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Abstract. A highly influential result of Nikiforov states that if an n-vertex graph G contains at least

γnh copies of a fixed h-vertex graph H, then G contains a blowup of H of order Ωγ,H(logn). While the

dependence on n is optimal, the correct dependence on γ is unknown; all known proofs yield bounds that are

polynomial in γ, but the best known upper bound, coming from random graphs, is only logarithmic in γ. It

is a major open problem to narrow this gap.

We prove that if H is triangle-free, then the logarithmic behavior of the upper bound is the truth. That

is, under the assumptions above, G contains a blowup of H of order ΩH(logn/log(1/γ)). This is the first

non-trivial instance where the optimal dependence in Nikiforov’s theorem is known.

As a consequence, we also prove an upper bound on multicolor Ramsey numbers of blowups of triangle-free

graphs, proving that the dependence on the number of colors is polynomial once the blowup is sufficiently

large. This shows that, from the perspective of multicolor Ramsey numbers, blowups of fixed triangle-free

graphs behave like bipartite graphs.

1. Introduction

1.1. Background and main results. Given an integer k and a graph H, its blowup H[k] is the graph

obtained from H by replacing every vertex by an independent set of order k, and every edge by a copy of the

complete bipartite graph Kk,k. Blowups are fundamental objects in graph theory, and many important results

in extremal graph theory concern the problem of finding large H-blowups in graphs with certain properties.

For example, the Erdős–Stone theorem [14] states that given any graph H, integer k, and parameter ε > 0,

any sufficiently large graph G with edge density at least 1 − 1
χ(H)−1 + ε contains H[k] as a subgraph. Much

of the subsequent work in extremal graph theory, culminating in the Chvátal–Szemerédi theorem [7], has

been focused on determining the optimal “sufficiently large” condition in this theorem.

A closely related line of research was initiated by Nikiforov [30, 31], who proved the following remarkable

theorem.

Theorem 1.1 (Nikiforov [30, 31]). Let H be an h-vertex graph, let γ > 0, and let n be sufficiently large. If

G is an n-vertex graph with at least γnh copies of H, then G contains an H-blowup H[k], where

k ≥ cH(γ) log n,

for some constant cH(γ) > 0 depending only on γ and H.

This result gives the best possible dependence on n, since a standard computation shows that a random n-

vertex graph has, with high probability, Ω(nh) copies of H and no copy of H[k] for any k ≥ 2 log n. We remark
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too that one natural approach to proving such a theorem—passing to an auxiliary h-uniform hypergraph

whose edges are the H-copies in G—does not work, and can only prove a bound of k = Ω((log n)
1

h−1 ). Thus,

Theorem 1.1 is one of many theorems (in addition to the famous (6,3) theorem [34], among others) capturing

the idea that the H-copies in a graph G have extra structure beyond what is found in a general h-uniform

hypergraph.

While Theorem 1.1 gives the optimal n-dependence, the optimal dependence on γ and H is unknown.

Nikiforov proved that, for any fixed graph H, one can take cH(γ) = Ω(γh) if H = Kh is a complete graph, and

cH(γ) = Ω(γh2

) in general. However, this is very far from the best known upper bound cH(γ) = OH(1/log 1
γ ),

which again comes from considering a random graph of the appropriate edge density, namely γ1/e(H).

Theorem 1.1 is an extremely useful result with many applications (e.g. [16, 21, 32, 33]), and as such, there

have been several attempts to improve the bounds on cH(γ). Rödl and Schacht [33] proved that we may take

cKh
(γ) ≥ γ1+o(1) when H is complete, and Fox–Luo–Wigderson [16] improved this to cH(γ) ≥ γ1−1/e(H)+o(1)

for all H. However, just as in Nikiforov’s original argument, all of these bounds are still polynomial in γ,

whereas the best known upper bound is logarithmic. The only case where the truth is known is when H

is bipartite (which is a degenerate case of the problem); in this case, the Kővári–Sós–Turán theorem [24]

immediately implies that cH(γ) = ΩH(1/log 1
γ ), matching the upper bound up to a constant factor.

Our main result proves the same bound for all triangle-free graphs H, yielding the first non-trivial case

where the optimal bound in Theorem 1.1 is known.

Theorem 1.2. For every triangle-free graph H on h vertices, there exists a constant αH > 0 such that the

following holds for all 0 < γ ≤ 1
2 and all n. If G is an n-vertex graph with at least γnh copies of H, then

H[k] ⊆ G, where

k ≥ αH
log n

log 1
γ

.

It is natural to conjecture that the same result is true for all graphs H. However, it appears that proving

this, even in the simplest case of H = K3, would require substantial new techniques.

As a consequence of Theorem 1.2, we obtain a surprising result about multicolor Ramsey numbers. Recall

that, for a graph F and an integer q ≥ 2, the Ramsey number r(F ; q) is defined as the least integer N such

that every q-coloring of E(KN ) contains a monochromatic copy of F . In general, our understanding of r(F ; q)

is rather poor; for example, it is a major open problem [12, 17, 29] to determine whether r(K3; q) grows

exponentially or super-exponentially with q, and an even more major open problem [5, 8, 35, 36] to determine

the growth rate of r(Kk; 2) as k → ∞. However, for complete bipartite graphs, our understanding is fairly

complete, and it is known [6] that

qck ≤ r(Kk,k; q) ≤ qCk (1)

for all q, k ≥ 2, where C > c > 0 are absolute constants. Here, the lower bound follows from a random

coloring, and the upper bound follows from the Kővári–Sós–Turán theorem. In particular, this implies that

for fixed F , r(F ; q) grows polynomially in q if F is bipartite, whereas it is easy to see1 that r(F ; q) grows

at least exponentially in q if not. However, our next result shows that if F is a large blowup of a fixed

triangle-free graph, then the dependence on q does eventually become polynomial.

Theorem 1.3. Let H be an h-vertex triangle-free graph, and let q ≥ 2 be an integer. If k ≥ 100hq4h
2

, then

r(H[k]; q) ≤ qΛHk,

1Indeed, since K2q is the edge-union of q bipartite graphs, we have r(F ; q) > 2q in case F is non-bipartite.
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where ΛH > 0 is a constant depending only on H.

This result is best possible up to the constant ΛH , since a random coloring again witnesses that r(H[k]; q) ≥
qck for every non-empty graph H and some absolute constant c > 0. Moreover, as discussed above, the

assumption that k is sufficiently large is also necessary, since the dependence on q is super-polynomial if k is

fixed and q is large whenever H is non-bipartite. In fact, this argument shows that the “sufficiently large”

condition on k in Theorem 1.3 is nearly best possible in terms of the q-dependence, in that k must be at least

of order qΩH(1) for such a statement such as Theorem 1.3 to be true.

1.2. Discussion and corollaries. One interesting feature of Theorem 1.2 is that we do not assume that n

is sufficiently large with respect to γ, in contrast to previous results on this topic. In particular, Theorem 1.2

gives a non-trivial result even when γ is a small negative power of n, as stated in the following result.

Corollary 1.4. Let H be an h-vertex triangle-free graph, and let G be an n-vertex graph. If G contains at

least nh−αH/k copies of H, then H[k] ⊆ G.

