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Hamiltonian paths in tournaments

A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).
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Hamiltonian paths in tournaments

A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.
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Hamiltonian paths in tournaments

A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges.
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Every tournament contains a Hamiltonian directed path.
Proof.

Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges.

Introduction



Hamiltonian paths in tournaments
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Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges. If v; + v;;1, we could
swap their order.
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A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).
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Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges. If v; + v;;1, we could
swap their order. Reading across, we find a Hamiltonian path.
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Hamiltonian paths in tournaments

A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).
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Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges. If v; + v;;1, we could
swap their order. Reading across, we find a Hamiltonian path.
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Hamiltonian cycles?
Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.
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Hamiltonian cycles?

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle?
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Hamiltonian cycles?

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle? No.

===V

A transitive tournament has no directed cycles at all.
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Hamiltonian cycles?

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle? No.

===V

A transitive tournament has no directed cycles at all.
The only structures we can hope to find in every tournament are
acyclic.
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Question: What structures exist in every N-vertex tournament?
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Question: What structures exist in every N-vertex tournament?
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Some structures we can find

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament contains... on ... vertices
directed path [Rédei '34] N
any oriented path [Thomason '86] N
out-directed star Eead
any oriented tree [Kiihn-Mycroft-Osthus '11] [%1
any* oriented cycle [Thomason '86] N
up-right oriented grid [Morawski-W. '24+] N/101?
oriented hypercube [Morawski-W. '24+] INO-244
transitive subtournament [Stearns '59] logN
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Transitive subtournaments

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on
log N vertices.
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Transitive subtournaments

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on
log N vertices.

Theorem (Erd&s-Moser 1964)

There exists an N-vertex tournament with no transitive
subtournament on 2 log N vertices.
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Transitive subtournaments

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on
log N vertices.

Theorem (Erd&s-Moser 1964)

There exists an N-vertex tournament with no transitive
subtournament on 2 log N vertices.

Proof: In a random tournament,

[E[#transitive subtournaments on k vertices]
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Transitive subtournaments

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on
log N vertices.

Theorem (Erd&s-Moser 1964)

There exists an N-vertex tournament with no transitive
subtournament on 2 log N vertices.

Proof: In a random tournament,

[E[#transitive subtournaments on k vertices] = (2’) k270,
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Transitive subtournaments

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on
log N vertices.

Theorem (Erd&s-Moser 1964)

There exists an N-vertex tournament with no transitive
subtournament on 2 log N vertices.

Proof: In a random tournament,
o . N k
[E[#transitive subtournaments on k vertices] = (k) k270,

For k = 2log N, this quantity is < 1.
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Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament has... on ... vertices
directed path N

any oriented path N
out-directed star (%1
any oriented tree el
any* oriented cycle N
up-right oriented grid N/10"2
oriented hypercube INO-244
transitive subtournament logN
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Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament has... on ... vertices
directed path N

any oriented path N
out-directed star (%1
any oriented tree el
any* oriented cycle N
up-right oriented grid N/10"2
oriented hypercube INO-244
transitive subtournament logN

Definition: The Ramsey number 7(H) of a digraph H is the least N
such that every N-vertex tournament contains a copy of H.
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Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

If H has n vertices, rH) <.
Every N-vertex tournament has... on ... vertices

directed path N n
any oriented path N

out-directed star Bl 2n -2
any oriented tree el 2n -2
any* oriented cycle N n
up-right oriented grid N/10"2 10"?n
oriented hypercube INO-244 n407
transitive subtournament logN 2"

Definition: The Ramsey number 7(H) of a digraph H is the least N
such that every N-vertex tournament contains a copy of H.

Ramsey numbers



Directed and undirected Ramsey numbers

Definition

The Ramsey number r(H) of a
digraph H is the minimum N
such that every N-vertex
tournament contains a copy of
H.
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Directed and undirected Ramsey numbers

Definition

The Ramsey number r(H) of a
digraph H is the minimum N
such that every edge
orientation of Ky contains a
copy of H.
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Directed and undirected Ramsey numbers

Definition Definition

The Ramsey number r(H) of a The Ramsey number r(H) of a
digraph H is the minimum N graph H is the minimum N such
such that every edge that every two-edge-coloring of
orientation of Ky contains a Ky contains a monochromatic
copy of H. copy of H.
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Directed and undirected Ramsey numbers

Definition

The Ramsey number r(H) of a
digraph H is the minimum N
such that every edge
orientation of Ky contains a
copy of H.

