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We should hold day with the Antipodes,
If you would walk in absence of the sun.

William Shakespeare, The Merchant of Venice

This talk is almost entirely based off Jǐŕı Matoušek’s book Using the Borsuk-Ulam Theorem.

1 Preliminaries: The Borsuk-Ulam Theorem

The use of topology in combinatorics might seem a bit odd, but I would actually argue it has a long history.
For instance, the existence of a Nash equilibrium is a famous quasi-combinatorial theorem whose only known
proofs use topology in a crucial way.

The main tool we will use in this talk is the Borsuk-Ulam Theorem; here are several equivalent statements:

Theorem 1 (Borsuk 1933).

1. For every continuous map f : Sn → Rn, there is some x ∈ Sn with f(x) = f(−x).

2. For every antipodal (aka odd) mapping g : Sn → Rn, there is some x ∈ Sn with g(x) = 0.

3. There is no antipodal map h : Sn → Sn−1.

4. (Lyusternik and Shnirel’man 1930) For any covering Sn = A1 ∪ · · · ∪An+1 such that each Ai is either
open or closed, there is some Ai that contains an antipodal pair, namely there is some x ∈ Sn with
x,−x ∈ Ai.

Proof. I won’t prove the Borsuk-Ulam theorem. However, we can check that these statements are indeed
equivalent.

(1)⇒ (2) is immediate, since an antipodal map that agrees on x,−x must map them both to 0.
(2)⇒ (1) follows by defining g(x) = f(x)− f(−x).
(2)⇒ (3) is immediate, since there is an embedding Sn−1 ↪→ Rn, so h is in particular an antipodal map

Sn → Rn.
Similarly, (3)⇒ (2) follows by defining h(x) = g(x)/‖g(x)‖, assuming g is nowhere vanishing.
The version of (4) where all the sets are closed follows from (1) by defining

f(x) = (d(x,A1), . . . , d(x,An))

where d denotes Euclidean distance. Then this is a continuous map Sn → Rn, so find some x with f(x) =
f(−x). If one coordinate of f(x) is zero, then we’re done. If not, then x,−x /∈ A1, . . . , An, so x,−x ∈ An+1,
and we’re again done. For the case where some of the sets are open, we simply “fatten” them by ε to closed
sets, and then let ε→ 0.

Finally, for (4) ⇒ (3), cover Sn−1 by n + 1 sets B1, . . . , Bn+1 that contain no antipodal points (e.g.
project the facets of the standard simplex onto Sn−1). Then if an antipodal h : Sn → Sn−1 existed, then
h−1(B1), . . . , h−1(Bn+1) would contradict (4).

Remark 1. Why might we expect the Borsuk-Ulam theorem to be a useful tool? There are many ways
to answer this question, but I like to think of it as the “correct” higher-dimensional generalization of the
Intermediate Value Theorem, which we hopefully already believe is a useful tool. Indeed, the n = 1 case
of Borsuk-Ulam is precisely equivalent to the Intermediate Value Theorem; for given an antipodal map
g : S1 → R, pick some x ∈ S1. If g(x) = 0, we’re done. If not, then rotate x by 180◦; this is a continuous
map [0, π]→ R, and at the end of it we’ve moved form g(x) to −g(x). By the Intermediate Value Theorem,
we must have hit zero at some point.
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2 First Application: The Kneser Conjecture

Definition 1. Given n ≥ 1 and k ≤ n/2, the Kneser graph KG(n, k) has vertex set V =
(

[n]
k

)
and S, T ∈ V

are adjacent if and only if S ∩ T = ∅.

Kneser graphs are very useful (counter)examples in a lot of instances. They have many nice properties,
including many symmetries (the automorphism group of KG(n, k) is Sn, since we may permute [n] without
changing the graph) and no short odd cycles. Also, you might believe they’re important because KG(5, 2)
is the Petersen graph.

Proposition 1. χ(KG(n, k)) ≤ n− 2k + 2.

Proof. Every set that contains the element 1 we color with color 1; they form an independent set since they’re
never disjoint. Every remaining set that contains 2 is colored with color 2; it forms another independent
set. We keep doing this up to element n − 2k + 1. Finally, every remaining uncolored set is a subset of
{n − 2k + 2, . . . , n}, which has size 2k − 1, so any two k-subsets must intersect. So we can color all the
remaining ones with this final color.

Kneser conjectured that this bound was tight, and this turned out to be quite hard to prove. One reason
for the difficulty is that Kneser graphs have a very low fractional chromatic number (namely n/k), and many
of our techniques for lower-bounding the chromatic number actually lower-bound χf .

The Kneser Conjecture was eventually proved by Lovász (1978), in probably the first real application
of the Borsuk-Ulam Theorem to combinatorics. There have since been many versions of the proof; the
following, due to Greene, is the simplest I know.