Indeed, Corollary 1.4 follows immediately from Theorem 1.2 by plugging in γ = n−αH/k. This result can

be equivalently stated in the language of generalized extremal numbers [1], where we recall that ex(n,H, F )

denotes the maximum number of copies of H that can appear in an n-vertex F -free graph. In this language,

Corollary 1.4 states that

ex(n,H,H[k]) < nh−αH/k

for all triangle-free H. For general graphs H, the best known upper bound for this problem follows by a

reduction to a hypergraph extremal problem, which yields the bound

ex(n,H,H[k]) = OH

(
nh−1/kh−1

)
(2)

for any h-vertex graph H. Recently, several authors [2, 3, 28] have attempted to improve this bound; in

particular, the results of [2, 3] imply that ex(n,H,H[k]) = o(nh−1/kh−1

). However, their proof techniques rely

on the (hyper)graph removal lemma, and therefore give only a very slight improvement over (2). In contrast,

Corollary 1.4 gives a power-savings improvement over (2) whenever k is sufficiently large in terms of H; to

the best of our knowledge, this is the first example of such a power-savings improvement for a non-bipartite

graph H. We remark that proving an analogue of Corollary 1.4 in the first non-trivial case of H = K3 would,

in particular, make progress towards a conjecture of Fox, Sankar, Simkin, Tidor, and Zhou [18, Conjecture

6.4] on the extremal numbers of Latin squares.

More generally, one can let γ = γ(n) decay to 0 at some rate as n → ∞, and Theorem 1.2 can still yield

useful results. Results along these lines for other choices of γ(n) have implications for certain hypergraph

extremal problems. For example, Theorem 1.2 shows that if G has at least exp(−
√

log n)nh copies of a

triangle-free graph H, then it contains a blowup of H of order Ω(
√

log n). Rödl and Schacht [33, Problem

3] showed that such a statement for H = K3 would yield a result like Theorem 1.1 in hypergraphs, which

remains a major open problem. Similarly, Conlon, Fox, and Sudakov [9, Theorem 1.1] proved a certain

analogue of the Erdős–Hajnal conjecture for 3-uniform hypergraphs, but conjectured [9, Conjecture 1; 10,

Conjecture 3.16] that their result could be quantitatively strengthened. The main barrier to improving their

result is strengthening a key technical lemma [9, Lemma 3.3], which would roughly boil down to proving

that an n-vertex graph with Ω(n3/log n) triangles contains a copy of K3[k] with k ≥ (log n)1−o(1). Again,

Theorem 1.2 implies that such a result holds if we replace H by any triangle-free graph.
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While blowups are interesting in their own right, results about graph blowups are generally of great

utility, and often immediately imply results about other graphs. For example, the following is an immediate

consequence of Theorem 1.3, combined with a deep result of  Luczak [27] on the homomorphism threshold of

triangle-free graphs.

Corollary 1.5. For every β > 0, there exists Cβ > 0 such that the following holds for all q ≥ 2 and all

sufficiently large k. If F is a k-vertex triangle-free graph with minimum degree at least ( 1
3 + β)k, then

r(F ; q) ≤ qCβk.

Indeed, the result of  Luczak [27] mentioned above states that there exists a triangle-free graph2 Hβ ,

depending only on β, such that any graph F satisfying the assumption of Corollary 1.5 is a subgraph of

Hβ [k], and thus Corollary 1.5 is an immediate consequence of Theorem 1.3.

As discussed above, it is natural to conjecture that Theorem 1.2 holds for all H. If true, this would imply

that Theorem 1.3 holds for all H; in particular, the H = Kh case of this result would imply that r(F ; q) is

polynomial in q whenever F is a sufficiently large graph of bounded chromatic number. We believe that such

a statement is interesting in its own right, as it shows that the bipartite behavior carries through whenever

χ(F ) is bounded. Moreover, proving such a statement may be easier than extending Theorem 1.2 to all H.

Even the H = K3 case seems interesting and challenging.

Conjecture 1.6. For all q ≥ 2 and all sufficiently large k, we have

r(Kk,k,k; q) ≤ qCk,

where C > 0 is an absolute constant.

1.3. Organization. We provide high-level proof sketches of our main results in Section 2. We then proceed

to prove Theorem 1.2 in Section 3, and Theorem 1.3 in Section 4. We end in Section 5 with some concluding

remarks.

All logarithms in this paper are to base 2. We systematically omit floor and ceiling signs whenever they

are not crucial.

2. Proof outlines

Although the proofs of Theorems 1.2 and 1.3 are fairly short, we now give an outline of their proofs,

beginning with Theorem 1.2.

2.1. Proof sketch of Theorem 1.2. Let us fix a triangle-free graph H with vertex set [h], and an n-vertex

graph G with at least γnh copies of H. By a standard averaging argument, we can pass to a partite setting,

namely finding disjoint sets V1, . . . , Vh ⊆ V (G) containing at least γ
∏h

i=1|Vi| canonical copies of H, where a

copy is canonical if the ith vertex of H lies in Vi for all i ∈ [h].

Without loss of generality, let us assume that the neighbors of vertex h in H are vertices 1, 2, . . . , t,

for some t < h. We construct an auxiliary bipartite graph Γ = (A,B,E), where A = V1 × · · · × Vt and

B = Vt+1 × · · · × Vh, in which (v1, . . . , vt) ∼Γ (vt+1, . . . , vh) if (v1, . . . , vh) form a canonical copy of H. The

crucial property of Γ, and the only place in the proof where we use the triangle-freeness of H, is the following:

for every (vt+1, . . . , vh) ∈ B, its neighborhood in Γ is of the form S1 × · · · × St ⊆ A, for some sets Si ⊆ Vi.

2In [4, Corollary 4.3(3)], a precise description of these graphs Hβ is given; they are the so-called Vega graphs.
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In other words, neighborhoods of vertices in B are not arbitrary subsets of A, but rather highly structured

product sets, for the following reason. For a given vertex (vt+1, . . . , vh) ∈ B, if its components do not

form a copy of H[{t + 1, . . . , h}], then it has no neighbors in A. In the other case, by definition, a vertex

(v1, . . . , vt) ∈ A is a neighbor of (vt+1, . . . , vh) ∈ B if and only if, for every i, the vertex vi is adjacent in G to

all vj with ij ∈ E(H). However, since H is triangle-free, the set {1, . . . , t} ⊆ V (H) is an independent set,

hence for any i the set of such j is contained in {t + 1, . . . , h}. In other words, the condition that (v1, . . . , vt)

is a neighbor of (vt+1, . . . , vh) is simply the conjunction of t different conditions, one for each i ∈ [t], and there

is no interaction between these conditions. This proves that the neighborhood of (vt+1, . . . , vh) does indeed

have the claimed product structure. As an immediate consequence, we note that the common neighborhood

of any B′ ⊆ B also has a product structure, since the intersection of product sets is another product set.

Now, we note that since G contains many canonical copies of H, the graph Γ must be dense; in fact, it has

at least γ|A||B| edges. We now apply the dependent random choice technique to this graph3, by choosing a

set B∗ ⊆ B of s = Θ(log n/log(1/γ)) random vertices from B. One can check that with positive probability,

the following three “good events” occur:

• letting A′ ⊆ A be the common neighborhood of B∗, we have that |A′| ≥ |A|/
√
n;

• there are at least γC |A′||B| edges of Γ between A′ and B, for some constant C > 0;

• and the vertices in B∗, which are elements of Vt+1×· · ·×Vh, have at least s/2 distinct final coordinates.

