi||Vj| = n
∑
i∈[m]

|Vi|≤εn/(12m)

|Vi| ≤ n·m· εn
12m

=
ε

12
n2.

Thus, the total number of edges we removed is at most

ε

12
n2 +

ε

6
n2 +

ε

12
n2 =

1

3
εn2 ≤ ε

(
n

2

)
,
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since 1
3
n2 ≤

(
n
2

)
for all n ≥ 3.

After removing all these edges, we end up with a subgraph of G, which we’ll call G′. If
G′ is triangle-free, then we’re done. If not, then we want to prove that G must have started
with many triangles, namely at least δn3 of them.

So suppose that G′ has a triangle, with vertices a, b, c. Each of these vertices lies in some
part, say a ∈ Vi, b ∈ Vj, c ∈ Vk (where some of these indices are potentially equal). Since
a, b, c form a triangle, we must have not deleted any of the edges between (Vi, Vj), (Vj, Vk),
or (Vi, Vk). By the way we deleted edges, we conclude that |Vi|, |Vj|, |Vk| ≥ εn/(12m), as well
as that (Vi, Vj), (Vj, Vk), and (Vi, Vk) are all (ε/12)-regular and have density at least ε/6. So
by the triangle counting lemma, Lemma 3.4, we see that

T (Vi, Vj, Vk) ≥
(

1− ε

6

)(
d(Vi, Vj)−

ε

12

)(
d(Vj, Vk)− ε

12

)(
d(Vi, Vk)− ε

12

)
|Vi||Vj||Vk|

≥ 1

2

(ε
6

)3 ( εn

12m

)3
≥ ε6

10000000m3

(
n

3

)
≥ ε6

10000000M3

(
n

3

)
.

So G has at least δ
(
n
3

)
triangles, where δ = ε6/(10000000M3). Note that, as M depends only

on ε, so does δ. This concludes the proof.
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4 The general counting and removal lemmas

We proved the triangle counting and triangle removal lemmas, but similar results hold for
any graph H, rather than just a triangle. Here is the general graph counting lemma.

Theorem 4.1 (Counting lemma). Fix a graph H with vertices v1, . . . , vh. For every ρ > 0,
there exists some ε > 0 so that the following holds. Let V1, . . . , Vh be vertex sets in a graph
H, with the property that (Vi, Vj) is ε-regular if vivj ∈ E(H). Then the number of copies of
H with the ith vertex of H lying in Vi is at least

 ∏
i<j

vivj∈E(H)

d(Vi, Vj)

− ρ
 h∏

i=1

|Vi|

and at most 
 ∏

i<j
vivj∈E(H)

d(Vi, Vj)

+ ρ

 h∏
i=1

|Vi|.

In other words, the number of copies of H is well-approximated by what it would be in a
random graph, which is

∏
i<j:vivj∈E(H) d(Vi, Vj)

∏h
i=1|Vi|. Namely, we can guarantee that this

prediction is arbitrarily close to correct, by ensuring that our pairs are sufficiently regular.
As a consequence of the counting lemma, we can also prove a general removal lemma.

Theorem 4.2 (Removal lemma). For every h-vertex graph H and every ε > 0, there exists
some δ > 0 so that the following holds for every n and every n-vertex graph G. If G has at
most δ

(
n
h

)
copies of H, then G can be made H-free by deleting at most ε

(
n
2

)
edges.

The proof of the general removal lemma is more or less identical to the proof of the triangle
removal lemma. We first apply the regularity lemma, then delete all edges in irregular pairs,
in pairs with low edge density, and in pairs where one of the parts is small. By doing so we
delete few edges. If there is still a copy of H remaining, it must lie between large, dense,
regular pairs, so we can apply the counting lemma and find that we must have started with
very many copies of H. The proof of the general counting lemma is also generally the same
as the proof of the triangle removal lemma, except that we also need to use induction on h.