Proof. Set d = n− 2k+ 1, and for x ∈ Sd, let H(x) denote the open hemisphere centered at x. Let X ⊂ Sd
be an n-point set in general position (namely, no d + 1 of them lie on a hyperplane through the center of
Sd). Fix a bijection X ↔ [n], so that we think of V (KG(n, k)) =

(
X
k

)
. Suppose for contradiction that we

could color KG(n, k) with d colors. For i ∈ [d], let

Ai =

{
x ∈ Sd : H(x) ⊇ S ∈

(
X

k

)
, χ(S) = i

}
Finally, let Ad+1 = Sd \ (A1 ∪ · · · ∪ Ad). Then each Ai is open for i ∈ [d], while Ad+1 is closed. By version
(4) of the Borsuk-Ulam theorem, there is some i ∈ [d+ 1] and x ∈ Sd such that x,−x ∈ Ai.

First, observe that i 6= d+ 1. For that would mean that H(x), H(−x) both do not contain a k-set of any
color, so in both H(x) and H(−x) contain at most k−1 points of X. This leaves at least n−2(k−1) = d+1
points on the equator separating H(x), H(−x), which contradicts the general position assumption.

So i ∈ [d]. But that means that there are two sets S1, S2 ∈
(
X
k

)
with S1 ⊆ H(x), S2 ⊆ H(−x) and

χ(S1) = χ(S2) = i. But S1 and S2 must be disjoint, since they lie in separate hemispheres, so they can’t
receive the same color; a contradiction.

Remark 2. Matoušek (2004) eventually found a “purely combinatorial” proof of the Kneser Conjecture,
but in a fairly uninteresting way: he took the topological proofs and carefully excised all the topology, while
maintaining all the ideas from the original proofs.

Remark 3. There have been several generalizations of this result, all of which use a similar topological
proof. For instance, Dol’nikov proved a generalization for Kneser graphs of arbitrary set systems (rather

than just
(

[n]
k

)
), and Schrijver found a vertex-critical subgraph of KG(n, k) that has the same chromatic

number.
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3 Index and Coindex of Z2-spaces

Let’s begin with some graph-theoretic motivation. For two graphs G,H, we’ll write G → H if there exists
some graph homomorphism f : G→ H, and G9 H if no such homomorphism exists. Then observe that if
G is a loopless graph, then

χ(G) = min{n : G→ Kn} ω(G) = max{n : Kn → G}

Indeed, a coloring of G with n colors is precisely a homomorphism G → Kn by mapping each vertex to its
color; since every edge goes between distinct color classes, it’ll get mapped to an edge of Kn. Similarly, if
G is loopless, then every homomorphism Kn → G must be injective, lest we collapse an edge of Kn to a
(non-existent) loop in G. Therefore, a homomorphism Kn → G precisely identifies a clique subgraph of G,
and ω(G) is the maximal size of such a subgraph. Also note that if we drop the looplessness assumption,
then both χ and ω will be infinite in this formulation (since a vertex with a loop can never map to any
loopless graph, and we can map all of Kn to such a vertex).

Recall the simple fact that for any graph G, ω(G) ≤ χ(G). In this language, this is equivalent to the
statement that Kn 9 Kn−1 for any n; for if ω(G) > χ(G), then we’d have some n with Kn → G → Kn−1.
In fact, this statement also means that the scale according to which we’re measuring our graphs, namely
the sequence (K1,K2,K3, . . .) is really a well-defined measurement scale, and thus that we get informative
quantities.

Once presented in this way, the fact that there is no antipodal map Sn → Sn−1 looks very suggestive;
can we come up with a topological analogue of the theory of clique and chromatic numbers with the spheres
as our measurement scale? To start with, we need to restrict our notion of space and homomorphism so that
we can actually apply this fact, since there are many continuous maps Sn → Sn−1.

Definition 2. A Z2-space is a pair (X, ρ), where X is a topological space and ρ : X → X is a continuous
involution (namely a continuous map with ρ ◦ ρ = id); note that this is precisely an action of the group Z2

on X. In case ρ has no fixed points, then we say that this a free Z2-space (as indeed in this case this is a
free action).

Definition 3. A Z2-map (aka antipodal map) between Z2-spaces (X, ρ), (Y, σ) is a continuous map f :
X → Y that is Z2-equivariant, namely σ ◦ f = f ◦ ρ. If there is a Z2-map from (X, ρ) to (Y, σ), we write

(X, ρ)
Z2→ (Y, σ), and (X, ρ)

Z29 (Y, σ) if there is no such map.

Definition 4. The index and coindex of a (free) Z2 space (X, ρ) are defined as

indZ2
(X, ρ) = min{n : (X, ρ)

Z2→ (Sn,−)}

coindZ2(X, ρ) = max{n : (Sn,−)
Z2→ (X, ρ)}

where (Sn,−) denotes the Z2-space whose underlying space is Sn and whose Z2-action is given by the
antipodal mapping.