.. =
For a transitive tournament T,
L=
2"2 L F(T,) < 2.
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The upper bound implies that
r(H) exists for all acyclic H.
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Directed and undirected Ramsey numbers

Definition Definition
The Ramsey number r(H) of a The Ramsey number r(H) of a
digraph H is the minimum N graph H is the minimum N such
such that every edge that every two-edge-coloring of
orientation of Ky contains a Ky contains a monochromatic
copy of H. copy of H.
For a transitive tournament 7T>n For a complete graph K,

272 L F(Th) < 2. 272 < r(K,) < 3.8".

The upper bound implies that
r(H) exists for all acyclic H.
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Definition

The Ramsey number 7(H) of a
digraph H is the minimum N
such that every edge
orientation of Ky contains a
copy of H.

.. =
For a transitive tournament T,
L=
2"2 L F(T,) < 2.

The upper bound implies that
r(H) exists for all acyclic H.
If H has en? edges, then

F(H) > 25",
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Definition

The Ramsey number 7(H) of a
digraph H is the minimum N
such that every edge
orientation of Ky contains a
copy of H.

. =
For a transitive tournament T,
—
2"2 L F(T,) < 2.

The upper bound implies that
r(H) exists for all acyclic H.
If H has en? edges, then

F(H) > 25",

Directed and undirected Ramsey numbers

Definition

The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
Ky contains a monochromatic
copy of H.

For a complete graph K,
2"2 < r(K,) < 3.8,

The upper bound implies that
r(H) exists for all H.
If H has en? edges, then

r(H) > 2°".

So the Ramsey number is exponential if H is dense.

For the rest of the talk, we'll focus on sparse (di)graphs.

Ramsey numbers



Sparse graphs and digraphs

If His a tree or cycle, then r(H) = O(n).
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Theorem (Chvatal-RodI-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree A, then r(H) = Oa(n).
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Similarly, for oriented trees, cycles, grids,... we have F(H) = O(n).
Bucié-Letzter-Sudakov (2019): Is F(H) = O(n) for all sparse H?

Introduction Ramsey numbers Lower bound proof sketch Variations



Sparse graphs and digraphs
If His a tree or cycle, then r(H) = O(n).
Burr-Erdés (1975): Is r(H) = O(n) for all sparse H?

Theorem (Chvatal-RodI-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree A, then r(H) = Oa(n).

Similarly, for oriented trees, cycles, grids,... we have F(H) = O(n).
Bucié-Letzter-Sudakov (2019): Is F(H) = O(n) for all sparse H? No!

Theorem (Fox-He-W. 2024)

For all C > 0, there is a bounded-degree n-vertex H with F(H) > n®.
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Sparse graphs and digraphs
If His a tree or cycle, then r(H) = O(n).
Burr-Erdés (1975): Is r(H) = O(n) for all sparse H?
Theorem (Chvatal-RodI-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree A, then r(H) = Oa(n).

Similarly, for oriented trees, cycles, grids,... we have F(H) = O(n).
Bucié-Letzter-Sudakov (2019): Is F(H) = O(n) for all sparse H? No!

Theorem (Fox-He-W. 2024)
For all C > 0, there is a bounded-degree n-vertex H with F(H) > n®.

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has
bounded degree and bounded
bandwidth, then F(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
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DDFGHKLMSS (2020): If H has

bounded degree and bounded o5 eSS e e e e
bandwidth, then F(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded
degree and bounded height,
then F(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded

degree and bounded height, @'
then 7(H) = O(n). e e e
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded
degree and bounded height, @'
then 7(H) = O(n). e e e
MW (2024+): If H has bounded

degree and is graded, then
r(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded

degree and bounded height, '%‘
then F(H) = O(n). T
MW (2024+): If H has bounded

degree and is graded, then %%‘
r(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e

bandwidth, then F(H) = O(n).
FHW (2024): If H has bounded

degree and bounded height, '%‘
then F(H) = O(n).
MW (2024+): If H has bounded

degree and is graded, then %%
r(H) = O(n).

