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Many of the questions I think about can be described, broadly speaking, as questions
about structures in Ramsey theory. There are many such structures—and many significant
advances in Ramsey theory require coming up with new structures—but two simple, basic
structures show up again and again: the Turán coloring and the random coloring. In this talk,
I’ll describe three major topics1 in Ramsey theory, and discuss how these two fundamental
structures shed light on each of them.

1 First riddle: Classical Ramsey numbers

For a positive integer t, let r(t) denote the least integer N such that, no matter how the
edges of KN are colored in red and blue, there is a monochromatic complete graph on t
vertices. The fact that r(t) exists, that is, that some finite N guarantees this property, is
the content of Ramsey’s theorem from 1930, and thus r(t) is called the Ramsey number of
t. A central question in Ramsey theory is to understand how r(t) grows as a function of t.

Ramsey’s original proof yielded a bound of r(t) ≤ t!, and he wrote, “I have little doubt
that the values for [Ramsey numbers] obtained below are far larger than is necessary.”
Indeed, a few years later, Ramsey’s theorem was rediscovered by Erdős and Szekeres, who
improved the upper bound to r(t) ≤ 4t, thus improving a super-exponential bound to an
exponential one.

What about lower bounds? In order to prove r(t) > N , it suffices to exhibit a two-
coloring of E(KN) with no monochromatic copy of Kt. The easiest way of doing so is to use
the Turán coloring: We partition the vertices of KN into t − 1 equally-sized blocks, color
all edges between the blocks blue, and color all edges inside a block red. This guarantees

1Corresponding to Turandot’s three riddles.

1



Yuval Wigderson Turandom October 28, 2021

that there is no blue Kt, by the pigeonhole principle: any t-tuple of vertices must have two
vertices from the same block, and thus they will span a red edge. In order to not have a red
Kt, however, we must ensure that each block has at most t− 1 vertices, and thus we should
take N = (t− 1)2; this proves r(t) > (t− 1)2.

This coloring is called the Turán coloring because of Turán’s theorem, which says that
it is the unique coloring on N vertices that maximizes the number of blue edges while not
containing a blue Kt. This fact, as well as the difficulty of constructing other colorings
which yield a stronger lower bound on r(t), apparently led Turán to believe that this bound
is basically tight, and he believed that r(t) = Θ(t2).

However, as it turns out, the Turán coloring is extraordinarly far from optimal.

Theorem 1.1 (Erdős 1947). r(t) >
√

2
t
.

Erdős proved this theorem by introducing the second key player in today’s talk, the

random coloring. Indeed, Erdős showed that if N =
√

2
t

and if one colors the edges of KN

uniformly at random, then with high probability, there will be no monochromatic Kt.
Thus, we now know that r(t) grows as an exponential function of t, although the base

of the exponent remains very mysterious: since 1947, there has been no improvement to
either of the exponential constants

√
2 and 4. It would be a major breakthrough to prove

r(t) > (
√

2 + ε)t or r(t) < (4− ε)t for any positive ε.
However, this is a talk on structures in Ramsey theory, so I want to return some more

to the random coloring, which shows that r(t) >
√

2
t
. We see that for this problem, a fully

random coloring does much better than the deterministic Turán coloring. In fact, while we
now know of explicit constructions that do significantly better than the Turán coloring, the
following remains a fundamental open problem.

Open problem 1.2 (Erdős). Can one explicitly construct a coloring on (1 + δ)t vertices
with no monochromatic Kt, for some δ > 0?

The best known construction, due to Cohen, yields an explicit coloring on 2t1/(log log t)c

vertices with no monochromatic Kt, for some c > 0, and is thus just barely subexponential.
The fact that this problem seems so difficult has led many people to wonder if, in some
sense, a random coloring is truly “the best” way of coloring the edges of KN to avoid a
monochromatic Kt. One precise version of this question is the following.

Conjecture 1.3 (Sós). If N = r(t)−1, then any two-coloring of E(KN) with no monochro-
matic Kt is quasirandom.

Here, a coloring of KN is called quasirandom if, for every S ⊆ V (KN), the number of red
edges in S differs from the number of blue edges in S by o(N2). This definition is due to
Chung, Graham, and Wilson, who also proved that it is equivalent to many other natural
notions of what it should mean for a coloring to be “random-like”.