Remark 4. Observe that the collection of all Z2-spaces and Z2-maps forms a category. The canonical
example to keep in mind of a (free) Z2-space is Sn, equipped with the antipodal mapping. Finally, observe
that just as in the case of non-loopless graphs, non-free Z2-spaces are completely uninteresting from the
perspective of index and coindex: we can never map a non-free space to a free one, so the index will be
infinite, while we can map any Z2 space to a fixed point of a non-free space, so its coindex will be infinite as
well.

From now on, I will usually not explicitly write ρ when describing a Z2-space, though it’s important to
remember that the same topological space may have many different Z2-structures.

Here are some basic properties of the index and coindex.

Proposition 2.
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1. If X
Z2→ Y , then indZ2

X ≤ indZ2
Y and coindZ2

X ≤ coindZ2
Y .

2. indZ2
Sn = coindZ2

Sn = n.

3. If X is (n− 1)-connected (namely πk(X) = 0 for all k < n), then coindZ2
X ≥ n.

4. If X is a free simplicial Z2-complex (or CW complex) of dimension n, then indZ2
X ≤ n.

Sketch of Proof. We won’t really need most of these results, so I’ll only give an idea of the proofs.

(1) follows directly from the definition: if n = indZ2
Y then Y

Z2→ Sn, and since X
Z2→ Y , by composition

X
Z2→ Sn, so indZ2 X ≤ n; an analogous argument establishes the coindex inequality.

(2) is precisely the Borsuk-Ulam Theorem, that Sn
Z29 Sn−1, as indicated above.

For (3), we can construct a Z2-map Sk → X inductively for all 0 ≤ k ≤ n. For the base case, pick
an arbitrary x ∈ X, and map S0 = {±1} to X by sending 1 7→ x,−1 7→ ρ(x). Inductively, if we have a
map Sk → X, we consider Sk as the equator of Sk−1. Since X is (n − 1)-connected, the map Sk → X is
nullhomotopic, so it can be extended (non-uniquely) to the upper hemisphere of Sk+1; by reflection, since
we require our map to be a Z2-map, we are forced in how to extend to the lower hemisphere, and we end up
with a Z2-map Sk+1 → X.

For (4), we can just repeat the proof of (3) once we observe that we never actually used the structure of
Sk, just that it has a decomposition into cells that are matched by the Z2-action. So since Sn is (n − 1)-

connected, the same argument allows us to construct a map X
Z2→ Sn, so indZ2

X ≤ n.

Finally, since it was mentioned in the previous proposition, let’s recall the definition of a simplicial
complex:

Definition 5. A simplicial complex on a set V (called the vertices) is a collection K of subsets of V that is
downwards closed. An element of K is called a face or simplex, and its dimension is 1 less than its size.

We will often also think of a simplicial complex as a topological space, gotten by placing the points of
V in general position in a sufficiently high-dimensional Euclidean space, and then putting in a copy of the
standard d-simplex ∆d between each (d+1)-tuple that is a face of K. I will be intentionally glib about which
of these two interpretations I mean, because they are fundamentally the same.

For a point x ∈ K, we denote by the support of x the smallest (i.e. lowest-dimensional) face of K that
contains x.

4 Second Application: A More General Chromatic Lower Bound

The above definitions of index and coindex allow us to generalize the proof of the Kneser conjecture to give a
lower bound for the chromatic number of any graph. Note that this bound is frequently not tight or difficult
to compute, so it is perhaps not extremely useful in practice. However, I find it illustrative both in that it
makes the Kneser proof seem less ad hoc and because it is an instance where the topology is very obviously
necessary; one needs the topology to even state the result.

First, we will need some definitions. Recall that N(v) denotes the neighborhood of a vertex v in a graph,
and we use the convention that v /∈ N(v). For a set A ⊆ V (G), N(A) denotes the set of common neighbors
to A, namely

⋂
v∈AN(v); in particular, N(A) ⊆ V (G) \ A. Finally, if A1, A2 are disjoint sets of vertices of

G, then let G[A1, A2] denote the induced bipartite subgraph of G on A1, A2 (namely we discard all vertices
not in A1 ∪A2, and discard all edges internal to A1 or A2).

Definition 6. Given a graph G, its box complex B(G) is a simplicial complex whose vertices are V (G)×{1, 2}
and whose simplices are

{A1 ]A2 : A1, A2 ⊆ V (G);A1 ∩A2 = ∅;G[A1, A2] is complete;N(A1), N(A2) 6= ∅}

where A1 ]A2 denotes (A1 × {1}) ∪ (A2 × {2}) ⊆ V (G)× {1, 2}.
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In other words, the simplices of B(G) correspond to complete bipartite subgraphs of G. The condition
N(A1), N(A2) 6= ∅ is unnecessary in the case when both A1, A2 are nonempty (for in that case it follows
from G[A1, A2] being complete), but is important when one of A1, A2 is empty (which we allow).