FHW (2024): If H is random of
bounded average degree, then

F(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e

bandwidth, then F(H) = O(n).
FHW (2024): If H has bounded

degree and bounded height, '%‘
then F(H) = O(n).
MW (2024+): If H has bounded

degree and is graded, then %%
r(H) = O(n).

FHW (2024): If H is random of

bounded average degree, then ‘@'
r(H) = O(n). o
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low multiscale complexity, then
r(H) = O(n).

DDFGHKLMSS (2020): If H has

bounded degree and bounded 5 o5 e e S e e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded

degree and bounded height, '%‘
then F(H) = O(n).
MW (2024+): If H has bounded

degree and is graded, then %%
r(H) = O(n).

FHW (2024): If H is random of

bounded average degree, then ‘@'
r(H) = O(n). o

Proofs use many different techniques!
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low m
r(H) = O(n).

then

median ordering
+K&vari-Sés-Turdn

DDFGHKLMSS (2020): If H has (or regularity)

bounded degree and bounded o<T—eme" ~—¢ e e
bandwidth, then F(H) = O(n).

FHW (2024): If H has bounded

degree and bounded height, '%‘
then F(H) = O(n).
MW (2024+): If H has bounded

degree and is graded, then %%
r(H) = O(n).

FHW (2024): If H is random of

bounded average degree, then ‘@
r(H) = O(n). o

Proofs use many different techniques!
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low m
r(H) = O(n).

then
median ordering
+K&vari-Sés-Turdn
DDFGHKLMSS (2020): If H has (or regularity)
bounded degree and bounded o . .
bandwidth, then 7(H) = O(n). Agreedy embedding }
FHW (2024): If H has bounded £ -9reedy embedding
degree and bounded height,

then F(H) = O(n).

MW (2024+): If H has bounded
degree and is graded, then %%
r(H) = O(n).

FHW (2024): If H is random of

bounded average degree, then ‘@
r(H) = O(n). o

Proofs use many different techniques!
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low m
r(H) = O(n).

then
median ordering

+K&vari-Sés-Turdn
(or regularity)

DDFGHKLMSS (2020): If H has

bounded degree and bounded o ;
bandwidth, then 7(H) = O(n). Agreedy embedding }

FHW (2024): If H has bounded £_tgreedy embedding

degree and bounded height, | median ordering
then F(H) = O(n). -] +dependent random choice
MW (2024+): If H has bounded +iterated Lovasz Local Lemma

degree and is graded, then %ﬁw@}‘
r(H) = O(n).
FHW (2024): If H is random of

bounded average degree, then ‘@
r(H) = O(n). o

Proofs use many different techniques!
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low m
r(H) = O(n).

then
median ordering
+K&vari-Sés-Turan
DDFGHKLMSS (2020): If H has (or regularity)
bounded degree and bounded o . .
bandwidth, then 7(H) = O(n). Agreedy embedding }

FHW (2024): If H has bounded £_tgreedy embedding

degree and bounded height, | median ordering
then F(H) = O(n). -] +dependent random choice
MW (2024+): If H has bounded +iterated Lovasz Local Lemma

\ T e e
;I((—iglg)re:eoaz;d) is graded, then Sl Crlsealling

+greedy embedding
FHW (2024): If H is random of

+structure of random graphs
bounded average degree, then +greedy embedding

r(H) = O(n). S S i ]
Proofs use many different techniques!
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, ...)

If H has bounded degree and low m
r(H) = O(n).

then
median ordering

+Kd&vari-Soés-Turan
(or regularity)

DDFGHKLMSS (2020): If H has

bounded degree and bounded o ;
bandwidth, then 7(H) = O(n). Agreedy embedding }

FHW (2024): If H has bounded £_tgreedy embedding

degree and bounded height, | median ordering
then F(H) = O(n). -] +dependent random choice
MW (2024+): If H has bounded +iterated Lovasz Local Lemma

\ T e e
;I((—iglg)re:eoaz;d) is graded, then Sl Crlsealling

+greedy embedding
FHW (2024): If H is random of

+structure of random graphs
bounded average degree, then +greedy embedding

r(H) = O(n). S S i ]
Proofs use many different techniques! Is there a unified argument?
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

For all C > 0, there exists a bounded-degree n-vertex acyclic
digraph H with 7(H) > n©.
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢

vertices, and (3) a proof that there is no embedding H < T.
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

Introduction Ramsey numbers Lower bound proof sketch Variations



Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated I
blowup of a cyclic triangle. I @ I
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Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.
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Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'e9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢

vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H — T, some
subinterval of [n] of length > 0.49n is mapped into a single part.
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Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H — T, some
subinterval of [n] of length > 0.49n is mapped into a single part.