Unpacking what this all means, and recalling the product structure of A′, we see that we can find the following

structure. There is a set V ∗
h ⊆ Vh, of size at least s/2 = Ω(log n/log(1/γ)), and sets V ′

1 ⊆ V1, . . . , V
′
t ⊆ Vt, each

of size at least
√
n, such that V ∗

h is complete to each V ′
i , and the number of canonical copies of H ′ := H \ {h}

among V ′
1 , . . . , V

′
t , Vt+1, . . . , Vh−1 is at least γC |V ′

1 | · · · |V ′
t ||Vt+1| · · · |Vh−1|. If we can find a blowup H ′[k], for

k = Ω(log n/log(1/γ)) among these h − 1 parts, we can combine it with V ∗
h to obtain the desired blowup

H[k]. And crucially, we are now in a position to proceed by induction: although we have lost a great deal in

the number of copies (from γ to γC) and have lost many vertices (e.g. from |V1| = n to |V ′
1 | =

√
n), these

losses are only polynomial. Since we are aiming for a bound of the form ΩH(log n/log(1/γ)), these polynomial

losses will be converted by the logarithms to linear losses, which can be absorbed into the constant factor.

2.2. Proof sketch of Theorem 1.3. Thanks to Theorem 1.2, in order to prove Theorem 1.3, it suffices to

show that every q-coloring of E(KN ), for an appropriately chosen N , contains many monochromatic copies

of H in some color. A simple averaging argument, due to Erdős [13], shows that such a statement is true,

namely that for every H, q, there exists some cH,q > 0 such that every q-coloring of E(KN ) contains at least

(cH,q − o(1))Nh monochromatic copies of H, where H has h vertices and the o(1) term tends to 0 as N → ∞.

The quantity cH,q is called the q-color Ramsey multiplicity constant of H; for more on this topic see [10,

Section 2.6], as well as [20, 25, 26] for more recent developments.

Unfortunately, this result is too weak quantitatively to directly plug into Theorem 1.2. Indeed, one can

show4 that if H is connected and non-bipartite, then cH,q ≤ 2−(q−1)(h−1) = 2−ΩH(q). Therefore, if we simply

plug this into Theorem 1.2, the best bound we could hope to prove is of the form r(H[k]; q) ≤ 2OH(qk).

3We refer to the survey [19] for an introduction to this powerful technique. For this high-level proof overview, we assume

some familiarity with the technique, and defer a detailed discussion to the full proof of Theorem 1.2.
4We can q-color E(KN ) by blowing up a (q − 1)-coloring on 2q−1 vertices in which every color class is bipartite, and using

the qth color for all edges inside a part of the blowup. As H is connected and non-bipartite, the only monochromatic copies of

H in this coloring lie inside one of these parts, showing that cH,q ≤ 2−(q−1)(h−1).
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So rather than directly apply this Ramsey multiplicity argument, we first pass to an appropriate sub-

configuration of the coloring. Namely, we show that in every q-coloring of E(KN ), there is a set5 V ⊆ V (KN )

with |V | = ΩH(N), which contains q−OH(1)|V |h monochromatic copies of H in some color, say red. In other

words, by slightly shrinking the vertex set, we are able to boost the Ramsey multiplicity from exponentially

to polynomially small in q. At this point, we can apply Theorem 1.2 to the red graph on vertex set V and

find a red copy of H[k].

Proving the existence of such a set V is fairly straightforward using Szemerédi’s regularity lemma (see

Section 4). However, we give an alternative proof, based on a direct density-increment argument, that is

more quantitatively efficient; in particular, it is this extra efficiency that allows us to assume that k is only

polynomially large with respect to q in Theorem 1.3.

3. Proof of Theorem 1.2

Definition 3.1. Let G be a graph, let H be a graph with vertex set [h], and let V1, . . . , Vh be disjoint subsets

of V (G). We say that the tuple (V1, . . . , Vh) is a γ-inflation of H if (V1, . . . , Vh) contains at least γ
∏h

i=1|Vi|
canonical copies of H.

In case |Vi| = n for all i, we say that this tuple is a (γ, n)-inflation of H. If, instead, we only have that

|Vi| ≥ n for all i, we say it is a (γ,≥ n)-inflation of H.

We prove Theorem 1.2 by induction on h; the following lemma gives the inductive step, and Theorem 1.2

follows from it fairly straightforwardly. We denote by NH(v), dH(v) the neighborhood and degree, respectively,

of a vertex v ∈ V (H); we omit the H subscripts when the graph is clear from context.

Lemma 3.2. Let H be graph with vertex set [h], and suppose that there are no triangles in H containing vertex

h (or equivalently, that NH(h) is an independent set). There exists a constant CH = max{1, 8dH(h)} ≥ 1

such that the following holds for all 0 < γ ≤ 1
2 and n ≥ γ−16h.

Let G be a graph, and let V1, . . . , Vh ⊆ V (G) form a (γ,≥ n)-inflation of H. Then there exist V ∗
h ⊆ Vh

and V ′
i ⊆ Vi for i ∈ [h− 1] so that:

(1) |V ∗
h | ≥

log(n)
8 log(1/γ) ;

(2) G[V ′
j , V

∗
h ] is a complete bipartite graph for all j ∈ NH(h);

(3) (V ′
1 , . . . , V

′
h−1) forms a (γ′,≥ n′)-inflation of H \ {h}, where n′ =

√
n and γ′ = γCH .

We remark that the choice of n′ =
√
n is not particularly important; any bound of the form n′ = nΩH(1)

would suffice to prove Theorem 1.2.

Before proving Lemma 3.2, we first show how it implies Theorem 1.2. We actually state and prove a

partite version of this result; Theorem 1.2 follows from this partite version by a standard random partitioning

argument, which we include for completeness after the proof of Theorem 3.3.

Theorem 3.3. Let H be a triangle-free graph with vertex set [h]. There exists a constant βH > 0 such that

the following holds for all 0 < γ ≤ 1
2 and all n.

Let G be a graph, and let V1, . . . , Vh ⊆ V (G) form a (γ,≥ n)-inflation of H. Then H[k] ⊆ G, where

k ≥ βH
log(n)

log(1/γ) . In fact, there exist Wi ⊆ Vi, where |Wi| = k, which form a copy of H[k].

5In the formal proof, it is more convenient to work in a partite setting as above, so we actaully prove the existence of large

sets V1, . . . , Vh containing many canonical copies of H.
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Proof. We prove the theorem by induction on h, with the base case h = 1 vacuously true.

Inductively, suppose we have proved the statement for all triangle-free graphs H ′ on h− 1 vertices, and fix

a triangle-free graph H on vertex set [h]. Let H ′ = H \ {h} and

βH = min

{
1

16h
,
βH′

2CH

}
,

where CH is the constant from Lemma 3.2. We claim that this value of βH suffices.

Suppose first that n < γ−16h. In this case we have that

βH
log(n)

log(1/γ)
< βH

16h log(1/γ)

log(1/γ)
= 16hβH ≤ 1,

and thus the statement is trivial since we may pick an arbitrary canonical copy of H, and set Wi to be a

singleton containing its ith vertex. Therefore, we may assume henceforth that n ≥ γ−16h. Let n′ =
√
n and

γ′ = γCH .