5 Proof of the regularity lemma

We are now going to prove Szemerédi’s regularity lemma. From now on, we will always have
G being an n-vertex graph, without specifying this every time. The proof idea is, at its core,
very simple. We start with a trivial partition of the vertex set, P0 = {V (G)}. We will then
repeatedly refine a partition P` into a new partition P`+1, with the goal of “fixing” irregular
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pairs. Namely, suppose that P` has some pair of parts (Vi, Vj) that is not ε-regular. This
implies that there exist some X ⊆ Vi, Y ⊆ Vj with |X| ≥ ε|Vi|, |Y | ≥ ε|Vj| and

|d(Vi, Vj)− d(X, Y )| ≥ ε.

Then in the partition P`+1, we essentially want to replace the two parts Vi, Vj with the four
parts X, Y, Vi\X, Vj\Y . The idea is that by refining our partition according to the “witnesses
of irregularity”, we should be able to eventually get rid of most of the irregular pairs.

The key thing we need to make this proof idea work is some sort of progress measure.
Namely, we want to somehow say that we are making progress towards an ε-regular partition,
in order to bound the number of steps (and thus the number of parts in the final partition).
It turns out that many different choices of progress measure work, but probably the simplest
one is the following.

Definition 5.1. Let U,W ⊆ V (G) be sets of vertices. The mean square density of the pair
(U,W ) is defined as

q(U,W ) :=
|U ||W |
n2

d(U,W )2.

Let PU : U = U1 t · · · tU` and PW : W = W1 t · · · tWm be partitions of U,W , respectively.
The mean square density of (PU ,PW ) is defined as

q(PU ,PW ) :=
∑̀
i=1

m∑
j=1

q(Ui,Wj) =
∑

(i,j)∈[`]×[m]

|Ui||Wj|
n2

d(Ui,Wj)
2.

Finally, for a single partition P : V (G) = V1 t · · · t Vm of the vertices of G, the mean square
density of P is defined as

q(P) := q(P,P) =
∑

(i,j)∈[m]2

|Vi||Vj|
n2

d(Vi, Vj)
2.

Note that for any partition P of V (G), we have that

0 ≤ q(P) ≤ 1. (1)

Indeed, q(P) is a sum of non-negative terms, so it’s certainly non-negative. On the other
hand, d(Vi, Vj) ≤ 1 for all i, j, so q(P) ≤

∑
|Vi||Vj|/n2 = 1.

The mean square density q will be our progress measure in the proof of Szemerédi’s
regularity lemma. We will need to collect a few important facts about the mean square
density. The first says that when we refine a partition, the mean square density can’t go
down. Recall that one partition P′ is a refinement of P if every part of P′ is a subset of some
part of P.

Lemma 5.2. Let U,W ⊆ V (G), and let PU : U = U1t· · ·tU` and PW : W = W1t· · ·tWm

be partitions of U,W , respectively. Then we have that

q(PU ,PW ) ≥ q(U,W ).

11



Mathcamp 2022 Szemerédi’s {theorem, regularity lemma} (Yuval) Lecture notes

Moreover, suppose that P,P′ are partitions of V (G) such that P′ is a refinement of P. Then

q(P′) ≥ q(P).

This proof, as well as all the others we’ll see in this section, works by writing some
quantity as the sum of squares of some other quantities, and thus concluding that the first
thing is non-negative.

Proof. We first observe that

∑̀
i=1

m∑
j=1

|Ui||Wj| =

(∑̀
i=1

|Ui|

)(
m∑
j=1

|Wj|

)
= |U ||W |

and that

∑̀
i=1

m∑
j=1

|Ui||Wj|d(Ui,Wj) =
∑̀
i=1

m∑
j=1

|Ui||Wj|
e(Ui,Wj)

|Ui||Wj|
= e(U,W ) = |U ||W |d(U,W ).