Ensure that the induced subgraph on this subinterval has the same
property, so we can iterate.
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Lower bound proof sketch

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°9:(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°9:(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H — T, some
subinterval of [n] of length > 0.49n is mapped into a single part.

Ensure that the induced subgraph on this subinterval has the same
property, so we can iterate. At each step, |T| drops by a factor of 3,
but |[H| drops by a factor of 2.01.
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition

His an interval mesh if
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition
His an interval mesh if

® H has a Hamiltonian path 1 -2 — --- = n.
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition
His an interval mesh if
® H has a Hamiltonian path 1 -2 — --- = n.

e Forall1<a<b<c<d<nwithc—b<100min(b—a,d—c),
there is an edge between [a, b] and [c, d].

0> 0>—0 >0 >0 >0>—0 > 0>—0 > 0>—0 >0
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition
His an interval mesh if
® H has a Hamiltonian path 1 -2 — --- = n.

e Forall1<a<b<c<d<nwithc—b<100min(b—a,d—c),
there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition
His an interval mesh if
® H has a Hamiltonian path 1 -2 — --- = n.

e Forall1<a<b<c<d<nwithc—b<100min(b—a,d—c),
there is an edge between [a, b] and [c, d].

[rabereee e e
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition
high multiscale complexit
His an interval mesh if [ S e yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition
high multiscale complexit
His an interval mesh if [ S P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

0> 0> >8>0 >0 >0 >8>0 >0 >0 >0 >0
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

0> 0> > >0 >0 >0 >0 >0 >0 >0 >0 >0
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

0000000 >0 >0 >—0>—0 >0
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Dl [h' h multiscale complexit J
i ulti Xi
His an interval mesh if 2 P s
® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

0> 0->0->0>0 > 0> 0>0->0 >0 >0
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Lower bound proof sketch: interval meshes
Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.
Definition
high multiscale complexit
His an interval mesh if [ S P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

Introduction

Ramsey numbers Lower bound proof sketch Variations



Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

high multiscale complexit
H is an interval mesh if [ 9 P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

high multiscale complexit
H is an interval mesh if [ 9 P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

J J2 Ja Js
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

high multiscale complexit
H is an interval mesh if [ 9 P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

N J Ja s
Thus, [Ji| > 100 min(|Ji_1], [Jis1])-
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

high multiscale complexit
H is an interval mesh if [ 9 P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),

X

there is an edge between [a, b] and [c, d].

Ji Jo Jg s
Thus, |Ji| > 100 min(|Ji=1], [ Jit1]). So |Ji| = 0.49n for some i.
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

high multiscale complexit
H is an interval mesh if [ 9 P yJ

® H has a Hamiltonianpath 1 -2 —» ... —

° Forall1<a<b<c<d<nwithc—b </lIOOmin(b —a,d—c),
there is an edge between [a, b] and [c, d].

J J2 Ja Js

Thus, |Ji] > 100 min(|Ji=1], [Ji+1]). So |Ji| = 0.49n for some i.
Greedy algorithm yields an interval mesh with max degree < 1000.
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Two variants
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Two variants

Theorem (Sudakov 2011)
If H is a graph with m edges, then r(H) < 20V,
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Two variants

Theorem (Sudakov 2011) [tight for C“q“esJ
If H is a graph with m edges, then r(H) < 2O(¢”7)./
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Two variants

Theorem (Sudakov 2011) [tight for C“q“esJ
If H is a graph with m edges, then r(H) < 2O(¢”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)

If His a digraph with m edges, then F(H) < 20(vm-(loglog m)*?),
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Two variants

Theorem (Sudakov 2011) [tight for C“ques]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.
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Two variants

Theorem (Sudakov 2011) [tight for C“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as
fast as possible, and you want to delay.
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Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as
fast as possible, and you want to delay.
In the analogous undirected problem,
the truth is ©(n).
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Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as
fast as possible, and you want to delay.
In the analogous undirected problem,
the truth is ©(n).