Let V1, . . . , Vh form a (γ,≥ n)-inflation of H. By Lemma 3.2, we may find V ∗
h ⊆ Vh and V ′

i ⊆ Vi for

i ∈ [h− 1] such that |V ∗
h | ≥

log(n)
8 log(1/γ) , G[V ′

j , V
∗
h ] is complete for all j ∈ NH(h), and (V ′

1 , . . . , V
′
h−1) forms a

(γ′,≥ n′)-inflation of H ′. By the inductive hypothesis, we may now find W ′
i ⊆ V ′

i , for all i ∈ [h− 1], which

form a copy of H ′[k′], where

k′ ≥ βH′
log(n′)

log(1/γ′)
= βH′

log(
√
n)

log(1/γCH )
=

βH′

2CH
· log(n)

log(1/γ)
≥ βH

log(n)

log(1/γ)
= k,

where the final inequality holds by our definition of βH . Moreover, we have that

|V ∗
h | ≥

log(n)

8 log(1/γ)
≥ βH

log(n)

log(1/γ)
= k,

again by the choice of βH . Therefore, if we pick arbitrary subsets W1 ⊆ W ′
1, . . . ,Wh−1 ⊆ W ′

h−1,Wh ⊆ V ∗
h ,

each of order k, we have found the claimed canonical copy of H[k]. This completes the proof of the inductive

step. □

Tracing through the quantitative dependencies in this proof, it is straightforward to verify inductively

that this proof demonstrates βH ≥ (100h)−h. In fact, if H is d-degenerate, then by applying the induction

according to the degenerate ordering, one can improve this bound to βH ≥ (100d)−h.

Remark. Using the same proof, it is not hard to show the following strengthening of Theorem 3.3. Fix an

independent set I ⊆ V (H), and suppose we are again in the setting of Theorem 3.3. Then we may again

find Wi ⊆ Vi forming a blowup of H, where |Wi| ≥ βH
log(n)

log(1/γ) for all i /∈ I, and |Wi| ≥ nσH for all i ∈ I,

for some σH > 0. That is, we may ensure that in this blowup, the sets corresponding to vertices in I have

polynomial, rather than logarithmic, size. In fact, by appropriately modifying Lemma 3.2, one can even

take σH arbitrarily close to 1, at the expense of obtaining a worse bound on βH . We leave the details to the

interested reader.

For completeness, we include the simple derivation of Theorem 1.2 from Theorem 3.3.

Proof of Theorem 1.2. Let αH = min{βH/h, 1/(2 log h)}, where βH is the constant from Theorem 3.3. Let

G be an n-vertex graph with at least γnh copies of H.

First note that if n < h2, we have that

αH
log(n)

log(1/γ)
< αH log(h2) = 2αH log(h) ≤ 1,
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where we use the assumption γ ≤ 1
2 and our choice of αH ≤ 1/(2 log h). In this case the result is trivial,

since it suffices to return a copy of H = H[1] in G, which exists by assumption. We may therefore assume

henceforth that n ≥ h2.

We randomly partition V (G) into h equally-sized parts V1, . . . , Vh, where the partition is chosen uniformly

at random among all equitable partitions. Note that each labeled copy of H in G becomes a canonical copy

among V1, . . . , Vh with probability at least h−h. Therefore, by linearity of expectation and the assumption

that G contains at least γnh copies of H (and in particular at least γnh labeled copies of H), we conclude

that there exists a choice of V1, . . . , Vh such that the number of canonical copies of H is at least

γnh

hh
= γ

(n
h

)h
= γ

h∏
i=1

|Vi|.

We fix such a choice of V1, . . . , Vh. This is a (γ, n/h)-inflation of H in G. By Theorem 3.3, we conclude that

G contains a copy of H[k], where

k ≥ βH
log(n/h)

log(1/γ)
≥ βH

log(n)/h

log(1/γ)
≥ αH

log(n)

log(1/γ)
,

where the second inequality holds since n ≥ h2. □

The rest of this section is dedicated to proving Lemma 3.2. We begin with a simple subsampling fact.

Lemma 3.4. Let (V1, . . . , Vh) be a (γ,≥ n)-inflation of H. There exist V ′
1 ⊆ V1, . . . , V

′
h ⊆ Vh so that

(V ′
1 , . . . , V

′
h) is a (γ, n)-inflation of H.

Proof. Let V ′
i be a random subset of Vi, chosen uniformly at random among all subsets of size exactly n,

and make these choices independently for all i ∈ [h]. Each canonical copy of H survives in (V ′
1 , . . . , V

′
h) with

probability
∏h

i=1
|V ′

i |
|Vi| . Therefore, by linearity of expectation, there exists a choice with at least γ

∏h
i=1|V ′

i |
canonical copies, as claimed. □

We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Note that by Lemma 3.4, we may assume that (V1, . . . , Vh) forms a (γ, n)-inflation of

H. Let t be the degree of vertex h in H, and assume without loss of generality that NH(h) = {1, 2, . . . , t}.

We set CH = max{1, 8t}. There is nothing to prove if t = 0, since in this case we may set V ∗
h = Vh and

V ′
1 = V1, . . . , V

′
h−1 = Vh−1. Therefore, we assume henceforth that t ≥ 1, and therefore that CH = 8t.

We create an auxiliary bipartite graph Γ = (A,B,E), where A = V1 × · · · × Vt and B = Vt+1 × · · · × Vh,

where (v1, . . . , vt) ∼Γ (vt+1, . . . , vh) if (v1, . . . , vh) form a canonical copy of H. Clearly |A| = nt, |B| = nh−t,

and |E| ≥ γnh = γ|A||B|. For a vertex b ∈ B and an index t + 1 ≤ j ≤ h, we write (b)j to denote the j

coordinate of b.

Let s = ⌈ log(n)
4 log(1/γ)⌉. Note that our assumption n ≥ γ−16h is equivalent to saying that log(n)

log(1/γ) ≥ 16h. In

particular, this implies that

s ≥ log(γ−16h)

4 log(1/γ)
= 4h ≥ 4t. (3)

It also implies that log(n)
3 log(1/γ) −

log(n)
4 log(1/γ) > 1, and thus that log(n)

4 log(1/γ) ≤ s ≤ log(n)
3 log(1/γ) . Hence, we conclude

that n−1/3 ≤ γs ≤ n−1/4. We now sample b1, . . . , bs ∈ B uniformly at random (with repetitions), and let

A′ ⊆ A denote their common neighborhood in Γ. Note that A′ is empty if, for some ℓ ∈ [s], the components
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of bℓ do not form a copy of H[{t + 1, . . . , h}]. Crucially, if this does not happen, then the fact that NH(h) is

an independent set in H implies that A′ has a product structure, namely that A′ = S1 × · · · × St, where

Si = Vi ∩
⋂
ℓ∈[s]

j∈NH(i)

NG((bℓ)j),

Indeed, since NH(h) is an independent set, a tuple (v1, . . . , vt) lies in A′ if and only if each vi is a common

neighbor (in G) of all vertices (bℓ)j , where ℓ ∈ [s] and j ∼H i. This is the only place in the proof where we

use the assumption that h lies in no triangles in H.

Write X := |A′|. By Jensen’s inequality, we have that

E[X] =
∑
a∈A

(
dΓ(a)

|B|

)s

≥ γs|A| = γsnt ≥ nt−1/3,

where in the final inequality we recall that γs ≤ n−1/3.

Let γ′ = γCH , and let Y count the number of a ∈ A′ with dΓ(a) ≤ γ′nh−t. For such a vertex, the

probability that it is included in A′ is at most (γ′)s, and thus

E[Y ] ≤ nt(γ′)s = nt(γs)8t ≤ ntn−2t = n−t,

where we use that γs ≤ n−1/4.

Finally, let Z be the indicator random variable for the event that |{(b1)h, . . . , (bs)h}| ≤ s/2, that is, that

at most s/2 vertices in Vh are used as the final coordinate of one of b1, . . . , bs. We have that

E[Z] ≤
(

n

s/2

)(
s/2

n

)s

≤
(

en

s/2

)s/2(
s/2

n

)s

=
( es

2n

)s/2
≤ n−s/4 ≤ n−t,

where we use that es/2 ≤ 2s ≤ log n ≤
√
n in the penultimate inequality6, and (3) in the final inequality.