Therefore, we have that∑
i,j

|Ui||Wj|[d(Ui,Wj)− d(U,W )]2 =

=
∑
i,j

|Ui||Wj|
[
d(Ui,Wj)

2 + d(U,W )2 − 2d(Ui,Wj)d(U,W )
]

=

(∑
i,j

|Ui||Wj|d(Ui,Wj)
2

)
+ |U ||W |d(U,W )2 − 2d(U,W )

∑
i,j

|Ui||Wj|d(Ui,Wj)

=

(∑
i,j

|Ui||Wj|d(Ui,Wj)
2

)
+ |U ||W |d(U,W )2 − 2|U ||W |d(U,W )2

= n2 [q(PU ,PW )− q(U,W )] .

Since the left-hand side is a sum of squares, the right-hand side must be non-negative, which
proves the first claim.

For the second, suppose that P partitions V (G) into V1 t · · · t Vm, and P′ refines this
partition by splitting each Vi into P′i : Vi,1t· · ·tVi,ki . Then for every i, j, the previous claim
shows that

q(P′i,P
′
j) ≥ q(Vi, Vj).

By adding this up over all i, j, we find that

q(P) = q(P,P) =
∑
i,j

q(Vi, Vj) ≤
∑
i,j

q(P′i,P
′
j) = q(P′).

12
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Our next claim shows that in case a pair (U,W ) is not ε-regular, then we can boost the
inequality in Lemma 5.2: we can find a partition PU of U and a partition PW of W so that
q(PU ,PW ) is greater by some fixed positive amount than q(U,W ).

Lemma 5.3. Suppose that U,W are vertex sets such that (U,W ) is not ε-regular, and let
X ⊆ U, Y ⊆ W be subsets with |X| ≥ ε|U |, |Y | ≥ ε|W | and

|d(U,W )− d(X, Y )| ≥ ε.

Let PU be the partition U = X t (U \X) and PW the partition W = Y t (W \ Y ). Then

q(PU ,PW ) ≥ q(U,W ) + ε4
|U ||W |
n2

.

Proof. By the proof of Lemma 5.2, we know that we can write n2[q(PU ,PW ) − q(U,W )] as
a sum of four non-negative terms, corresponding to the four choices of a part of PU and a
part of PW . By discarding three of these terms, we see that

n2[q(PU ,PW )− q(U,W )] ≥ |X||Y |[d(X, Y )− d(U,W )]2 ≥ ε2|U ||W | · ε2 = ε4|U ||W |.

Dividing by n2, we get the desired result.

Using this, we can refine any non-ε-regular partition into a new partition whose mean
square density goes up by some fixed positive amount.

Lemma 5.4. Let P : V (G) = V1 t · · · t Vm be a partition of V (G), and suppose that P is
not ε-regular. Then there exists a refinement Q of P with

q(Q) ≥ q(P) + ε5.

Moreover, Q has at most m22m parts.

Proof. For every pair (Vi, Vj) which is not ε-regular, we can find some Xi,j ⊆ Vi, Yi,j ⊆ Vj
with |Xi,j| ≥ ε|Vi|, |Yi,j| ≥ ε|Vj|, and

|d(Xi,j, Yi,j)− d(Vi, Vj)| ≥ ε.

Fix i. For each j such that (Vi, Vj) is not ε-regular, we get a partition of Vi as Vi =
Xi,j t (Vi \ Xi,j). Similarly, we also get a partition of Vi as Yj,i t (Vi \ Yj,i). Let Qi be the
common refinement of all of these partitions of Vi (there are at most 2m of them, since we
may get such a partition for every Xi,j and every Yj,i). In other words, we let Qi be the
partition of Vi that cuts up Vi according to the list of, for every j, whether a given vertex of
Vi is in Xi,j or not. Finally, let Q be the refinement of P in which every part Vi of P is cut
up according to Qi.