B(G) becomes a free Z2-space when we endow it with the involution that swaps the roles of the two
sides: ρ : (v, 1) ↔ (v, 2). Note that this is a free action because we required that A1, A2 be disjoint, so
ρ(A1 ]A2) = A2 ]A1 will be disjoint from A1 ]A2.

Example 1. If P2 denotes the path graph on 3 vertices, then B(P2) is a disjoint union of two triangles
(2-simplices).

We claim that B(Kn) is a the cross-polytope of dimension n with two antipodal (n−1)-simplices removed.
Indeed, recall that the cross-polytope is a simplicial complex with vertex set Ξ = {±1,±2, . . . ,±n} and whose
simplices are all subsets of Ξ that don’t contain both i and −i for any i ∈ [n] (this precisely corresponds
to taking the boundary of the convex hull of the vectors {±e1, . . . ,±en} ⊂ Rn, where {ei} is the standard
basis). On the other hand, B(Kn) has vertex set [n]×{1, 2}. Its simplices are all A1 ]A2 with A1 ∩A2 = ∅,
except for the two [n]] ∅ and ∅ ] [n], since the set of all vertices of Kn do not have a common neighbor. By
using the bijection Ξ ↔ [n] × {1, 2} that identifies i ↔ (i, 1),−i ↔ (i, 2), we see that B(Km) is indeed just
the cross-polytope with two antipodal faces removed.

Since the cross-polytope is homeomorphic to Sn−1, removing these two faces gives us a deformation
retraction B(Kn)→ Sn−2; moreover, this map is a Z2-map, since we can deform antipodal points consistently.
Similarly, we can embed Sn−2 as the equator of B(Kn), so we find that

n− 2 ≤ coindZ2
B(Kn) ≤ indZ2

B(Kn) ≤ n− 2

and thus they both equal n− 2.

One of the most important properties of the box complex construction is that it is functorial :

Definition 7. Let f : G → H be a graph homomorphism. We construct a simplicial map B(f) : B(G) →
B(H) by mapping

(v, i) 7→ (f(v), i)

where v ∈ V (G), i ∈ {1, 2}. Then it is a simplicial map because a complete bipartite subgraph of G will be
mapped to a complete bipartite subgraph of H under f ; moreover, it is a Z2-map because the Z2-action in
all instances is just to swap 1 and 2 in the second coordinate. Thus, B gives us a functor from the category
of graphs to the category of (free) Z2-spaces.

Corollary 1. For any graph G,
χ(G) ≥ indZ2

B(G) + 2

Proof. Let r = χ(G). Then there is a graph homomorphism G→ Kr. Applying B to this gives us B(G)
Z2→

B(Kr), so
indZ2

B(G) ≤ indZ2
B(Kr) = r − 2

or
χ(G) = r ≥ indZ2

B(G) + 2

This is a very nice and completely general lower bound on the chromatic number, though one could argue
that the box complex is a sort of artificial construction. A more natural simplicial complex associated to a
graph is the following:

Definition 8. Given a graph G, its neighborhood complex N(G) is the simplicial complex whose vertices are
V (G) and A ⊆ V (G) is a simplex if and only if N(A) 6= ∅; in other words, all neighborhoods of vertices are
top-dimensional faces of N(G).
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Theorem 2 (Lovász, 1978). If N(G) is k-connected, then

χ(G) ≥ k + 3

Idea of proof. What we want to say is that since N(G) is k-connected, Proposition 2 implies that indZ2 N(G) ≥
k+ 1. Then if we can construct a map N(G)

Z2→ B(G), then we will conclude that indZ2
B(G) ≥ k+ 1 as well,

so by the above corollary χ(G) ≥ k + 3.
This turns out to basically work, except for an obvious flaw: N(G) is not endowed with a Z2-action,

so nothing in the previous paragraph makes any sense. The way to solve this is to construct yet another
simplicial complex L(G) that is a deformation retraction of N(G) and that is a Z2-space, and then to
proceed as above (using the fact that since N(G) is k-connected and a deformation retraction is a homotopy
equivalence, L(G) will be k-connected as well). I’ll skip the details, since they’re fairly technical and not
particularly enlightening.

Remark 5. This theorem is how Lovász originally proved the Kneser Conjecture; he first proved the above
directly from the Borsuk-Ulam Theorem, and then proved that the neighborhood complex of KG(n, k) was
highly connected, something that is actually not so simple to show.

However, as promised, this is a generalization of the proof of the Kneser Conjecture that provides a
general chromatic lower bound, and whose statement fundamentally uses topological notions. Also notice
that the key part of the proof we did was actually extremely straightforward: once B is a functor, then the
fact that the index and chromatic number are defined analogously immediately implies we can obtain results
if we know indZ2

B(Kn).