Thus, we have that E[X − nt(Y + Z)] ≥ nt−1/3 − 2. Thus we can fix an outcome of b1, . . . , bs and A′

where this occurs. Since X ≤ nt and Y,Z take non-negative integer values, we must have Y = Z = 0 and

X ≥ nt−1/3 − 2 ≥ nt−1/2. Thus, recalling that A′ = S1 × · · · × St, we have mini|Si| ≥ |A′|/nt−1 ≥
√
n = n′.

Next, since Y = 0, we have that

e(A′, B) ≥ γ′|A′||B| = γ′
t∏

i=1

|Si|
h∏

j=t+1

|Vj |.

Thus, we find that (S1, . . . , St, Vt+1, . . . , Vh) form a (γ′,≥ n′)-inflation of H. Let V ′
i = Si for 1 ≤ i ≤ t and

V ′
i = Vi for t + 1 ≤ i ≤ h− 1. Since every canonical copy of H ′ in V ′

1 ∪ · · · ∪ V ′
h−1 extends to at most |Vh|

canonical copies of H, we conclude that (V ′
1 , . . . , V

′
h) form a (γ′,≥ n′)-inflation of H ′.

Finally, we set V ∗
h := {(b1)h, . . . , (bs)h}. Since Z = 0, we have that

|V ∗
h | ≥

s

2
≥ log(n)

8 log(1/γ)
.

Meanwhile, by definition of A′, we have that V ′
i = Si ⊆

⋂
v∈V ∗

h
NG(v), for all i ∈ [t]. This is the same as

saying that G[V ′
i , V

∗
h ] is complete, which concludes the proof. □

6This is the only place where we use that γ ≤ 1
2
, to say that 2s ≤ logn.
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4. Proof of Theorem 1.3

Theorem 1.3 follows from Theorem 1.2 together with the following lemma.

Lemma 4.1. Let q, h ≥ 2 and N ≥ q100
hq4h

2

be integers, and let η = q−100hq4h
2

. In every q-coloring of

E(KN ), there exists a ((2q)−e(Kh),≥ ηN)-inflation of Kh in some color i ∈ [q].

We begin by showing how Theorem 1.3 follows from Theorem 1.2 and Lemma 4.1.

Proof of Theorem 1.3. Fix an h-vertex triangle-free graph H and an integer q ≥ 2, and let γ = q−h2

,

η = q−100hq4h
2

, and ΛH = 2h2/βH , where βH is the constant from Theorem 3.3. Fix an integer k ≥ 100hq4h
2

,

and let N = qΛHk and n = ηN . Note that N ≥ 1/η2 by our lower bound assumption on k and since ΛH ≥ 2,

hence n ≥
√
N .

We claim that r(H[k]; q) ≤ N . Indeed, fix a q-coloring of E(KN ). Note that by our lower bound on k, we

have that N ≥ q100
hq4h

2

, so we may apply Lemma 4.1 to find a ((2q)−e(Kh),≥ ηN)-inflation of Kh in some

color, say red. By our choices of γ and n, this is a (γ,≥ n)-inflation of Kh, and hence also a (γ,≥ n)-inflation

of H. We now apply Theorem 3.3 to conclude that the red graph contains a blowup of H whose parts have

size at least

βH
log(n)

log(1/γ)
≥ βH

log(
√
N)

h2 log(q)
=

βHΛHk

2h2
= k.

That is, we have found a red copy of H[k], completing the proof. □

The rest of this section is dedicated to proving Lemma 4.1. We remark that for the qualitative statement—

namely that any q-coloring of E(KN ) contains a ((2q)−e(Kh),≥ ηN)-inflation of Kh for some η > 0—there is

a fairly simple proof using standard arguments from regularity theory. Before proceeding with the proof of

Lemma 4.1, we sketch this alternative proof7.

Let ε = ε(H, q) > 0 be sufficiently small. Fix a q-coloring of E(KN ). By applying a colored version of

Szemerédi’s regularity lemma (see e.g. [23, Theorem 1.18], we may partition V (KN ) into a bounded number

of parts, such that each of the color classes is ε-regular with respect to this partition. By Turán’s theorem

and by picking ε sufficiently small, we may pass to r(Kh; q) parts, such that all pairs between them are

ε-regular in each of the colors. We now define an auxiliary coloring of Kr(Kh;q) by coloring an edge according

to the most popular color in the corresponding pair. By the definition of r(Kh; q), there is a monochromatic

copy of Kh in this coloring, meaning that we can find h parts V1, . . . , Vh such that all pairs between them

are ε-regular and have edge density at least 1/q in some color, say red. The Kh counting lemma implies

that V1, . . . , Vh contain at least (qe(Kh) − δ(ε))
∏h

i=1|Vi| canonical red copies of Kh, where δ(ε) tends to 0 as

ε → 0. By choosing ε sufficiently small, we conclude that (V1, . . . , Vh) form the desired inflation of Kh in red.

Due to the use of the regularity lemma, this proof gives terrible, tower-type bounds on η. One can obtain

better bounds, of the form 2−2(qh)O(1)

, by replacing the use of the regularity lemma by the cylinder regularity

lemma [11] (see also [15] for a colored version of the cylinder regularity lemma).

However, we shall present a more elementary proof which avoids such regularity techniques, and gives

the stronger bound on η claimed in Lemma 4.1. Thanks to this improved bound, we have that Theorem 1.3

holds when k is a polynomial in q.

7For this high-level proof sketch, we assume some familiarity with the basic concepts related to Szemerédi’s regularity lemma.

None of this will be used in the sequel, so a reader unfamiliar with these topics should feel free to skip to the next paragraph.
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4.1. Preliminary lemmas. We begin by collecting a few lemmas that will be used in the proof of Lemma 4.1.

Our first lemma is standard, and says that a density decrement in one part of a bipartite graph can be

converted to a density increment in a complementary part. We denote by dA(y) := |N(y)∩A| the degree of a

vertex y into some vertex set A.

Lemma 4.2. Let Γ = (X,Y,E) be a bipartite graph where d(y) ≥ p|X| for all y ∈ Y . Suppose that Y ′ ⊆ Y

and X∗ ⊆ X are such that dX∗(y) ≤ (1 − ξ)p|X∗| for each y ∈ Y ′.

Then defining X ′ := X \X∗ and writing c := |X∗|/|X|, we have that dX′(y) ≥ (1 + cξ)p|X ′| for all y ∈ Y ′.

Proof. For any y ∈ Y ′, we have

dX′(y) = d(y) − dX∗(y) ≥ p|X| − (1 − ξ)p|X∗| ≥ p|X ′| + ξpc|X| ≥ (1 + cξ)p|X ′|. □

Our next lemma shows that every dense graph contains a large, bipartite subgraph satisfying a one-sided

minimum degree condition.

Lemma 4.3. Let G be an n-vertex graph with at least ρ
(
n
2

)
edges, and let ε ∈ (0, 1]. There exist disjoint

A,B ⊆ V (G) with |A|, |B| ≥ (ε2/16)ρn such that dA(y) ≥ (1 − ε)ρ|A| for all y ∈ B.

Proof. Let V = V (G). Let Vlight ⊆ V be the set of vertices with d(v) ≤ (1 − ε/2)ρ(n − 1), and let

Vheavy := V \ Vlight. We have that

2e(G) −
∑

v∈Vlight

d(v) =
∑

v∈Vheavy

d(v) ≤ |Vheavy|(n− 1)

and that

2e(G) −
∑

v∈Vlight

d(v) ≥ 2ρ

(
n

2

)
− |Vlight|

((
1 − ε

2

)
ρ(n− 1)

)
=

ε

2
ρn(n− 1).

