Finding structures in tournaments

Yuval Wigderson ETH Zürich

Sparse (Graphs) Coalition Topics in Ramsey theory September 9, 2025

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices maximizing the number of forward edges.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices maximizing the number of forward edges.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices maximizing the number of forward edges. If $v_i \leftarrow v_{i+1}$, we could swap their order. Reading across, we find a Hamiltonian path.

A tournament is a complete directed graph (every pair of vertices is connected by a directed edge).

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Proof.

Fix a median ordering of the tournament: an order of the vertices maximizing the number of forward edges. If $v_i \leftarrow v_{i+1}$, we could swap their order. Reading across, we find a Hamiltonian path.

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Question: What structures exist in every *N*-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle?

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle? No.

A transitive tournament has no directed cycles at all.

Question: What structures exist in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian directed path.

Does every tournament contain a Hamiltonian directed cycle? No.

A transitive tournament has no directed cycles at all.

The only structures we can hope to find in every tournament are acyclic.

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star		$\lceil \frac{N+1}{2} \rceil$

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star		$\lceil \frac{N+1}{2} \rceil$
any oriented tree	[Kühn-Mycroft-Osthus '11]	$\lceil \frac{N+1}{2} \rceil$

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star		$\lceil \frac{N+1}{2} \rceil$
any oriented tree	[Kühn-Mycroft-Osthus '11]	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	[Thomason '86]	N

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star	•••	$\lceil \frac{N+1}{2} \rceil$
any oriented tree	ycroft-Osthus '11]	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	[Thomason '86]	N
up-right oriented grid	[Bradač-Morawski- Sudakov-W. '25+]	10 ⁻¹² N

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star		$\lceil \frac{N+1}{2} \rceil$
any oriented tree	[Kühn-Mycroft-Osthus '11]	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	[Thomason '86]	N
up-right oriented grid	[Bradač-Morawski- Sudakov-W. '25+]	10 ⁻¹² N
oriented hypercube	[Bradač-Morawski- Sudakov-W. '25+]	N ^{0.244}

Every N-vertex tournament contains		on vertices
directed path	[Rédei '34]	N
any oriented path	[Thomason '86]	N
out-directed star		$\lceil \frac{N+1}{2} \rceil$
any oriented tree	[Kühn-Mycroft-Osthus '11]	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	[Thomason '86]	N
up-right oriented grid	[Bradač-Morawski- Sudakov-W. ′25+]	10 ⁻¹² N
oriented hypercube	[Bradač-Morawski- Sudakov-W. '25+]	N ^{0.244}
transitive subtournament	[Stearns '59]	log N

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on log N vertices.

Theorem (Erdős-Moser 1964)

There exists an N-vertex tournament with no transitive subtournament on 2 log N vertices.

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on log N vertices.

Theorem (Erdős-Moser 1964)

There exists an N-vertex tournament with no transitive subtournament on 2 log N vertices.

Proof: In a random tournament,

 $\mathbb{E}[\#$ transitive subtournaments on k vertices]

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on log N vertices.

Theorem (Erdős-Moser 1964)

There exists an N-vertex tournament with no transitive subtournament on 2 log N vertices.

Proof: In a random tournament,

 $\mathbb{E}[\# \text{transitive subtournaments on } k \text{ vertices}] = \binom{N}{k} \cdot k! \cdot 2^{-\binom{k}{2}}.$

Theorem (Stearns 1959)

Every N-vertex tournament contains a transitive subtournament on log N vertices.

Theorem (Erdős-Moser 1964)

There exists an N-vertex tournament with no transitive subtournament on 2 log N vertices.

Proof: In a random tournament,

 $\mathbb{E}[\#\text{transitive subtournaments on } k \text{ vertices}] = \binom{N}{k} \cdot k! \cdot 2^{-\binom{k}{2}}.$

For $k = 2 \log N$, this quantity is < 1.

Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament has	on vertices
directed path	N
any oriented path	N
out-directed star	$\lceil \frac{N+1}{2} \rceil$
any oriented tree	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	N
up-right oriented grid	$10^{-12}N$
oriented hypercube	N ^{0.244}
transitive subtournament	log N

Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

Every N-vertex tournament has	on vertices
directed path	N
any oriented path	N
out-directed star	$\lceil \frac{N+1}{2} \rceil$
any oriented tree	$\lceil \frac{N+1}{2} \rceil$
any* oriented cycle	N
up-right oriented grid	$10^{-12}N$
oriented hypercube	$N^{0.244}$
transitive subtournament	log N

Definition: The Ramsey number $\vec{r}(H)$ of a digraph H is the least N such that every N-vertex tournament contains a copy of H.