5 Joins, Deleted Joins, and Embeddings

So far, we have proved existence and non-existence of various maps, and have used this to get information
on the Z2-index and coindex of various spaces. Now, we will try to reverse this: by bounding the index and
index of some spaces, we will conclude that no Z2-map between them exists.

We begin with some more topological notions:

Definition 9. Given two topological spaces X,Y , their join X ∗ Y is the space

X ∗ Y = (X × Y × [0, 1])/ ∼

where ∼ is the equivalence relation that identifies all points of x at time 0, and all points of y at time 1:

(x, y, 0) ∼ (x′, y, 0) (x, y, 1) ∼ (x, y′, 1)

for all x, x′ ∈ X, y, y′ ∈ Y . We write a point in X ∗ Y as a “formal convex combination” tx ⊕ (1 − t)y for
x ∈ X, y ∈ Y ; this notation stresses that at t = 0, what x we pick doesn’t matter, and at t = 1, what y we
pick doesn’t matter.

This notation also reflects a deeper truth: if X,Y are bounded subsets of Rn that lie on skew hyperplanes
(i.e. non-parallel, non-intersecting hyperplanes), then X ∗Y is the subset of Rn consisting of all line segments
with one endpoint in x and the other in y, namely

X ∗ Y = {tx+ (1− t)y : x ∈ X, y ∈ Y, t ∈ [0, 1]} ⊆ Rn

If K, L are simplicial complexes, then we can also define their join K ∗ L as the simplicial complex whose
vertex set is V (K) ] V (L) and whose simplices are

{F ]G : F ∈ K, G ∈ L}

Using the above geometric construction, it’s not too hard to see that these two notions coincide.
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Example 2. If I is the interval [0, 1], then its join with itself is a 3-simplex ∆3:

One way to generalize this is to observe that if ∆0 denotes a one-point space, then (∆0)∗n is the simplex
∆n−1; this follows from the geometric interpretation, which tells us that (∆0)∗n should be the convex hull
of n points in a sufficiently high-dimensional space, which is precisely ∆n−1. From this, we can inductively
obtain that ∆m ∗∆n = ∆m+n+1.

Recall that S0 is a two-point discrete space. Then for any X, X∗S0 is the suspension of X, which consists
of a double cone over X. In particular, S0 ∗Sn = Sn+1, which implies by induction that Sm ∗Sn = Sm+n+1.

Given any space X, its two-fold join X∗2 = X ∗X naturally comes with a Z2-action that simply swaps
the two sides:

tx⊕ (1− t)y 7→ (1− t)y ⊕ tx

Note that this is very similar to the Z2 action on the box complex we saw earlier. However, this is not a free
Z2-action, since any point 1

2x⊕
1
2x is a fixed point. This motivates the following definition:

Definition 10. For any topological space X, its deleted join is the space

X∗2δ = (X ∗X) \ { 1
2x⊕

1
2x : x ∈ X}

The δ denotes that we’ve deleted the “diagonal” { 1
2x⊕

1
2x : x ∈ X}. This is a free Z2-space with the action

given by exchanging the two sides, as above.

For simplicial complexes, we have a similar but not entirely identical notion:

Definition 11. For any simplicial complex K, its deleted join is the simplicial complex K∗2∆ whose vertices
are V (K)× {1, 2} and whose simplices are

{F1 ] F2 : F1, F2 ∈ K, F1 ∩ F2 = ∅}

It is a subcomplex of K∗2. Note that we delete strictly more than above, since we delete the whole offending
simplex. Also note that K∗2∆ is a free simplicial Z2-space, with Z2-action given by swapping the two sides;
just as in the case of the box complex, this is free precisely because we delete all simplices whose two sides
intersect.

Example 3. Let I denote the interval [0, 1]. When thought of as a topological space, its two-fold join I∗2

is a 3-simplex ∆3. Its diagonal { 1
2x⊕

1
2x : x ∈ I} is the red line in the following picture:

(0,1)

(1,1)

(0,2)

(1,2)
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Thus, we see that I∗2 is, topologically, a 3-ball with a diameter removed. This deformation retracts to S1,
and this deformation retraction is compatible with the Z2 structures.

If we think of I as a simplicial complex with two vertices 0, 1 and one 1-simplex {0, 1}, then I∗2∆ is a
simplicial complex with four vertices {(0, 1), (1, 1), (0, 2), (1, 2)}. It has only four simplices, as depicted in
the following picture (the simplices that have been deleted are dotted):

(0,1)

(1,1)

(0,2)

(1,2)

Thus, we see that I∗2∆
∼= S1.

We end with two simple lemmas about properties of these deleted joins.