13
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We claim that

q(Q) =
∑

(i,j)∈[m]2

q(Qi,Qj)

=
∑

(i,j)∈[m]2

(Vi,Vj) ε-regular

q(Qi,Qj) +
∑

(i,j)∈[m]2

(Vi,Vj) not ε-regular

q(Qi,Qj)

≥
∑

(i,j)∈[m]2

(Vi,Vj) ε-regular

q(Vi, Vj) +
∑

(i,j)∈[m]2

(Vi,Vj) not ε-regular

q({Xi,j, Vi \Xi,j}, {Yi,j, Vj \ Yi,j}).

Indeed, in the final step, we apply the monotonicity of the mean square density (Lemma 5.2)
to both sums. In the first sum, we use the first part of Lemma 5.2, and in the second sum,
we use the fact that Qi refines the partition Vi = Xi,jt(Vi\Xi,j) and Qj refines the partition
Vj = Yi,j t (Vj \ Yi,j).

Now, by Lemma 5.3, we know that

q({Xi,j, Vi \Xi,j}, {Yi,j, Vj \ Yi,j}) ≥ q(Vi, Vj) + ε4
|Vi||Vj|
n2

.

Plugging this in to our earlier computation, we see that

q(Q) ≥
∑

(i,j)∈[m]2

(Vi,Vj) ε-regular

q(Vi, Vj) +
∑

(i,j)∈[m]2

(Vi,Vj) not ε-regular

(
q(Vi, Vj) + ε4

|Vi||Vj|
n2

)

=
∑

(i,j)∈[m]2

q(Vi, Vj) +
∑

(i,j)∈[m]2

(Vi,Vj) not ε-regular

ε4

n2
|Vi||Vj|

= q(P) +
ε4

n2
·

∑
(i,j)∈[m]2

(Vi,Vj) not ε-regular

|Vi||Vj|.

Finally, by our assumption that P is not an ε-regular partition, we know that∑
(i,j)∈[m]2

(Vi,Vj) not ε-regular

|Vi||Vj| ≥ εn2.

Plugging this in, we see q(Q) ≥ q(P) + ε5, as claimed.

With all this prep work, we are finally ready to prove Szemerédi’s regularity lemma.

Proof of Szemerédi’s regularity lemma. Let P0 be the “trivial” partition of V (G), namely
the one that partitions it into a single part, and let m0 = 1. If P0 is ε-regular, we are done.
If not, then by Lemma 5.4, there is a refinement P1 of P0 with at most m1 = m02

2m0 parts

14
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and with q(P1) ≥ q(P0) + ε5. If P1 is ε-regular, we are done; if not, there is a refinement P2

of P1 with q(P2) ≥ q(P1) + ε5 and at most m2 = m12
2m1 parts.

Continuing in this way, we get a sequence P0,P1, . . . of partitions of V (G), with P` having
at most m` = m`−12

2m`−1 parts, and

q(P`) ≥ q(P`−1) + ε5 ≥ q(P0) + `ε5.

By (1), we know that q(P0) ≥ 0, and that q(P`) ≤ 1. So this process cannot go on forever:
after at most dε−5e steps, we must have stopped this, meaning that we have found an ε-
regular partition of G.

When we stop, the number of parts in the ε-regular partition is bounded by mdε−5e, where
m` is given by the recurrence m` = m`−12

2m`−1 above. So by setting M = mdε−5e, we obtain
the claim of Szemerédi’s regularity lemma.

How big is the bound on M we get? Note that for all positive integers x, we have

x22x ≤ 23x = 8x.

This implies that m` ≤ 8m`−1 for all `, and thus that

M ≤ 88·
··
8
} ⌈

ε−5
⌉

= 22·
··
2
}

O(ε−5)
.

This is a truly enormous bound. As a consequence, any application of Szemerédi’s regularity
lemma also has truly terrible bounds involved. For example, in the proof of the triangle
removal lemma above, the δ we obtained in terms of ε was defined as

δ =
ε6

10000000M3

and thus the bounds we get in the triangle removal lemma is of the form

1

δ
≤ 22·

··
2
}

O(ε−15)
.