Sós’s conjecture remains open, and it is plausibly very hard; in particular, one may need
to really understand the asymptotic behavior of r(t) in order to attack it. This is basically
the state of our knowledge about classical Ramsey numbers: the random coloring is the best
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tool we have—far outstripping known explicit constructions, such as the Turán coloring—

but we don’t know whether it is literally optimal (i.e. whether r(t) ≈
√

2
t
), nor whether it is

optimal in some structural sense, namely whether any optimal construction “looks random”.

2 Second riddle: Ramsey goodness and books

In the previous section, we quickly stopped talking about the Turán coloring, because Erdős
showed that it performs so much worse than the random coloring. But we haven’t actually
used the Turán coloring to its full potential. To explain what I mean, we need some notation:
for graphs H1, H2, let r(H1, H2) be the minimum N such that every two-coloring of E(KN)
contains a blue copy of H1 or a red copy of H2. Thus, r(t) = r(Kt, Kt) in the new notation.
As before, the Turán coloring immediately gives us a general lower bound for r(H1, H2).

Proposition 2.1 (Chvátal–Harary, Burr). Let H1 be a graph with chromatic number k+ 1,
and let H2 be a connected graph on n vertices. Then

r(H1, H2) ≥ k(n− 1) + 1.

Proof. Let N = k(n − 1), and consider the Turán coloring of KN , where we partition the
vertex set into k blocks, each comprising n− 1 vertices, and color all internal edges red and
all cross-edges blue. Since H2 is connected and has n vertices, there is no monochromatic
copy of H1: it can’t “fit” in the blocks, which have only n− 1 vertices. On the other hand,
the blue graph is (χ(H1)− 1)-partite, and so cannot contain any copy of H1.

Of course, plugging in H1 = H2 = Kt, we recover our earlier bound of r(t) ≥ (t− 1)2 + 1,
which is very far from the truth. Amazingly, however, the lower bound in Proposition 2.1
turns out to be exactly tight in certain cases. The earliest result of this type is due to
Chvátal, who proved that if H1 = Kk+1 is a clique and if H2 = Tn is a tree on n vertices,
then r(Kk+1, Tn) = k(n−1)+1. Following Burr and Erdős, we say that an n-vertex connected
graph H is (k + 1)-good if r(Kk+1, H) = k(n− 1) + 1. In this language, Chvátal’s theorem
says that all trees are (k + 1)-good for all k.

Burr and Erdős began systematically investigating Ramsey goodness, and observed that
it seemed to be a very general phenomenon. Namely, they conjectured, based on some
partial results, that if k is fixed and if H is a sufficiently large sparse graph, then H should
be (k + 1)-good. In other words, while the Turán coloring yields a very weak bound on
r(H1, H2) in case both H1 and H2 are large dense graphs (e.g. both equal to Kt, as t→∞),
Burr and Erdős conjectured that the Turán coloring should yield a tight bound when H1 is
a fixed clique and H2 is a large, sparse graph.

Burr and Erdős formulated many conjectures along these lines. Their most general
conjecture was that if k and ∆ are fixed, then any sufficiently large connected graph H
with maximum degree ∆ is (k + 1)-good. As it turns out, this conjecture is too optimistic:
Brandt used a simple, elegant argument to show that if H is a good expander, then H is
not (k + 1)-good for any k ≥ 2. Since there exist expanders of bounded maximum degree
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(in particular, since almost every ∆-regular graph is a good expander), Brandt showed that
there exist many counterexamples to this strong conjecture.

Nevertheless, it turns out that many of the remaining conjectures of Burr and Erdős are
true. Moreover, it turns out that in a certain sense, good expanders are the “only non-good
graphs”. Indeed, let’s say that a family F of graphs has small separators if there exists some
ε > 0 such that for every n-vertex H ∈ F , we can delete n1−ε vertices from H so that H
breaks into connected components, each of size at most εn. In some sense, having small
separators is the opposite of being a good expander: graphs with small separators can be
easily disconnected, whereas it is very difficult to disconnect a good expander. Similarly,
let’s say that F has hereditarily small separators if the family F ′, consisting of all induced
subgraphs of graphs in H, has small separators. With this terminology, we can state a special
case of Nikiforov and Rousseau’s powerful general theorem.