Lemma 1. If K, L are simplicial complexes, then

(K ∗ L)∗2∆ = K∗2∆ ∗ L∗2∆

In other words, the deleted join commutes with the ordinary join.

Proof. Both sides have vertex set (V (K) ] V (L)) × {1, 2}. A simplex on the left-hand side is of the form
(F1 ] G1) ] (F2 ] G2) for F1, F2 ∈ K, G1, G2 ∈ L, with the condition that (F1 ] G1) ∩ (F2 ] G2) = ∅. This
condition is equivalent to F1∩F2 = G1∩G2 = ∅. But that is precisely the condition for (F1]G1)] (F2]G2)
being a simplex of K∗2∆ ∗ L∗2∆ .

Lemma 2. indZ2(Rn)∗2δ ≤ n.

Proof. We can exhibit a Z2-map (Rn)∗2δ → Sn. First, let f : (Rn)∗2δ → R2n+2 be given by

f(t~x⊕ (1− t)~y) = (t, ~x, 1− t, ~y)

for ~x, ~y ∈ Rn, t ∈ [0, 1]. We can view R2n+2 as (Rn+1)2; then f never hits the diagonal D = {(~z, ~z) : ~z ∈
Rn+1}. For if f(t~x⊕ (1− t)~y hit the diagonal, then we would necessarily have t = 1− t and ~x = ~y, and these
are precisely the points we removed from (Rn)∗2δ . Now, (Rn+1)2 \D naturally has a free Z2-action given by
exchanging the two coordinates, and this turns f into a Z2-map.

Finally, we have a Z2-map g : (Rn+1)2 \D → Sn defined by

g(~w, ~z) =
~w − ~z
‖~w − ~z‖

∈ Sn ⊆ Rn+1

This is well-defined since we deleted the diagonal, and is a Z2-map by construction. Composing g ◦ f shows

that (Rn)∗2δ
Z2→ Sn, as claimed1.

Note that this is more or less the same as the Z2-map I∗2δ → S1 that we explicitly drew earlier.

1In fact, this proof is wrong, even though the statement is correct. The error comes from the fact that f is not well-defined
when t ∈ {0, 1}. In order to fix this, one has to first embed two copies of Rn as balls in skew hyperplanes in R2n+2 and then
use the honest convex combinations instead of the formal ones.
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6 Third Application: Non-Planarity and the Topological Radon
Theorem

As an immediate application of these tools, let’s prove that K3,3 is non-planar. For this, suppose that we
had a map f : K3,3 → R2 with the property that the images of distinct edges never intersect. Then we can
define a new map f∗2 : (K3,3)∗2∆ → (R2)∗2δ by

f∗2(tx⊕ (1− t)y) = tf(x)⊕ (1− t)f(y)

To see that this indeed lands in (R2)∗2δ , suppose not. Then we must hit a point of the form 1
2z ⊕

1
2z for

z ∈ R2, which implies that there are x, y so that f(x) = f(y) = z. x and y cannot lie in the same simplex,
for we deleted such points from (K3,3)∗2∆ , so they must have disjoint supports. But then that contradicts the
assumption that f never allows the images of distinct edges to intersect. Finally, note that f∗2 is a Z2-map,

so we’ve found that (K3,3)∗2∆
Z2→ (R2)∗2δ .

Observe that K3,3 = D3 ∗D3, where D3 is a discrete 3-point simplicial complex (i.e. with no simplices of
positive dimension). Therefore, by Lemma 1,

(K3,3)∗2∆ = (D3 ∗ D3)∗2∆ = (D3)∗2∆ ∗ (D3)∗2∆

Here is (D3)∗2∆ , which is just K3,3 with a matching deleted.

•(0,1) (0,2)•(0,1) (0,2)

•(1,1) (1,2)•(1,1) (1,2)

•(2,1) (2,2)•(2,1) (2,2)

By unraveling it, we can see that it’s topologically S1. Since S1 ∗ S1 = S3, we see in particular that

indZ2
(K3,3)∗2∆ = 3. On the other hand, we saw above that indZ2

(R2)∗2δ ≤ 2, so (K3,3)∗2∆
Z29 (R2)∗2δ . This

contradicts the existence of f∗2 above, so K3,3 is non-planar.
We can generalize this example as follows:

Theorem 3. For any simplicial complex K, if

indZ2 K
∗2
∆ > n

then K cannot be embedded in Rn. In fact, any continuous map f : K → Rn will necessarily identify two
points with disjoint supports in K.

