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Hamiltonian paths in tournaments

A tournament is a complete directed graph (every pair of vertices is
connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian directed path.

Proof.
Fix a median ordering of the tournament: an order of the vertices
maximizing the number of forward edges. If vi ← vi+1, we could
swap their order. Reading across, we find a Hamiltonian path.
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Hamiltonian cycles?

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle? No.

A transitive tournament has no directed cycles at all.

The only structures we can hope to find in every tournament are
acyclic.
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Some structures we can find

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament contains… on … vertices

directed path [Rédei ’34] N

any oriented path [Thomason ’86] N

out-directed star ⌈N+12 ⌉

any oriented tree [Kühn–Mycroft–Osthus ’11] ⌈N+12 ⌉
any* oriented cycle [Thomason ’86] N

up-right oriented grid [Morawski–W. ’24+] N/1012

oriented hypercube [Morawski–W. ’24+] N0.244

transitive subtournament [Stearns ’59] logN
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Transitive subtournaments

Theorem (Stearns 1959)
Every N-vertex tournament contains a transitive subtournament on
logN vertices.

N
v1

N
2v2

N
4 v3

N
8
…

Theorem (Erdős–Moser 1964)
There exists an N-vertex tournament with no transitive
subtournament on 2 logN vertices.

Proof: In a random tournament,

𝔼[#transitive subtournaments on k vertices] =
(
N
k

)
· k! · 2−(k2).

For k = 2 logN, this quantity is < 1.
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Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

If H has n vertices, ~r(H) ⩽ · · ·

Every N-vertex tournament has… on … vertices

directed path N

n

any oriented path N

n

out-directed star ⌈N+12 ⌉

2n− 2

any oriented tree ⌈N+12 ⌉

2n− 2

any* oriented cycle N

n

up-right oriented grid N/1012

1012n

oriented hypercube N0.244

n4.09

transitive subtournament logN

2n

Definition: The Ramsey number~r(H) of a digraph H is the least N
such that every N-vertex tournament contains a copy of H.
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Directed and undirected Ramsey numbers

Definition
The Ramsey number~r(H) of a
digraph H is the minimum N
such that every N-vertex
tournament contains a copy of
H.

For a transitive tournament
−→
Tn,

2n/2 ⩽ ~r(
−→
Tn) ⩽ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ⩾ 2εn.

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,

2n/2 ⩽ r(Kn) ⩽ 3.8n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ⩾ 2εn.

So the Ramsey number is exponential if H is dense.

For the rest of the talk, we’ll focus on sparse (di)graphs.
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Sparse graphs and digraphs

If H is a tree or cycle, then r(H) = O(n).

Burr–Erdős (1975): Is r(H) = O(n) for all sparse H?

Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983)
If H has n vertices and maximum degree ∆, then r(H) = O∆(n).

Similarly, for oriented trees, cycles, grids,… we have~r(H) = O(n).

Bucić–Letzter–Sudakov (2019): Is~r(H) = O(n) for all sparse H? No!

Theorem (Fox–He–W. 2024)
For all C > 0, there is a bounded-degree n-vertex H with~r(H) > nC.

“Theorem” (DDFGHKLMSS, FHW, MW, …)
If H has bounded degree and low multiscale complexity, then
~r(H) = O(n).
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Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, …)
If H has bounded degree and low multiscale complexity, then
~r(H) = O(n).

DDFGHKLMSS (2020): If H has
bounded degree and bounded
bandwidth, then~r(H) = O(n).

FHW (2024): If H has bounded
degree and bounded height,
then~r(H) = O(n).

MW (2024+): If H has bounded
degree and is graded, then
~r(H) = O(n).

FHW (2024): If H is random of
bounded average degree, then
~r(H) = Õ(n).
Proofs use many different techniques!

median ordering
+Kővári–Sós–Turán
(or regularity)

greedy embedding
+greedy embedding

median ordering
+dependent random choice
+iterated Lovász Local Lemma

greedy embedding
+greedy embedding
+structure of random graphs
+greedy embedding

Is there a unified argument?
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Proofs use many different techniques!

median ordering
+Kővári–Sós–Turán
(or regularity)

greedy embedding
+greedy embedding

median ordering
+dependent random choice
+iterated Lovász Local Lemma

greedy embedding
+greedy embedding
+structure of random graphs
+greedy embedding

Is there a unified argument?