Theorem 2.2 (Nikiforov–Rousseau 2009). Let k ≥ 2 and let F be a family of connected
graphs with hereditarily small separators. If n is sufficiently large, then every n-vertex H ∈ F
is (k + 1)-good, i.e.

r(Kk+1, H) = k(n− 1) + 1.

Using this theorem, Nikiforov and Rousseau were able to resolve a huge number of ques-
tions (some raised by Burr and Erdős and some not) about Ramsey goodness. Here are just
a few examples.

• All sufficiently large connected planar graphs are (k + 1)-good for all k ≥ 2.

• Fix some graph M and some k ≥ 2. Then every sufficiently large connected graph
without M as a minor is (k + 1)-good.

• If k ≥ 2 and t is sufficiently large, then the subdivision of Kt is (k + 1)-good.

• Let Γd
n denote the n × n × · · · × n grid graph in Rd. If d and k are fixed and n is

sufficiently large, then Γd
n is (k + 1)-good.

We remark that one final question raised by Burr and Erdős was whether the hypercube
graph Qd is (k + 1)-good for sufficiently large d. The techniques of Nikiforov and Rousseau
were not sufficient to answer this question, but it was eventually proved by Fiz Pontiveros,
Griffiths, Morris, Saxton, and Skokan, building on earlier work of Conlon, Fox, Lee, and
Sudakov.

In fact, Nikiforov and Rousseau proved a more general result than Theorem 2.2, where
they could replace the fixed graph Kk+1 by a more general graph of chromatic number k+1,
so long as the graph was “fairly small”. I again won’t state their result in full generality,
but I will state the following corollary. For positive integers m > k, the book graph2 B

(k)
m

consists of a clique Kk, together with m− k common neighbors of the clique, with no other
edges between them. Equivalently, one can view B

(k)
m as m− k copies of Kk+1, glued along

2My notation here is slightly non-standard; usually, what I’m calling B
(k)
m would be called B

(k)
m−k.
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a common Kk. The terminology comes from the case k = 2, where we can visualize B
(2)
m as

a book with m− 2 triangular pages. Because of this, the clique Kk is called the spine of the
book, and the m− k additional vertices are called the pages.

Note that χ(B
(k)
m ) = k + 1, and that B

(k)
k+1 = Kk+1. Because, of this, the following result

of Nikiforov and Rousseau generalizes Theorem 2.2, which corresponds to the case m = 1.

Theorem 2.3 (Nikiforov–Rousseau 2009). Let k ≥ 2 and let F be a family of connected
graphs with hereditarily small separators. There exists some c0 > 0 such that if n is suffi-
ciently large, then

r(B(k)
m , H) = k(n− 1) + 1

for all n-vertex H ∈ F , and for all m ≤ c0n.

In other words, the Turán coloring is still optimal even if we are not searching for a blue
book B

(k)
m , rather than a blue clique Kk+1, so long as m is not too large relative to n.

The family of books {B(k)
m } has hereditarily small separators for any fixed k, since deleting

the spine turns B
(k)
m into m − k isolated vertices. Plugging this fact into Theorem 2.3, we

get the following corollary.

Corollary 2.4. Fix k, ` ≥ 2. There exists some c0 > 0 such that for all sufficiently large n0

and all m ≤ c0n, we have
r(B(k)

m , B(`)
n ) = k(n− 1) + 1.

These remarkable theorems of Nikiforov and Rousseau have one major drawback. In all
of them, the proofs use Szemerédi’s regularity lemma, and therefore they obtain extremely
poor control on the value of c appearing, as well as on the “sufficiently large” condition for n.
For example, in Corollary 2.4, their proof yields a constant c > 0 such that 1/c is bounded
by a tower-type function of k and `, and similarly only applies once n is at least a tower-type
function of k and `.

In recent work with Jacob Fox and Xiaoyu He, we were able to eliminate the use of the
regularity lemma from Corollary 2.4, and consequently obtain the following result with much
stronger quantitative information.

Theorem 2.5 (Fox–He–W. 2021). Fix k, ` ≥ 2. There exist c0 ≥ 2− poly(k,`) and n0 ≤
22poly(k,`) such that for all n ≥ n0 and all m ≤ c0n, we have

r(B(k)
m , B(`)

n ) = k(n− 1) + 1.