Proof. The proof is identical to what we did above. If there were a map f : K→ Rn without this property,
then we could construct a Z2-map f∗2 : K∗2∆ → (Rn)∗2δ in precisely the same way as above. However, by

assumption and by our earlier calculations, indZ2 K
∗2
∆ > indZ2(Rn)∗2δ , so K∗2∆

Z29 (Rn)∗2δ ; a contradiction.
The basic idea in this proof is that we have one tool for proving that a certain sort of map doesn’t exist,

namely the Z2-index. We want to show that another sort of map (an embedding) doesn’t exist. So we build
new spaces whose structure is such that any Z2-map between them corresponds to an embedding between
the original spaces, and then use our one tool to show that can’t happen.

To see a more exciting application of this result than the non-planarity of K3,3, recall the classical Radon
Theorem from convex geometry:

Theorem 4 (Radon). Given any n + 2 points in Rn, they can be partitioned into two sets whose convex
hulls intersect.

9
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Proof. We can prove this by induction on n (this is not the standard proof one finds in most books, but it
is one that I find enlightening). The n = 1 case is simple: given 3 points in R1, they come in some order.
Then the middle point is in the convex hull of the other two.

For the induction step, say we have n + 2 points in Rn. One can show that either all of them lie on a
hyperplane (in which case we’re done by induction), or else there is some hyperplane H containing n of them
that separates the other two, which we call a, b. Then the convex hull of a and b (a line segment) intersects
H at some point. Let this intersection point be c. By induction, we can partition c and the other n points
on H into two sets whose convex hulls intersect; remove c from whichever of these two sets it lies in and
replace it by a and b. Then the convex hulls still intersect, since c is in the convex hull of a, b.

To make the connection with embeddings more obvious, here is an equivalent statement of Radon’s
Theorem:

Theorem 5 (Radon, Take 2). For any affine2 map ∆n+1 → Rn, there are two disjoint faces whose images
intersect.

This is equivalent to the previous statement: an affine mapping is precisely determined by where it places
the n+ 2 vertices in Rn, and any convex hull of a subset is the affine image of a face of ∆n+1.

Using our techniques, we can prove a major generalization.

Theorem 6 (Topological Radon Theorem, Bajmóczy-Bárány 1979). For any continuous map f : ∆n+1 →
Rn, there are two disjoint faces whose images intersect.

Proof. We apply Theorem 3. To do so, we need to show that indZ2(∆n+1)∗2∆ > n. Recall that ∆n+1 =
(∆0)∗(n+2). Therefore, by Lemma 1,

(∆n+1)∗2∆ = ((∆0)∗2∆ )∗(n+2) = (S0)∗(n+2) = Sn+1

and in particular indZ2
(∆n+1)∗2∆ = n+ 1 > n, as desired.

Remark 6. There is a “density” version of the Radon theorem, originally due to Boros and Füredi, which
was also made topological by Gromov and others; such results have been extremely influential in the recent
study of high-dimensional expanders.

Finally, let me mention a beautiful result that connects both embeddability results and chromatic number
results:

Theorem 7 (Sarkaria 1991). Let K be any simplicial complex on n vertices, and let F denote the set system
of all inclusion-minimal non-faces of K. Then

indZ2(K∗2∆ ) + χ(KG(F)) ≥ n− 1

where KG(F) is the Kneser graph generated by F . Note that this can be used both for embeddability lower
bounds and chromatic number lower bounds!

7 G-spaces, G-maps, and G-indices

As we observed, what we call a Z2-space is simply a topological space together with a (continuous) action
of the group Z2. Seeing as this was very useful, it makes sense to extend the definition to arbitrary groups;
for concreteness, we stick with finite groups.

2An affine map is one that picks images for the vertices and then extends affine-linearly over all the faces.
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Definition 12. For a finite group G, a G-space is a tuple (X,Φ) where X is a topological space and Φ
is a map G → AutX, where AutX denotes the space of all homeomorphisms X → X. Equivalently, for
each g ∈ G we have a continuous map ϕg : X → X which commutes with the group operation, namely
ϕg ◦ ϕh = ϕgh.

In the case where G = Zn is cyclic, then a G-space is simply (X, ν), where ν : X → X is a continuous
map satisfying νn = id.

A G-space is called free if for any 1 6= g ∈ G, ϕg has no fixed points.

Definition 13. If (X,Φ), (Y,Ψ) are G-spaces, then a G-map is a continuous equivariant map f : X → Y ,

namely a continuous map with ψg ◦ f = f ◦ϕg for all g ∈ G. As before, we write X
G→ Y if a G-map X → Y

exists, and X
G9 Y otherwise.

In order to mimic the Z2-index we previously developed, we need to come up with a suitable measurement

scale; a sequence X1, X2, . . . of G-spaces with the property that Xn
G9 Xn−1 for all n. Unlike previously,

where we could just take the spheres, there is no immediately obvious candidate. One concrete choice (out
of several possible, but all equivalent) is the following:

Definition 14. Observe that G, endowed with the discrete topology, is a free G-space, with G acting by
left multiplication. This induces (though this requires some check) a free G-action on the n-fold join G∗n.
Thus, we define the space EnG = G∗(n+1), and this will serve as our measuring scale.