Combining these two bounds, we find that |Vheavy| ≥ (ερ/2)n.

We let B0 ⊆ V be random set of size ⌈(ε/4)n⌉. For v ∈ Vheavy with degree D, we have that

P(dV \B0
(v) < (1 − ε)ρ(n− 1) | v ∈ B0) ≤ P(Bin(D, ε/4) ≥ D − (1 − ε)ρ(n− 1)) ≤ D − (1 − ε/2)D

(ε/4)D
=

1

2
,

where the second inequality is by Markov’s inequality and the fact that (1 − ε/2)D ≥ (1 − ε)ρ(n− 1). Now,

define B to comprise all vertices v ∈ B0 ∩ Vheavy with dV \B0
(v) ≥ (1 − ε)ρ(n− 1). From the computation

above, we find that

E[|B|] =
∑

v∈Vheavy

P(v ∈ B0)P(v ∈ B | v ∈ B0) ≥ 1

2

∑
v∈Vheavy

P(v ∈ B0) ≥ ε

8
|Vheavy| ≥

ε2

16
n.

Fix an outcome where |B| ≥ (ε2/16)ρn, and let A = V \B0. Note that |A| = n− ⌈(ε/4)n⌉ ≥ (ε2/16)ρn, as

claimed. Finally, by the definition of B, we have that

dA(y) ≥ (1 − ε)ρ(n− 1) ≥ (1 − ε)ρ|A|

for all y ∈ B, where we use the fact that |A| ≤ n− 1. □

Although our goal in Lemma 4.1 is only to find an inflation of Kh in some color, it will be convenient to

inductively maintain a richer structure, which we now define.
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Definition 4.4. Let V1, . . . , Vh be pairwise disjoint vertex subsets of some graph G. We say a V1, . . . , Vh is

a (ρ, ε)-rich inflation of Kh if e(G[V1]) ≥ ρ
(|V1|

2

)
and it is a ((1 − ε)ρ)e(Kh)-inflation of Kh. If additionally

|Vi| ≥ n for all i, we say it is a (ρ, ε,≥ n)-rich inflation of Kh.

The next lemma is the key step in our density increment strategy. It shows that at every step, we may

either improve a rich inflation of Kh to a rich inflation of Kh+1, or perform a density-increment step.

Lemma 4.5. Suppose that V1, . . . , Vh is a (ρ, ε,≥ n)-rich inflation of Kh for some h ≥ 1 and some ε ∈ (0, 1
9 ]

and ρ ∈ (0, 1
2 ], and let Y =

⋃h
i=1 Vi. Let X be some set of vertices, disjoint from Y , with |X| ≥ n and

dX(y) ≥ p|X| for all y ∈ Y , where p ≥ (1 − ε)ρ. Then at least one of the following holds.

• The tuple (V1, . . . , Vh, X) is a (ρ, 2ε,≥ n)-rich inflation of Kh+1, or

• there exist X ′ ⊆ X,Y ′ ⊆ Y with |X ′| ≥ ερh
2 |X|, |Y ′| ≥ ερh

2

n which satisfy dX′(y) ≥ (1 + ερ2h)p|X ′|
for all y ∈ Y ′.

Proof. We begin by handling the case h = 1. In this case, the fact that dX(y) ≥ p|X| for all y ∈ Y = V1

implies that the number of canonical copies of K2 in (V1, X) is at least p|X||Y | ≥ (1 − ε)ρ|X||V1|. Hence the

tuple (V1, X) a (ρ, ε,≥ n)-rich inflation of K2, and therefore a (ρ, 2ε,≥ n)-rich inflation as well. This is one

of the two claimed outcomes, and thus we may assume henceforth that h ≥ 2.

By deleting arbitrary edges, we may assume that d(y) = p|X| for all y ∈ Y . Indeed, both claimed outcomes

are monotone under adding edges, so if we prove the result after these edge deletions we have also proved it

for the original graph. We suppose henceforth that (V1, . . . , Vh, X) is not a (ρ, 2ε)-rich inflation of Kh, and

seek to prove the existence of the claimed sets X ′, Y ′.

Recall that we assumed that (V1, . . . , Vh) is a (ρ, ε)-rich inflation, implying that e(G[V1]) ≥ ρ
(|V1|

2

)
; hence

the fact that (V1, . . . , Vh, X) is not a (ρ, 2ε)-rich inflation implies that the number of canonical Kh+1 is less

than ((1 − 2ε)ρ)e(Kh+1)
∏h

i=1|Vi| · |X|.

Let (y1, . . . , yh) ∈ V1 × · · · × Vh be chosen uniformly at random, and let Nh ⊆ X be their common

neighborhood in X. Let E denote the event that y1, . . . , yh form a copy of Kh, and note that Pr(E) ≥
((1 − ε)ρ)e(Kh) by assumption. Let x ∈ X be chosen uniformly at random, and let E ′ be the event that

(y1, . . . , yh, x) form a copy of Kh+1; again by assumption, we have that P(E ′) < ((1− 2ε)ρ)e(Kh+1). Therefore,

((1 − 2ε)ρ)h =
((1 − 2ε)ρ)e(Kh+1)

((1 − 2ε)ρ)e(Kh)
>

P(E ′)

P(E)
= P(E ′ | E).

Moreover, note that conditional on the event E , the probability of E ′ is exactly |Nh|/|X|. Therefore, we

conclude that

E[|Nh| | E ] ≤ ((1 − 2ε)ρ)h|X|.
Noting that (1 − 2ε)ρ ≤ (1 − ε)2ρ ≤ (1 − ε)p, where the final step is by our assumption on p, we find that

E[|Nh| | E ] ≤ ((1 − ε)p)h|X|. This in turn implies that

((1 − ε)p)h|X| ≥ E[|Nh| | E ] ≥ (1 − ε)ph|X| · P(|Nh| ≥ (1 − ε)ph|X| | E),

and thus P(|Nh| ≥ (1 − ε)ph|X| | E) ≤ (1 − ε)h−1 ≤ 1 − ε. Therefore, P(|Nh| ≤ (1 − ε)ph|X| | E) ≥ ε.

Denoting by δ := P(E), we conclude that P(|Nh| ≤ (1 − ε)ph|X|) ≥ εδ.

We note now that if p > 1 − 1/(2h), then |Nh| > 1
2 |X| with probability 1, by the pigeonhole principle. On

the other hand, in this case we also have (1 − ε)ph > (1 − ε)(1 − 1/(2h))h ≥ (9/16)(1 − ε) ≥ 1
2 , where we use

the assumptions h ≥ 2 and ε ≤ 1/9. Thus, in this case we have P(|Nh| ≤ (1 − ε)ρh|X|) = 0, a contradiction.

Therefore we may assume henceforth that p ≤ 1 − 1/(2h).
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Let N0 := X and for i = 1, . . . , t set Ni := Ni−1 ∩N(yi). Note that this agrees with our earlier definition

of Nh. We now observe that if |Nτ | ≥ (1 − ε/(2h))p|Nτ−1| for all τ ∈ [h], then we have

|Nh|
|X|

=

h∏
τ=1

|Nτ |
|Nτ−1|

≥
((

1 − ε

2h

)
p
)h

> (1 − ε)ph.

In other words, whenever the event |Nh| ≤ (1 − ε)ph|X| occurs, there must exist some minimal index τ ∈ [t]

where |Nτ | < (1 − ε/(2h))p|Nτ−1|. If this event does not occur, we set τ := ∞.