Even more amazingly, a result of Gowers shows that such terrible bounds are actually neces-
sary. Namely, Gowers showed that there exists a graph G such that any ε-regular partition
of V (G) has a number of parts which is of tower-type in a power of ε. In other words, for
Szemerédi’s regularity lemma, we cannot do any better than the kind of bound we got.

Nonetheless, it turns out that for some applications of the regularity lemma, such as the
triangle removal lemma, we can do better.

Theorem 5.5 (Fox 2011). In the triangle removal lemma, we can take

1

δ
≤ 22·

··
2
}

O
(
log 1

ε

)
.

This is again an enormous bound, but it’s less enormous. Rather than the height of the
tower being some power of 1/ε, it is merely logarithmic in 1/ε.
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6 Hypergraph removal and Szemerédi’s theorem

We have successfully proved Szemerédi’s theorem in the case k = 3, i.e. Roth’s theorem.
What about longer arithmetic progressions?

Szemerédi’s original proof involved an extraordinarily complicated inductive argument,
plus repeated applications of van der Waerden’s theorem. Much later, people realized that
roughly the same technique we used to prove Roth’s theorem could be used to prove the
full Szemerédi’s theorem. However, rather than dealing with graphs, we have to deal with
hypergraphs. If we go back to bare basics, a graph is a collection V of vertices, plus a
collection E of edges, which are simply unordered pairs of vertices. Why restrict ourselves
to pairs?

Definition 6.1. An r-uniform hypergraph (sometimes called an r-graph for short) consists
of a finite collection V of vertices, as well as a collection E of r-uniform hyperedges, which
are simply subsets of V of size r.

As with graphs, we say that one r-graph H is a subhypergraph (or simply subgraph) of
another r-graph G if we can obtain H from G by deleting some vertices and edges. We say
that G is H-free if G does not contain H as a subgraph (and we also say that G has no copy
of H).

The complete r-graph on k vertices, denoted K
(r)
k , is the r-graph with k vertices whose

edge set consists of all subsets of size r.

In many ways, the study of hypergraphs is more or less the same as the study of graphs.
Starting in the 1970s and really picking up in the 1980s, various mathematicians started
trying to formulate versions of Szemerédi’s regularity lemma, the counting lemma, and the
removal lemma for hypergraphs. But as it turns out, doing this is really hard. Despite
people working on this seriously since the early 1980s, the project was not completed until
the 2000s.

Theorem 6.2 (Hypergraph removal; Kohayakawa–Nagle–Rödl–Schacht–Skokan 2005; Gow-
ers 2007). For every h, r ≥ 2, every h-vertex r-graph H, and every ε > 0, there exists some
δ > 0 such that the following holds for all n and any n-vertex r-graph G. If G has at most
δ
(
n
h

)
copies of H, then G can be made H-free by deleting at most ε

(
n
r

)
hyperedges.

Just as we could use the triangle removal lemma (for ordinary graphs, aka 2-graphs) to

prove Roth’s theorem, we can use the K
(k−1)
k removal lemma for (k − 1)-graphs to prove

Szemerédi’s theorem for arithmetic progressions of length k. We’ll do the case of k = 4 in
detail; the general case works in the same way, just with additional annoyances.

Theorem 6.3 (Szemerédi’s theorem for k = 4). For any ε > 0, there exists some N0 ∈ N
so that for all N ≥ N0 and all S ⊆ [N ] with |S| ≥ εN , there is a four-term arithmetic
progression in S.