Ramsey numbers of digraphs

Question: What structures exist in every N-vertex tournament?

If <i>H</i> has <i>n</i> vertices,		$\vec{r}(H) \leqslant \cdots$
Every N-vertex tournament has	on vertices	
directed path	N	n
any oriented path	N	n
out-directed star	$\lceil \frac{N+1}{2} \rceil$	2n – 2
any oriented tree	$\lceil \frac{N+1}{2} \rceil$	2n – 2
any* oriented cycle	N	n
up-right oriented grid	10 ⁻¹² N	10 ¹² n
oriented hypercube	$N^{0.244}$	n ^{4.09}
transitive subtournament	log N	2 ⁿ

Definition: The Ramsey number $\vec{r}(H)$ of a digraph H is the least N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leqslant r(K_n) \leqslant 3.8^n.$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leqslant r(K_n) \leqslant 3.8^n.$$

The upper bound implies that r(H) exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^2 edges, then

$$\vec{r}(H) \geqslant 2^{\varepsilon n}$$
.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2}\leqslant r(K_n)\leqslant 3.8^n.$$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then

$$r(H) \geqslant 2^{\varepsilon n}$$
.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament \overrightarrow{T}_n ,

$$2^{n/2} \leqslant \vec{r}(\overrightarrow{T_n}) \leqslant 2^n$$
.

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^2 edges, then

$$\vec{r}(H) \geqslant 2^{\varepsilon n}$$
.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

$$2^{n/2} \leqslant r(K_n) \leqslant 3.8^n.$$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then

$$r(H) \geqslant 2^{\varepsilon n}$$
.

So the Ramsey number is exponential if *H* is dense. For the rest of the talk, we'll focus on sparse (di)graphs.

If *H* is a tree or cycle, then r(H) = O(n).

```
If H is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

Similarly, for oriented trees, cycles, grids,... we have $\vec{r}(H) = O(n)$.

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

Similarly, for oriented trees, cycles, grids,... we have $\vec{r}(H) = O(n)$. Bucić-Letzter-Sudakov (2019): Is $\vec{r}(H) = O(n)$ for all sparse H?

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

Similarly, for oriented trees, cycles, grids,... we have $\vec{r}(H) = O(n)$. Bucić-Letzter-Sudakov (2019): Is $\vec{r}(H) = O(n)$ for all sparse H? No!

Theorem (Fox-He-W. 2024)

For all C > 0, there is a bounded-degree n-vertex H with $\vec{r}(H) > n^{C}$.