Our key lemma says that if the red graph does not contain a copy of B
(`)
n , then we can

build a “small” Turán sub-coloring, consisting of k blocks, each with ` vertices, such that all
internal edges are red and all cross-edges are blue. Note that this substructure has only a
constant number of vertices, which allows us to find it by greedily building it one part at a
time. Once we have found this Turán sub-coloring, it is fairly straightforward to find either
a small blue book or a large red book: the parts of the Turán sub-coloring can act as the
spines of red books, and the many blue Kk in the Turán sub-coloring can act as spines of
blue books.
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As indicated, our proof technique really uses the structure of book graphs. We actually
prove a slightly more general result than Theorem 2.5, where B

(k)
m can be replaced by a

somewhat more general (k + 1)-partite graph with m ≤ c0n vertices, but our proof really

seems to require the graph we’re searching for in red to be a book B
(`)
n . This leaves open the

following natural problem.

Open problem 2.6. Can one prove the full Ramsey goodness result of Nikiforov and
Rousseau, or its consequences Theorems 2.2 and 2.3, without invoking Szemerédi’s regu-
larity lemma (and thus obtaining stronger quantitative control)?

For simplicity, let’s set k = ` in Corollary 2.4 and Theorem 2.5. Then these results tell
us that there is some small c0 > 0 such that r(B

(k)
cn , B

(k)
n ) = k(n − 1) + 1 for all c < c0 and

all sufficiently large n. Imagine we fix k and let n be very large, and then start increasing
c from 0 to 1, and ask how r(B

(k)
cn , B

(k)
n ) changes. These results tell us that for a while, it

actually doesn’t change at all: it’s stuck on the fixed value k(n− 1) + 1, matching the Turán
coloring lower bound.

Does this behavior last forever? In other words, is the Turán bound just optimal for all
c ∈ (0, 1]? It turns out that the answer is no, thanks to our old friend the random coloring.
For example, it is easy to check that a random coloring yields

r(B(k)
n , B(k)

n ) ≥ (2k − o(1))n,

since if we randomly color N vertices, then any k-set of vertices will have roughly 2−kN
common neighbors in either of the two colors. This is much larger than the bound of
(k − o(1))n coming from the Turán coloring.

More generally, we can use random colorings to lower bound r(B
(k)
cn , B

(k)
n ) for any c ∈

(0, 1]. A fairly straightforward computation shows that the optimal thing is to color every
edge red with probability p = 1/(c1/k + 1) and blue with probability 1− p, which yields the
lower bound

r(B(k)
cn , B

(k)
n ) ≥

(
c1/k + 1

)k
n− o(n),

which beats the random bound once c is sufficiently far from 0.
Thus, the Turán bound is tight for c < c0, and must eventually stop being tight, since it

is eventually outstripped by the random bound. Is the random bound tight, or is there an
even better coloring? It turns out that there is not.

Theorem 2.7 (Conlon 2019 for c = 1, Conlon–Fox–W. 2021+ in full generality).
For every k ≥ 2, there exists some c1 = c1(k) ∈ (0, 1] such that for all c ≥ c1 and all
sufficiently large n, we have

r(B(k)
cn , B

(k)
n ) =

(
c1/k + 1

)k
n+ o(n),

In other words, the random construction is asymptotically best possible.
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Our proof of Theorem 2.7 is, in some sense, similar to the proof of Theorem 2.5: in order
to find the monochromatic books, we first find an “approximate Turán sub-coloring”. This
consists of k vertex subsets, such that a substantial portion of the internal edges are red, a
substantial portion of the cross edges are blue, and everything “looks random”, where this
last point can be made precise using the notion of ε-regularity. Such a structure can be used
to build large books, by finding the spine of a red book inside one of the parts, and finding
the spine of a blue book between the parts. Crucially, as in the proof of Theorem 2.5, it’s
ok if this approximate sub-coloring is very small, since we only use it to find the spine.

Moreover, we are able to prove structural results as well: if c > c1, then all nearly-extremal
colorings must be quasirandom, whereas if c < c0, then all nearly-extremal colorings are close
to the Turán coloring.

Theorem 2.8 (Conlon–Fox–W. 2020+). For every k ≥ 2, there exist c0, c1 ∈ (0, 1] such that
the following hold for all sufficiently large n.