Proof. We will pick N0 later. For contradiction, suppose that N ≥ N0 and S ⊆ [N ] is a
4-AP-free set with |S| ≥ εN . We define a 4-graph G with vertex set W tX t Y t Z, where
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W = X = Y = Z = Z/(6N + 1)Z. Given w ∈ W,x ∈ X, y ∈ Y, z ∈ Z, we make hyperedges
according to the following rules:

wxy ∈ E(G) ⇐⇒ 3w + 2x+ y ∈ S
wxz ∈ E(G) ⇐⇒ 2w + x− y ∈ S
wyz ∈ E(G) ⇐⇒ w − y − 2z ∈ S
xyz ∈ E(G) ⇐⇒ −x− 2y − 3z ∈ S,

where we view S ⊆ [N ] as a subset of Z/(6N + 1)Z for this to make sense. Let n = v(G) =
4(6N + 1).

The point of these equations defining the hyperedges of G is the following: four vertices
w, x, y, z will form a copy of K

(3)
4 if and only if

−x− 2y − 3z, w − y − 2z, 2w + x− y, 3w + 2x+ y ∈ S

and these four numbers form a (possibly degenerate) four-term arithmetic progression with
common difference d = w + x + y + z. Setting d = 0, we conclude that every element of S
gives us exactly (6N + 1)2 copies of K

(3)
4 in G, and these copies are edge-disjoint. So at least

|S|(6N + 1)2 ≥ ε
1000

(
n
3

)
hyperedges must be deleted from G to make it K

(3)
4 -free.

Therefore, by the contrapositive of the K
(3)
4 removal lemma, we see that G must have

at least δ
(
n
4

)
copies of K

(3)
4 , for some δ > 0 depending only on ε. If N0 is large enough,

then δ
(
n
4

)
> |S|(6N + 1)2, and thus there is an unaccounted-for copy of K

(3)
4 . This yields a

non-trivial four-term arithmetic progression in S.

Why is it so hard to prove the hypergraph removal lemma? The reason, it turns out,
is that it’s hard to come up with the “correct” notion of regularity for r-graphs. Basically,
one needs a notion of regularity that is weak enough so that one can prove a hypergraph
regularity lemma, but strong enough to imply an associated counting lemma. In the case of
graphs, the definition we saw works. But for r ≥ 3, the natural extension of this is simply
too weak to get a counting lemma.

To see this, consider the following example. Fix some parameters p, q ∈ (0, 1), and let
A,B,C,D be vertex sets, each of size N . We build a random graph on A ∪ B ∪ C ∪ D
by connecting every pair of vertices in two distinct parts with probability p. Then with
high probability, this graph has roughly p6N4 copies of K4, and roughly p3N3 triangles
between every triple of parts. Now, we build a random 3-graph G1 as follows: for every
triangle x, y, z in G, we make xyz a hyperedge of G1 with probability q. So with high
probability, G1 has roughly p6q4N4 copies of K

(3)
4 and p3qN3 hyperedges between any triple

of parts. Moreover, G1 looks “very random-like”, in the sense that the hyperedges of G are
very uniformly distributed; if we take fairly large subsets X ⊆ A, Y ⊆ B,Z ⊆ C, then the
number of hyperedges between X, Y, Z is very close to p3q|X||Y ||Z|. In other words, G1 is
ε-regular for a natural notion of regularity in 3-graphs.

On the other hand, consider the 3-graph G2 on the same vertex set, where we simply
make every triple an edge with probability p3q. Then again, G2 looks very regular, and has
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the same density as G1. However, the number of K
(3)
4 in G2 is roughly (p3q)4N4 = p12q4N4.

Crucially, p6q4 6= p12q4 for p ∈ (0, 1), so this is a different number of copies of K
(3)
4 than the

number in G1.
So we see that for this natural notion of ε-regularity in 3-graphs, we can’t expect a

counting lemma for copies of K
(3)
4 : these two 3-graphs are very regular and have the same

edge density, but different numbers of copies of K
(3)
4 .