Introduction Ramsey numbers Lower bound proof sketch Variations



Low multiscale complexity

“Theorem” (DDFGHKLMSS, FHW, MW, …)
If H has bounded degree and low multiscale complexity, then
~r(H) = O(n).

DDFGHKLMSS (2020): If H has
bounded degree and bounded
bandwidth, then~r(H) = O(n).

FHW (2024): If H has bounded
degree and bounded height,
then~r(H) = O(n).

MW (2024+): If H has bounded
degree and is graded, then
~r(H) = O(n).

FHW (2024): If H is random of
bounded average degree, then
~r(H) = Õ(n).
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Lower bound proof sketch

Theorem (Fox–He–W. 2024)
For all C > 0, there exists a bounded-degree n-vertex acyclic
digraph H with~r(H) > nC.

We need (1) a construction of H, (2) a tournament T on nlog2(3)−ε

vertices, and (3) a proof that there is no embedding H ↪→ T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H ↪→ T, some
subinterval of [n] of length ⩾ 0.49n is mapped into a single part.

Ensure that the induced subgraph on this subinterval has the same
property, so we can iterate. At each step, |T| drops by a factor of 3,
but |H| drops by a factor of 2.01.
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Lower bound proof sketch: interval meshes

Want: In any embedding H ↪→ T, some subinterval of [n] of length
⩾ 0.49n is mapped into a single part, and this is hereditary.

Definition
H is an interval mesh if

• H has a Hamiltonian path 1→ 2→ · · · → n.
• For all 1 ⩽ a < b ⩽ c < d ⩽ n with c− b ⩽ 100min(b− a,d− c),
there is an edge between [a,b] and [c,d].

J1 J2 J3 J4 J5 J6

Thus, |Ji| > 100min(|Ji−1|, |Ji+1|). So |Ji| ⩾ 0.49n for some i.
Greedy algorithm yields an interval mesh with max degree ⩽ 1000.
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Two variants

Theorem (Sudakov 2011)
If H is a graph with m edges, then r(H) ⩽ 2O(

√
m).

tight for cliques

Theorem (Bradač–Morawski–Sudakov–W. 2024+)
If H is a digraph with m edges, then~r(H) ⩽ 2O(

√
m·(log logm)3/2).

Theorem (Chiu–W. 2025+)
We can adaptively find

−→
Pn by querying O(n logn) edges; this is tight.

Think of this as a game: I draw an edge,
and you orient it. I want to build

−→
Pn as

fast as possible, and you want to delay.
In the analogous undirected problem,
the truth is Θ(n).
Both the upper and lower bound proofs
mimic those for sorting algorithms!
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Open problems

• Does the oriented hypercube have linear Ramsey number?
• Does a random digraph of constant average degree have
linear Ramsey number?

• Conjecture (BMSW): If H hasm edges, then~r(H) ⩽ 2O(
√
m).

• Conjecture (AHLLPR): If H has linear Ramsey number, so does
every constant-sized blowup of H.

• Conjecture (AHLLPR): ~r(H) ⩽ 1000 ·~r(H− v) for all v ∈ V(H).
• Every bounded-degree digraph has~r(H) ⩽ nO∆(log n), and there
exist H with~r(H) ⩾ nC∆ . Close the gap.

• If T is an N-vertex tournament which is ε-close to transitive, it
has a transitive subtournament of size Ω( logN

ε log 1
ε
). Can this be

improved to Ω( logNε )?
• Prove general bounds on~r(H) in terms of multiscale
complexity. Can we characterize when~r(H) = O(n)?

• Take your favorite result in Ramsey theory, and prove (or
disprove!) a directed version of it.
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Thank you!
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