By the pigeonhole principle, there must be some index i∗ ∈ [h] so that P(τ = i∗) ≥ εδ/h. Whence, there is

some choice of y∗1 , . . . , y
∗
i∗−1 so that P(τ = i∗|y1 = y∗1 , . . . , yi∗−1 = y∗i∗−1) ≥ εδ/h. Writing X∗ :=

⋂
i<i∗ N(y∗i ),

and Y ′ := {y ∈ Vi∗ : dX∗(y) < (1 − ε/(2h))p|X∗|}, we get that |Y ′| ≥ (εδ/h)|Vi∗ | ≥ (εδ/h)n.

Additionally, we have that |X∗| ≥ ((1 − ε/(2h))p)i
∗−1|X| ≥ 1

2p
h−1|X|, where the final inequality uses

that ε ≤ 1 and that (1 − 1/(2h))h ≥ 1
2 for all h. At the same time, by our minimum degree assumption, we

cannot have i∗ = 1, whence |X∗| ≤ d(y∗1) = p|X|. We now apply Lemma 4.2 with ξ = ε/(2h) and c ≥ 1
2p

h−1

to conclude that for X ′ = X \X∗, we have dX′(y) ≥ (1 + cξ)p|X ′| for all y ∈ Y ′. The claimed result then

follows by noting that

|X ′| = |X| − |X∗| ≥ (1 − p)|X| ≥ 1

2h
|X| ≥ ερh

2

|X|,

that

|Y ′| ≥ εδ

h
n ≥ ε((1 − ε)ρ)e(Kh)

h
n ≥ ερh

2

n,

and that

cξ ≥ εph−1

4h
≥ ε((1 − ε)ρ)h−1

4h
≥ ερ2h. □

4.2. The density increment argument.

Definition 4.6. Let q, h ≥ 2 be integers and ε ∈ (0, 1] a parameter. We define η(q, h, ε) to be the maximum

η ∈ [0, 1] so that for all N ≥ 1/η, and for every q-coloring of E(KN ), there exists a monochromatic

(1/q, ε,≥ ηN)-rich inflation of Kh.

We note that the set of such η ⊆ [0, 1] is a closed subset of [0, 1], hence we really can define η(q, h, ε) as a

maximum, rather than a supremum. The next result gives a recursive lower bound on η(q, h, ε) in terms of

η(q, h− 1, ε/2).

Proposition 4.7. For every q ≥ 2, h ≥ 1 and ε ∈ (0, 1
9 ], we have

η(q, h + 1, ε) ≥
(
ε4q−h2

η(q, h, ε/2)
)q4h/ε

.

Proof. Fix some q, h, ε and consider N ≥ 1 and some coloring χ : E(KN ) → [q]. For a color i ∈ [q] we let

Gi ⊆ KN denote the graph of edges receiving color i. We set ρ := 1/q, η0 := η(q, h, ε/2), and k := q4h/ε.

Note that this choice of k implies that

(1 + ερ2h)k/q ≥ exp

(
ερ2hk

2q

)
≥ exp

(
εk

q2h+2

)
≥ eq > 2q ≥ 1

(1 − ε)ρ
, (4)

where we use the inequality 1 + x ≥ ex/2 (valid for all x ∈ [0, 1]) in the first step, the definition of ρ and the

assumption q ≥ 2 in the second step, the definition of k in the third step, and the definition of ρ and the

assumption ε ≤ 1
2 in the final step.
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We run the following process over several rounds. At time t, we will have a set of vertices Y = Y (t) ⊆ V (KN ),

a set of colors S = S(t) ⊆ [q], and for i ∈ S a subset Xi = X
(t)
i ⊆ V \ Y . We shall further maintain that for

all i ∈ S and y ∈ Y , that |NGi
(y) ∩Xi| ≥ pi|Xi| for some certain pi = p

(t)
i , which we will ensure satisfies

p
(t)
i ≥ (1 − ε)ρ.

We shall initialize with Y (0) = V (KN ) and S(0) = ∅ (whence there are no Xi’s or pi’s to define). Now, in

a step, we either have |Y | ≤ 1/η0 (in which case we halt), or we can find some V1, . . . , Vh ⊆ Y which form an

(ρ, ε/2,≥ η0|Y |)-rich inflation of Kh in some color i ∈ [q].

If i ̸∈ S, we set S(t+1) := S(t)∪{i}. Then, using the fact that e(Gi[V1]) ≥ ρ
(|V1|

2

)
, we may apply Lemma 4.3.

That lemma outputs a pair of sets A,B ⊆ Y , and we define X
(t+1)
i := A, Y (t+1) := B to be this pair, satisfying

|X(t+1)
i |, |Y (t+1)| ≥ (ε2ρ/16)|V1|. Note that, since we shrink Y = Y (t) to a subset Y (t+1), we maintain the

claimed properties for all colors in S(t). For the new color i, which we have added to S(t+1), we have by

Lemma 4.3 that every vertex in Y (t+1) has at least (1 − ε)ρ|X(t+1)| Gi-neighbors in X(t+1), hence we also

maintain the claimed property for the new color i, with p
(t+1)
i ≥ (1 − ε)ρ.

Otherwise, i ∈ S. Now if we have that adding Xi to V1, . . . , Vh creates a (ρ, ε)-rich Kh+1-blowup in color i,

we halt the process. If this does not happen, we can apply Lemma 4.5 to pass to an increment Y ′ ⊆ Y,X ′ ⊆ Xi

where |Y ′| ≥ ερh
2 |V1| and |X ′| ≥ ερh

2 |X| where the density boosts by a factor of (1 + ερ2h). We now set

X
(t+1)
i = X ′ and Y (t+1) = Y ′, and maintain S(t+1) = S(t). By Lemma 4.5, we have p

(t+1)
i ≥ (1 + ερ2h)p

(t)
i .

We claim that the process can only run for at most k rounds. Indeed, if it runs longer, then there are

k′ := (k/q) + 1 steps t1 < · · · < tk′ where we pick the same color i. At time t1, we have p
(t1)
i ≥ (1− ε)ρ. This

implies that p
(tk′ )
i ≥ (1 + ερ2h)k

′−1p
(t1)
i > 1, by (4). This is impossible, showing that the process indeed halts

after at most k rounds.

Note that at every step of this process, we have

|Y (t+1)|
|Y (t)|

≥ ε4ρh
2

η0,

since we have |V1| ≥ η0|Y (t)|, and Y (t+1) is obtained by shrinking V1 by a factor of ε2ρ/16 or ερh
2

, both of

which are lower-bounded by ε4ρh
2

since ε ≤ 1
8 and ρ ≤ 1. Similarly, when we introduce a set Xi it has size at

least (ε2ρ/16)η0|Y |, and every subsequent step shrinks it by at least ε4ρh
2

η0.

In other words, if we start with N ≥ (ε4ρh
2

η0)−k, then we will be able to keep this process going without

ever halting because we shrink too much. Thus, we can only halt by outputting a (ρ, ε)-rich inflation of Kh.

Moreover, for the same reason, when we output a (ρ, ε)-rich inflation of Kh, its parts all have size at least

(ε4ρh
2

η0)kN , which implies that

η(q, h + 1, ε) ≥ (ε4ρh
2

η0)k = (ε4q−h2

η(q, h, ε/2))q
4h/ε. □

As a corollary of Proposition 4.7, we obtain the following bound for η(q, h, ε).