```
If H is a tree or cycle, then r(H) = O(n).
Burr-Erdős (1975): Is r(H) = O(n) for all sparse H?
```

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

Similarly, for oriented trees, cycles, grids,... we have $\vec{r}(H) = O(n)$. Bucić-Letzter-Sudakov (2019): Is $\vec{r}(H) = O(n)$ for all sparse H? No!

Theorem (Fox-He-W. 2024)

For all C > 0, there is a bounded-degree n-vertex H with $\vec{r}(H) > n^{C}$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If *H* is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If *H* is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If *H* is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If H is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* is random of bounded average degree, then $\vec{r}(H) = \widetilde{O}(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If H is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* is random of bounded average degree, then $\vec{r}(H) = \widetilde{O}(n)$.

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If H is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* is random of bounded average degree, then $\vec{r}(H) = \widetilde{O}(n)$.

Proofs use many different techniques!

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has (or regularity) bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If H has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If *H* is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* is random of bounded average degree, then $\vec{r}(H) = \widetilde{O}(n)$.

Proofs use many different techniques!

+Kővári-Sós-Turán

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)

If H has bounded degree and low multiscale complexity, then $\vec{r}(H) = O(n)$.

DDFGHKLMSS (2020): If H has bounded degree and bounded bandwidth, then $\vec{r}(H) = O(n)$.

FHW (2024): If H has bounded degree and bounded height, then $\vec{r}(H) = O(n)$.

AHLLPR (2024+): If H is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$.

FHW (2024): If *H* is random of bounded average degree, then $\vec{r}(H) = \widetilde{O}(n)$.

Proofs use many different techniques!

+Kővári-Sós-Turán

Low multiscale complexity

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...) If H has bounded degree and low multiscale complexity, then median ordering $\vec{r}(H) = O(n)$. +Kővári-Sós-Turán **DDFGHKLMSS** (2020): If H has \leftarrow (or regularity) bounded degree and bounded greedy embedding bandwidth, then $\vec{r}(H) = O(n)$. +greedy embedding **FHW (2024):** If *H* has bounded degree and bounded height, median ordering then $\vec{r}(H) = O(n)$. +Kővári-Sós-Turán +breadth-first search **AHLLPR (2024+):** If *H* is a bounded blowup of a tree, then $\vec{r}(H) = O(n)$. **FHW (2024):** If *H* is random of bounded average degree, then $\vec{r}(H) = \tilde{O}(n)$. Proofs use many different techniques!

Low multiscale complexity

"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...) If H has bounded degree and low multiscale complexity, then median ordering $\vec{r}(H) = O(n)$. +Kővári-Sós-Turán **DDFGHKLMSS** (2020): If H has \leq (or regularity) bounded degree and bounded greedy embedding bandwidth, then $\vec{r}(H) = O(n)$. +greedy embedding **FHW (2024):** If *H* has bounded degree and bounded height, median ordering then $\vec{r}(H) = O(n)$. +Kővári-Sós-Turán +breadth-first search **AHLLPR (2024+):** If *H* is a bounded blowup of a tree, then greedy embedding $\vec{r}(H) = O(n)$. +greedy embedding **FHW (2024):** If *H* is random of +structure of random graphs bounded average degree, then « +greedy embedding $\vec{r}(H) = \tilde{O}(n)$. Proofs use many different techniques!

Introduction

Ramsey numbers

Lower bound proof sketch

Low multiscale complexity

```
"Theorem" (DDFGHKLMSS, FHW, AHLLPR, BMSW, ...)
If H has bounded degree and low multiscale complexity, then
                                  median ordering
\vec{r}(H) = O(n).
                                   +Kővári-Sós-Turán
DDFGHKLMSS (2020): If H has \leq
                                  (or regularity)
bounded degree and bounded
                                  greedy embedding
bandwidth, then \vec{r}(H) = O(n).
                                  +greedy embedding
FHW (2024): If H has bounded
degree and bounded height,
                                   median ordering
then \vec{r}(H) = O(n).
                                   +Kővári-Sós-Turán
                                   +breadth-first search
AHLLPR (2024+): If H is a
bounded blowup of a tree, then
                                  greedy embedding
\vec{r}(H) = O(n).
                                  +greedy embeddina
FHW (2024): If H is random of
                                  +structure of random graphs
bounded average degree, then <
                                  +greedy embedding
\vec{r}(H) = O(n).
```

Proofs use many different techniques! Is there a unified argument?

Introduction Ramsey numbers Lower bound proof sketch Variations

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Local edge structure: Can partition V(H) into parts so that all edges go between parts at bounded distance.

Bounded bandwidth

Bounded height

Bounded blowup of a tree

Theorem (Bradač-Morawski-Sudakov-W. 2025+)

If H has bounded degree and local edge structure, then $\vec{r}(H) = O(n)$.

Local edge structure: Can partition V(H) into parts so that all edges go between parts at bounded distance.

Bounded bandwidth

Bounded height

Bounded blowup of a tree

Graded

Introduction Ramsey numbers Lower bound proof sketch Variations

Theorem (Fox-He-W. 2024)

For all C > 0, there exists a bounded-degree n-vertex acyclic digraph H with $\vec{r}(H) > n^C$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Theorem (Fox-He-W. 2024)

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3) - \varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, |T| drops by a factor of 3, but |H| drops by a factor of 2.01.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

• *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- high multiscale complexity
- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\color{red}\bullet \color{black} \color{red} \color{black} \color{bl$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\color{red}\bullet \color{black} \color{red} \color{black} \color{bl$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\color{red}\bullet \color{black} \color{red} \color{black} \color{bl$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\bullet \hspace{-0.2cm} \hspace{$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\color{red}\bullet \color{black} \color{red} \color{black} \color{bl$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

$$\color{red}\bullet \color{black} \color{red} \color{black} \color{bl$$

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- high multiscale complexity
- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some i.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geqslant 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$
- For all $1 \le a < b \le c < d \le n$ with $c b \le 00 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some i. Greedy algorithm yields an interval mesh with max degree ≤ 1000 .

Introduction Ramsey numbers Lower bound proof sketch Variations

Theorem (Sudakov 2011)

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leqslant 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leqslant 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Theorem (Sudakov 2011)

tight for cliques

If H is a graph with m edges, then $r(H) \leq 2^{O(\sqrt{m})}$.

Theorem (Bradač-Morawski-Sudakov-W. 2024+)

If H is a digraph with m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m} \cdot (\log \log m)^{3/2})}$.

Theorem (Chiu-W. 2025+)

We can adaptively find $\overrightarrow{P_n}$ by querying $O(n \log n)$ edges; this is tight.

Think of this as a game: I draw an edge, and you orient it. I want to build $\overrightarrow{P_n}$ as fast as possible, and you want to delay. In the analogous undirected problem, the truth is $\Theta(n)$.

Introduction Ramsey numbers Lower bound proof sketch Variations

• Does the oriented hypercube have linear Ramsey number?

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leqslant 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.
- Conjecture (AHLLPR): $\vec{r}(H) \leq 1000 \cdot \vec{r}(H-v)$ for all $v \in V(H)$.

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.
- Conjecture (AHLLPR): $\vec{r}(H) \leq 1000 \cdot \vec{r}(H-v)$ for all $v \in V(H)$.
- Every bounded-degree digraph has $\vec{r}(H) \leqslant n^{O_{\Delta}(\log n)}$, and there exist H with $\vec{r}(H) \geqslant n^{C_{\Delta}}$. Close the gap.

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.
- Conjecture (AHLLPR): $\vec{r}(H) \leq 1000 \cdot \vec{r}(H-v)$ for all $v \in V(H)$.
- Every bounded-degree digraph has $\vec{r}(H) \leqslant n^{O_{\Delta}(\log n)}$, and there exist H with $\vec{r}(H) \geqslant n^{C_{\Delta}}$. Close the gap.
- If T is an N-vertex tournament which is ε -close to transitive, it has a transitive subtournament of size $\Omega(\frac{\log N}{\varepsilon \log \frac{1}{\varepsilon}})$. Can this be