As hinted by this example, the issue is that when dealing with hypergraphs, we can’t
only care about the distribution of hyperedges looking uniform. We also care about edges
of lower uniformity: in the case of 3-graphs, we also need to control how pairs of vertices
lie inside hyperedges. This means that the formulation of a hypergraph regularity lemma
in uniformity r is much more complicated: we not only partition the vertices, but also the
pairs of vertices, the triples of vertices, . . . , up to the (r − 1)-tuples of vertices.

Once one figures out the appropriate definition of ε-regularity for such a complicated chain
of partitions, one has to prove a regularity lemma and a counting lemma. Superficially, the
proofs are “the same”. For the regularity lemma, one tracks an appropriate notion of mean
square density through successive iterations of refining partitions. Similarly, the counting
lemma is proved via an induction scheme where one counts the number of embeddings of
vertices of H one at a time. Finally, the removal lemma is proved in exactly the same way:
by deleting hyperedges between tuples that are too sparse, or irregular, or contain a part
that is too small, one can ensure that we delete few edges and yet all copies of H.

6.1 Quantitative aspects

As we saw, Szemerédi’s regularity lemma invokes bounds that are of tower-type, which
implies that the proof of Roth’s theorem that we got also has tower-type bounds. In other
words, the proof we saw implies that if ε > 0 and if

N0 = 22·
··
2
}

O(ε−5)
,

then S contains a three-term arithmetic progression for all N ≥ N0 and all S ⊆ [N ] with
|S| ≥ εN . However, this is far from the best bound known: Roth’s original Fourier-analytic

proof showed that we may instead take N0 = 22O(1/ε)
, and there were a series of improvements

to this over the decades. Very recently, Bloom and Sisask showed that in Roth’s theorem, one
may take N0 = 2O(1/ε1−c) for some absolute constant c > 0. This was a major breakthrough
beyond previous work, and remains the current best known bound.

Szemerédi’s original proof of Szemerédi’s theorem provided essentially no quantitative
bounds at all. In other words, he proved that for every ε > 0 and every k ∈ N, there is some
N0 so that S contains a k-term arithmetic progression for all N ≥ N0 and all S ⊆ [N ] with
|S| ≥ εN , but his proof said basically nothing about how large N0 must be.

The proof sketched above, using hypergraph regularity, actually does provide some quan-
titative bounds. Namely, it turns out that the 3-graph regularity lemma involves bounds of
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the form

22·
··
2
}

22
··
·2
}
· · ·
}
22︸ ︷︷ ︸

O(ε−C)

for some absolute C > 0. Such a bound is called a wowzer-type bound. Just as the tower
function is obtained by iterating the exponentiation function, the wowzer function is obtained
by iterating the tower function. Similarly, the 4-graph regularity lemma invokes bounds that
are of the form “iterate the wowzer function O(ε−C) times”. In general, the bounds for r-
graph regularity involve r levels of iteration. As such, the bounds we obtain for Szemerédi’s
theorem are extraordinarily weak.

Nonetheless, much more is known. In the early 200s, Gowers found a new proof of
Szemerédi’s theorem, which gives a much stronger bound.

Theorem 6.4 (Gowers 2001). For ε > 0 and k ∈ N, let

N0 = 221/ε
22

k+9

.

Then for every N ≥ N0 and every S ⊆ [N ] with |S| ≥ εN , S contains a k-term arithmetic
progression.

This remains the best known bound for Szemerédi’s theorem, and proving it involved
a number of breakthroughs. Note that, although this is a big scary expression, it’s much
smaller than the big scary expressions above. In particular, the dependence on k is “merely”
quintuple-exponential, rather than the value of k determining how many times we iterate
some huge function.

7 The Green–Tao theorem

To end this class, I want to return briefly to the Green–Tao theorem.

Theorem 7.1 (Green–Tao 2004). For every k ∈ N, the set P of primes contains a k-term
arithmetic progression.