Corollary 4.8. For every q ≥ 2, h ≥ 1 and ε ∈ (0, 1
9 ], we have

η(q, h, ε) ≥ q−q4h
2
/ε2h

Proof. We prove this by induction on h. The base case h = 1 is immediate: by the pigeonhole principle, one

of the q color classes in any q-coloring of E(KN ) must contain at least 1
q

(
N
2

)
edges, which is precisely a rich

inflation of K1 in this color. This shows that η(q, 1, ε) = 1 for all ε > 0, and in particular implies the claimed

bound for h = 1.
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Inductively, suppose we have proved the claimed result for some h ≥ 1. By Proposition 4.7, we have

η(q, h + 1, ε) ≥
(
ε4q−h2

η(q, h, ε/2)
)q4h/ε

≥
(
ε4q−h2

q−q4h
2
/(ε/2)2h

)q4h/ε
≥
(
q−(4/ε+h2+q4h

2
/(ε/2)2h)

)q4h/ε
,

where the final step uses that ε4 ≥ 2−4/ε ≥ q−4/ε since x ≥ 2−1/x for all x ∈ (0, 1]. Therefore, if we denote

by ζ := − logq η(q, h + 1, ε) the negative of the exponent above, we conclude that

ζ ≤ q4h

ε

(
4

ε
+ h2 +

q4h
2

(ε/2)2h

)
=

q4h

ε

(
4

ε
+ h2 + 22h · q

4h2

ε2h

)
.

Note that 4/ε ≤ q4h
2

/ε2h, and similarly h2 ≤ q4h
2

/ε2h. Therefore,

ζ ≤ q4h

ε

(
(22h + 2)

q4h
2

ε2h

)
≤ 22h+1 q

4h2+4h

ε2h+1
≤ q4h

2+6h+1

ε2h+2
≤ q4(h+1)2

ε2(h+1)
.

Recalling the definition of ζ, this implies that

η(q, h + 1, ε) ≥ q−q4(h+1)2/ε2(h+1)

,

completing the inductive step. □

We are now finally ready to prove Lemma 4.1.

Proof of Lemma 4.1. By Corollary 4.8, we have that η(q, h, 1/10) ≥ q−100hq4h
2

= η, where we recall the

definition of η from the statement of Lemma 4.1. Additionally, our assumption on N implies that N ≥ 1/η ≥
1/η(q, h, 1/10). Therefore, by the definition of η(q, h, ε), we conclude that every q-coloring of E(KN ) contains

a monochromatic (1/q, 1/10,≥ ηN)-rich inflation of Kh. In particular, this is a (γ,≥ ηN)-inflation of Kh,

where

γ =

((
1 − 1

10

)
1

q

)e(Kh)

≥ (2q)−e(Kh),

which is precisely what we wanted to prove. □

5. Concluding remarks

We remark that, although we stated Theorem 3.3 under the assumption γ ≤ 1
2 , the same result actually

holds for all γ ∈ (0, 1), including when γ = 1 − o(1).

Proposition 5.1. If G contains a (γ, n)-inflation of H, then H[k] ⊆ G, where

k = ΩH

(
log((1 − γ)n)

log(1/γ)

)
.

Note that this bound is again best possible, and generalizes Theorem 3.3; in particular, the extra factor of

1 − γ in the numerator is immaterial when γ ≤ 1
2 as in Theorem 3.3, but is necessary and sharp when γ → 1

(indeed, already for H = K2, a random bipartite graph of edge density 1 − n−(1−c) contains no Kk,k with

k = 10c log(n)n1−c).

To prove Proposition 5.1, one argues as follows. Recall that for small ε, log(1/(1 − ε)) = Θ(ε), so writing

γ = 1 − ε we now wish to prove that k = ΩH( log(εn)ε ) for ε < 1/2. To do so, we shall establish a more precise

version of Lemma 3.2, where we now have |V ∗
h | = ΩH( log(εn)

log(1/γ) ), n
′ = (εn)1/3

ε and γ′ = γCH ≥ 1 − CHε. Once

this is established, the result follows by induction on h as in the proof of Theorem 3.3 (the important point

is that we still have log((1 − γ′)n′) = ΩH(log((1 − γ)n)), so passing to this subgraph is still ‘cheap’ — this

would not be the case if n′ =
√
n < 1/ε).
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The refined version of Lemma 3.2 can be split into two regimes. First, we note that if γ ≤ 1 − Ω(n−1/2),

then the proof from Section 3 works essentially unchanged (giving |V ∗
h | ≥ Ω( log(n)

log(1/γ) ), n′ =
√
n). Indeed, the

only place where we used the assumption γ ≤ 1
2 is in estimating E[Z] in the proof of Lemma 3.2, and a

similar estimate (which is sufficiently strong for the rest of the proof) holds for all γ ≤ 1 − Ω(n−1/2). In

particular, if γ ≤ 1 − n−1/4, we have that n′ =
√
n ≥ Ω( (εn)1/3

ε ), so we are done if γ ≤ 1 − n−1/4

So now we may assume γ = 1 − ε for ε ≤ n−1/4. Here, given a (γ, n)-inflation (V1, . . . , Vh) of H, we begin

by deleting all vertices in any Vi with fewer than (1− h2ε)n neighbors in any other Vj with ij ∈ E(H). Since

any such vertex lies in at most (1 − h2ε)nh−1 canonical copies of H, after deleting them we still have a

(1 − OH(ε),≥ n/2)-inflation of H. We now apply the same dependent random choice argument as in the

proof of Lemma 3.2, with two changes: we now sample s = Θ(log(εn)/ε) random vertices, chosen so that

γsn = Θ((εn)1/3/ε), and we no longer keep track of the random variable Y . The rest of the argument goes

through unchanged, giving us the set V ∗
h of size |V ∗

h | ≥ s/2 and subsets V ′
1 , . . . , V

′
t , each of size at least

γsn = (εn)Ω(1)/ε. Moreover, although we no longer have the random variable Y to guarantee that we preserve

many canonical copies of H ′ = H \ {h}, the minimum degree condition we established does guarantee this.

Noting that

|V ∗
h | ≥

s

2
= ΩH

(
log(εn)

ε

)
= ΩH

(
log((1 − γ)n)

log(1/γ)

)
,

we see that we get the desired result.

While our work gives optimal results for triangle-free graphs, a number of important problems remain

open, the most significant of which is to prove results like Theorems 1.2 and 1.3 for other graphs H; in

particular, as discussed in the introduction, such results for H = K3 would have far-reaching consequences.

A more modest question, which we nonetheless find interesting, is to obtain the correct bounds for

Corollary 4.8. It would be nice to show that η(q, h, q−C) ≥ q−Oh(q), or possibly even η(q,H, q−C) ≥
r(H; q)−OH(1) for general graphs H. Such bounds would give essentially optimal bounds on how large k needs

to be for Theorem 1.3 to hold. In the case of h = 3, one can use recent work of Kelley, Lovett, and Meka [22]

in order to do the density-increment argument more efficiently and prove that η(q, 3, q−C) ≥ q−O(q log2(q)).

However, we already hit a stumbling block at h = 4, and do not know how to establish η(q, 4, q−C) ≥ q−q1+o(1)

.
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41 (2021), 803–813. 2

[18] J. Fox, M. Sankar, M. Simkin, J. Tidor, and Y. Zhou, Ramsey and Turán numbers of sparse hypergraphs,

2023. Preprint available at arXiv:2401.00359. 3

[19] J. Fox and B. Sudakov, Dependent random choice, Random Structures Algorithms 38 (2011), 68–99. 5

[20] J. Fox and Y. Wigderson, Ramsey multiplicity and the Turán coloring, Adv. Comb. (2023), Paper No. 2,

39pp. 5
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