• If c ≤ c0, then r(B
(k)
cn , B

(k)
n ) = k(n − 1) + 1. Moreover, any two-coloring on N =

kn − o(n) vertices with no blue B
(k)
cn and no red B

(k)
n can be turned into the Turán

coloring by recoloring o(N2) edges.

• If c ≥ c1, then r(B
(k)
cn , B

(k)
n ) = (c1/k + 1)kn + o(n). Moreover, any two-coloring on

N = (c1/k +1)kn+o(n) with no blue B
(k)
cn and no red B

(k)
n is quasirandom with red edge

density p = 1/(c1/k + 1).

Thus, there are two subintervals of (0, 1], one near 0 and one near 1, where the Turán
coloring and the random coloring are each asymptotically optimal, and moreover they are
the unique optimal structure in these intervals. In particular, one can view the second part
of Theorem 2.8 as a book version of Sós’s Conjecture 1.3, which said that all the extremal
colorings for r(t) are quasirandom.

Additionally, we were able to obtain both upper and lower bounds for c1(k) of the form
((1 + o(1)) log k/k)k. In particular, we see that c1(k)→ 0 as k →∞, meaning that for large
k, the random bound is tight for “most” c ∈ (0, 1]. Our understanding of c0(k) is very poor,
since we use Szemerédi’s regularity lemma to deduce the structural result, meaning that we
get an upper bound on 1/c0(k) which is of tower type in k. Plausibly, one could modify the
techniques used in Theorem 2.5 to improve this tower-type behavior.

Finally, our results say nothing about the interval (c0, c1). For c in this interval, neither

the Turán coloring nor the random coloring yield the optimal bound on r(B
(k)
cn , B

(k)
n ). In this

range, some other structure takes over, which can do better than both the Turán coloring
and the random coloring; at the moment, we do not have any sort of conjecture for what
such a structure might look like.

3 Third riddle: Ramsey multiplicity

Let H be a fixed t-vertex graph. We know from Ramsey’s theorem that if N is sufficiently
large, then every two-coloring of E(KN) contains at least one monochromatic copy of H.
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However, we can say much more: a simple averaging argument, due to Erdős, shows that
any two-coloring of E(KN) contains at least (c(H)− o(1))N t labeled monochromatic copies
of H, for some constant c(H) > 0. This constant is called the Ramsey multiplicity constant
of H.

The earliest result on Ramsey multiplicity, predating even the definition, is due to Good-
man, who showed that c(K3) ≥ 1

4
. In other words, every two-coloring of E(KN) contains at

least (1
4
− o(1))N3 labeled monochromatic triangles. This is tight, as shown by a random

coloring: each labeled triangle is monochromatic red with probability 2−3 = 1
8
, and similarly

it’s monochromatic blue with probability 1
8
, and so the random coloring on N vertices has

(1
4

+ o(1))N3 monochromatic triangles with high probability. Thus, Goodman’s result shows
that the random coloring asymptotically minimizes the number of monochromatic triangles
among all N -vertex colorings.

Similarly, the random coloring has (21−(t
2) + o(1))N t monochromatic copies of Kt, for

any t. This led Erdős to conjecture that for every t ≥ 4, we have c(Kt) = 21−(t
2), i.e. that

the random coloring also asymptotically minimizes the number of monochromatic cliques of
any size. This conjecture was extended by Burr and Rosta to apply to all graphs: they con-
jectured that the random coloring asymptotically minimizes the number of monochromatic
copies of H, for any graph H.

Conjecture 3.1 (Burr–Rosta 1980). If H has m edges, then c(H) = 21−m.

Graphs for which the Burr–Rosta conjecture is true are called common, and many natural
families of graphs are known to be common, including all trees and all cycles. Sidorenko’s
conjecture, a major open problem, implies that all bipartite graphs are common. In general,
there is a rich theory of common graphs, which I won’t say much more about.

Given the topic of this talk, you can probably guess what comes next: this conjecture is
false, as shown by the Turán coloring, which has fewer copies of H than the random coloring.
That is what we’ll get to soon, but that’s actually not where the original counterexamples
came from. The first counterexample to the Burr–Rosta conjecture was due to Sidorenko,
who showed that c(H) < 21−4 for H = , a triangle with a pendant edge. At roughly the
same time, Thomason disproved Erdős’s original conjecture about cliques, for all t ≥ 4.

Theorem 3.2 (Thomason 1989). For every t ≥ 4, we have c(Kt) < 0.976 · 21−(t
2).