Observe that in the case G = Z2, we actually recover the spheres, since Z2 = S0. This also explains the
slightly strange indexing EnG = G∗(n+1).

Definition 15. The G-index and coindex are defined as

indGX = min{n : X
G→ EnG} coindGX = max{n : EnG

G→ X}

It turns out to be surprisingly difficult to show that EnG
G9 En−1G, though it is true. In particular, it

is harder than proving the Borsuk-Ulam theorem, which is just a special case of it.
The theory of Zp-index allows us to prove a nice generalization of the Borsuk-Ulam Theorem:

Theorem 8. Let p be prime. Let (X, ν) be a Zp-space with indZp X ≥ n(p − 1). Then for any continuous
map f : X → Rn, there is some x ∈ X with

f(x) = f(ν(x)) = · · · = f(νp−1(x))

In other words all orbits of x are mapped to the same point.

Proof. The proof, like many of the ones we saw before, goes by arguing that if such a map did not exist,
then we could get a Zp-map from a space of some Zp-index to a space of lower Zp-index.

Specifically, suppose we had an f for which this were not true. From f we can construct a map f× :
X → Rnp defined by

f×(x) = (f(x), f(ν(x)), . . . , f(νp−1)(x))

Observe that f× is a Zp-map, if we endow Rnp the Zp-action given by cyclically permuting the coordinates.
By the assumption on f , we have that the codomain of f× is actually

Y = Rnp \ {(z, z, . . . , z) : z ∈ Rn}

On the other hand, it is a simple computation that

indZp Y ≤ n(p− 1)− 1

which contradicts the assumption that indZp
X ≥ n(p− 1).

One can also generalize the theory of deleted joins; here are two basic definitions:
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Definition 16. If X is a topological space, its n-fold deleted join is

X∗nδ = X∗n \ { 1
nx⊕ · · · ⊕

1
nx : x ∈ X}

If K is a simplicial complex, its pairwise n-fold deleted join is the simplicial complex

K∗n∆(2) = {F1 ] · · · ] Fn ∈ K∗n : F1, . . . , Fn are pairwise disjoint}

These can both be made into Zn-spaces via cyclically permuting the coordinates. However, if n is not
prime, then these will not be free Zn-spaces.

Finally, here is an important lemma:

Lemma 3. If p is a prime, then

indZp
((Rn)∗pδ ) ≤ (n+ 1)(p− 1) + 1

8 Fourth Application: The Topological Tverberg Theorem

There is a very important and far-reaching generalization of the Radon Theorem:

Theorem 9 (Tverberg, 1966). For any n ≥ 1, r ≥ 2, let X be a set of (n+ 1)(r− 1) + 1 in Rn. Then there
is a partition X = X1 t · · · tXr so that

conv(X1) ∩ conv(X2) ∩ · · · ∩ conv(Xr) 6= ∅

Note that the r = 2 case is just Radon’s Theorem. This theorem itself was greatly generalized by Bárány,
Shlosman, and Szűcs (1981) in the case where p is prime:

Theorem 10 (Topological Tverberg). Let n ≥ 1 and p ≥ 2 be a prime. Set N = (n+ 1)(p− 1). Then for
any continuous map f : ∆N → Rn, there are p disjoint faces F1, . . . , Fp of ∆N so that

f(F1) ∩ f(F2) ∩ · · · ∩ f(Fr) 6= ∅

Proof. We mimic the proof of the Topological Radon Theorem. Suppose that there is an f that does not
have such an intersection. Then the p-fold join f∗p will be a map

f∗p : (∆N )∗p∆(2)

Zp→ (Rn)∗pδ

As stated above, indZp((Rn)∗pδ ) ≤ (n + 1)(p − 1) + 1 = N − 1. So it remains to compute the Zp-index of
(∆N )∗p∆(2). As in the case of 2-fold deleted joins, the deleted join commutes with the ordinary join: for any

simplicial complexes K, L,
(K ∗ L)∗p∆(2) = K∗p∆(2) ∗ L

∗p
∆(2)

Therefore, since we can write ∆N = (∆0)∗(N+1), we find that

(∆N )∗p∆(2) = ((∆0)∗p∆(2))
∗(N+1)

We can see that (∆0)∗p∆(2) is a p-point discrete space. In particular, it’s equal to E0Zp, so its (N + 1)th join

is just ENZp. Thus,
indZp((∆N )∗p∆(2)) = N > indZp((Rn)∗pδ )

which contradicts the existence of f∗p.

Remark 7. The proof of the Topological Tverberg Theorem was eventually extended to the case where r
is not just a prime, but a prime power, by Özaydin (1987). So everyone expected the case for general r to
eventually be resolved; however, it was shown by Frick in 2014 that it is false for general r!
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