Both the upper and lower bound proofs
mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as

fast as possible, and you want to delay. s e e e
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as
fast as possible, and you want to delay. o I e

In the analogous undirected problem,
the truth is ©(n).

Both the upper and lower bound proofs
mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,

and you orient it. | want to build P, as
fast as possible, and you want to delay. o } e

In the analogous undirected problem,
the truth is ©(n).

Both the upper and lower bound proofs
mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. o } i e
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. o } i e
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. o % i i i
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. o % ; i i
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. s % ; i i
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!
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Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. o % Z i i
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!
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Two variants

Theorem (Sudakov 2011) [tight forC“q“es]
If His a graph with m edges, then r(H) < 20(\/”7)./

Theorem (Brada¢-Morawski-Sudakov-W. 2024 +)
If H is a digraph with m edges, then F(H) < 20(vm-(loglogm)*?),

Theorem (Chiu-W. 2025+)
We can adaptively find I?: by querying O(nlog n) edges; this is tight.

Think of this as a game: | draw an edge,
and you orient it. | want to build P, as

fast as possible, and you want to delay. s % Z 2 7 gmant
In the analogous undirected problem,

the truth is ©(n).

Both the upper and lower bound proofs

mimic those for sorting algorithms!

Variations



Open problems
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® Does the oriented hypercube have linear Ramsey number?
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® Does the oriented hypercube have linear Ramsey number?
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linear Ramsey number?
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® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then F(H) < 20(vVm),
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Open problems

® Does the oriented hypercube have linear Ramsey number?

® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then F(H) < 20(vVm),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.
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® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then F(H) < 20(vVm),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

e Conjecture (AHLLPR): 7(H) < 1000 - F(H —v) for all v € V(H).
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Open problems

® Does the oriented hypercube have linear Ramsey number?

® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then F(H) < 20(vVm),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

e Conjecture (AHLLPR): 7(H) < 1000 - F(H —v) for all v € V(H).
* Every bounded-degree digraph has 7(H) < n©®:(°9") and there
exist H with F(H) > n®. Close the gap.
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Open problems

® Does the oriented hypercube have linear Ramsey number?

® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then F(H) < 20(vVm),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

e Conjecture (AHLLPR): 7(H) < 1000 - F(H —v) for all v € V(H).

* Every bounded-degree digraph has 7(H) < n©®:(°9") and there
exist H with F(H) > n®. Close the gap.

e |f Tis an N-vertex tournament which is g-close to transitive, it

has a transitive subtournament of size Q(;‘l’fg’vl ). Can this be

improved to Q(IO%N)?
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Open problems

® Does the oriented hypercube have linear Ramsey number?

® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then 7(H) < 2°(vV™),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

e Conjecture (AHLLPR): 7(H) < 1000 - F(H —v) for all v € V(H).

* Every bounded-degree digraph has 7(H) < n©®:(°9") and there
exist H with F(H) > n®. Close the gap.

e |f Tis an N-vertex tournament which is g-close to transitive, it

has a transitive subtournament of size Q(;‘l’fg’vl ). Can this be

improved to Q(lo%’\l)?
® Prove general bounds on r(H) in terms of multiscale
complexity. Can we characterize when r(H) = O(n)?
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Open problems

® Does the oriented hypercube have linear Ramsey number?

® Does a random digraph of constant average degree have
linear Ramsey number?

e Conjecture (BMSW): If H has m edges, then 7(H) < 2°(vV™),

e Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

e Conjecture (AHLLPR): 7(H) < 1000 - F(H —v) for all v € V(H).

* Every bounded-degree digraph has 7(H) < n©®:(°9") and there
exist H with F(H) > n®. Close the gap.

e |f Tis an N-vertex tournament which is g-close to transitive, it

has a transitive subtournament of size Q(;‘l’fg’vl ). Can this be

improved to Q(lo%’\l)?

® Prove general bounds on r(H) in terms of multiscale
complexity. Can we characterize when r(H) = O(n)?

e Take your favorite result in Ramsey theory, and prove (or
disprove!) a directed version of it.
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Thank you!
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