To prove this, Green and Tao actually proved a much stronger and more general theorem,
called the relative Szemerédi theorem. I can’t state it precisely because doing so would involve
many more complicated definitions, but here is the gist of it.

“Theorem” 7.2 (Relative Szemerédi theorem). For every ε > 0 and k ∈ N, there exists
some N0 ∈ N so that the following holds. Suppose R ⊆ [N ] is a “very pseudorandom” set,
and suppose S ⊆ R satisfies |S| ≥ ε|R|. Then S contains a k-term arithmetic progression.

The reason this is called a “relative” Szemerédi theorem is that the statement is essentially
the same as the statement of Szemerédi’s theorem, except relative to a host set R. As long
as R “looks random” in an appropriate sense (which I won’t explain), then any subset S
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of R with |S| ≥ ε|R| has arbitrarily long arithmetic progressions. In particular, you should
believe me that R = [N ] is appropriately pseudorandom, so this implies Szemerédi’s theorem
in the case R = [N ].

Note that if |R| ≥ δN for some fixed δ > 0, then the relative Szemerédi theorem already
follows from Szemerédi’s theorem. The new ingredient in the relative Szemerédi theorem is
that we are allowing |R| to be much smaller than N ; for proving the Green–Tao theorem,
we will take an R of size roughly N/ logN .

Proving the relative Szemerédi theorem is the key part of the proof of the Green–Tao
theorem. Once one has it, the Green–Tao is, in some sense, easy1. Namely, one defines a set
R of almost primes, which is simply the set of integers with no prime factors smaller than
some fixed integer r. One can then show that this set R is appropriately pseudorandom, and
that

|P ∩ [N ]| ≥ ε|R ∩ [N ]|
for some ε > 0 depending on the choice of r. Once we have this, the Green–Tao theorem
follows immediately from the relative Szemerédi theorem.

The proof of the relative Szemerédi theorem is hard, but it boils down to the same kinds
of ideas that we’ve seen in this class: a regularity lemma and a counting lemma. In this
context, the regularity lemma is usually called the dense model theorem.

“Theorem” 7.3 (Dense model theorem). Let R ⊆ [N ] be appropriately pseudorandom, and

let S ⊆ R with |S| ≥ ε|R|. There exists a dense model Ŝ ⊆ [N ] so that |Ŝ| ≥ εN , and

such that the relationship between S and R “looks like” the relationship between Ŝ and [N ].

I won’t explain what “looks like” means in the statement above, but you should think
of it as a version of ε-regularity. In the regularity lemma, we “approximated” a graph
G by a “bounded-complexity” object given by the regularity partition. The usefulness of
the approximation comes from the notion of ε-regularity, which tells us that this notion of
approximation “mean something real”. In a similar way, we are approximating S ⊆ R by a
new set Ŝ ⊆ [N ], and the notion of “looks like” is one that says that this is a useful notion
of approximation.

What makes it a useful notion? As in the case of graph and hypergraph regularity, the
key utility comes from a counting lemma. For a set A, let tk(A) be the number of k-term
arithmetic progressions in A.

“Theorem” 7.4 (Counting lemma). Let R ⊆ [N ] be appropriately pseudorandom, let S ⊆ R

be a set with |S| ≥ ε|R|, and let Ŝ ⊆ [N ] be a dense model for S. Then

tk(Ŝ)

tk([N ])
≈ tk(S)

tk(R)
.

In other words, S and Ŝ have roughly the same number of k-term arithmetic progressions,
when normalized appropriately, i.e. by dividing out by total possible number of k-term
progressions they could have.

1By “easy”, I mean merely quite hard.
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The final step in the proof of the relative Szemerédi theorem is using Szemerédi’s theorem
as a black box. Since |Ŝ| ≥ εN , Szemerédi’s theorem implies that tk(Ŝ) > 0. But then by the
counting lemma, we conclude that tk(S) > 0, which is exactly the statement of the relative
Szemerédi theorem.
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