```
improved to \Omega(\frac{\log N}{\epsilon})?
```

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.
- Conjecture (AHLLPR): $\vec{r}(H) \leq 1000 \cdot \vec{r}(H-v)$ for all $v \in V(H)$.
- Every bounded-degree digraph has $\vec{r}(H) \leqslant n^{O_{\Delta}(\log n)}$, and there exist H with $\vec{r}(H) \geqslant n^{C_{\Delta}}$. Close the gap.
- If T is an N-vertex tournament which is ε -close to transitive, it has a transitive subtournament of size $\Omega(\frac{\log N}{\varepsilon \log \frac{1}{\varepsilon}})$. Can this be improved to $\Omega(\frac{\log N}{\varepsilon})$?
- Prove general bounds on $\vec{r}(H)$ in terms of multiscale complexity. Can we characterize when $\vec{r}(H) = O(n)$?

- Does the oriented hypercube have linear Ramsey number?
- Does a random digraph of constant average degree have linear Ramsey number?
- Conjecture (BMSW): If H has m edges, then $\vec{r}(H) \leq 2^{O(\sqrt{m})}$.
- Conjecture (AHLLPR): If *H* has linear Ramsey number, so does every constant-sized blowup of *H*.
- Conjecture (AHLLPR): $\vec{r}(H) \leq 1000 \cdot \vec{r}(H-v)$ for all $v \in V(H)$.
- Every bounded-degree digraph has $\vec{r}(H) \leqslant n^{O_{\Delta}(\log n)}$, and there exist H with $\vec{r}(H) \geqslant n^{C_{\Delta}}$. Close the gap.
- If T is an N-vertex tournament which is ε -close to transitive, it has a transitive subtournament of size $\Omega(\frac{\log N}{\varepsilon \log \frac{1}{\varepsilon}})$. Can this be

improved to $\Omega(\frac{\log N}{\varepsilon})$?

- Prove general bounds on $\vec{r}(H)$ in terms of multiscale complexity. Can we characterize when $\vec{r}(H) = O(n)$?
- Take your favorite result in Ramsey theory, and prove (or disprove!) a directed version of it.

Thank you!