As it turns out, neither Sidorenko nor Thomason used the Turán coloring, and neither
did most of the researchers who found new counterexamples to the Burr–Rosta conjecture
over the years. Thomason’s proof, in particular, used a fairly intricate coloring, coming from
certain discrete geometries over F2, in which he could count monochromatic Kt.

Nonetheless, the Turán coloring is actually quite useful for this problem, as first observed
by Fox. Indeed, suppose H is connected, has chromatic number k + 1, and has t vertices,
and consider the Turán coloring of KN , where we partition the vertex set into k equally-sized
blocks, color all edges inside a block red, and all edges between blocks blue. Then there is no
blue copy of H since the blue graph is k-partite. Since H is connected, each red copy of H
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must lie in one of the k parts, which each have size N/k. Thus, the total number of labeled
monochromatic copies of H is roughly k · (N/k)t = k1−tN t, which shows that c(H) ≤ k1−t.

Using this, Fox showed that the Burr–Rosta conjecture is “very false”: there exist m-edge
graphs H whose Ramsey multiplicity constant is super-exponentially small in m, rather than
the exponential behavior predicted by Burr and Rosta.

Theorem 3.3 (Fox 2007). There exists a graph H with m edges and

c(H) = 2−Ω(m logm)

as m→∞.

Proof. For positive integers t > k, form the graph Lk,t by adding t − k − 1 pendant edges
to some vertex in Kk+1. Then Lk,t has t vertices and chromatic number k + 1. Moreover, it
has

(
k+1

2

)
+ (t − k − 1) = Θ(k2 + t) edges. By the discussion above, the Turán coloring of

KN shows that
c(Lk,t) ≤ k1−t = 2−Ω(t log k).

By setting k = Θ(
√
m) and t = Θ(m), we see that Lk,t has m edges and Ramsey multiplicity

constant at most 2−Ω(m logm).

In the above proof, the optimal choice of k and t is, as above, k = Θ(
√
m) and t = Θ(m).

However, for any fixed k and any t = Ω(k2), this construction yields a graph with m = Θ(t)
edges and Ramsey multiplicity constant 2−Ω(m log k). Thus, no matter how fast t grows as
a function of k, this construction yields a family of graphs with super-exponential Ramsey
multiplicity constant, and in particular yields a family of counterexamples to the Burr–Rosta
conjecture. Once t is sufficiently large in terms of k, Fox and I were able to show that the
Turán coloring is exactly optimal for this problem.

Theorem 3.4 (Fox–W. 2021+). For all k ≥ 3 and t ≥ 100k, we have c(Lk,t) = k1−t.
Moreover, for all sufficiently large N , the Turán coloring is the unique coloring on N vertices
with the minimum number of monochromatic copies of Lk,t.

Thus, there are common graphs, for which the random coloring asymptotically minimizes
the number of monochromatic copies, and also other graphs, like Lk,t, where the Turán
coloring minimizes the number of monochromatic copies; we call such graphs bonbons. As
far as I know, no one had considered bonbons before us, but one can conjecture that many
other natural graphs are bonbons. For example, we believe that if H is obtained by gluing
arbitrary trees to the vertices of Kk+1, then H is a bonbon so long as it has t� k vertices;
this generalizes the case of Lk,t, where we glued a large star to a single vertex of Kk+1.

Moreover, as in the case of book Ramsey numbers, there is some “intermediate regime”
where our understanding is very limited. Namely, for certain graphs, such as Kt for t ≥ 4, we
know that neither the Turán coloring nor the random coloring asymptotically minimizes the
number of monochromatic copies. In such cases, no one really even knows what to conjec-
ture; there is some mysterious structure, neither Turán nor random, which is asymptotically
optimal, but we don’t know much about it.
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To conclude, let me just mention one connection between book Ramsey numbers and
Ramsey multiplicity. Recall that Conlon proved in Theorem 2.7 that r(B

(k)
n , B

(k)
n ) = 2kn −

o(n). This implies that in any coloring of KN , there is some monochromatic Kk which
lies in at least (2−k − o(1))N monochromatic Kk+1, i.e. in at least as many monochromatic
Kk+1 as it would lie in in a random coloring. This can be viewed as a “local” version of

Erdős’s conjecture that c(Kt) = 21−(t
2): the random coloring asymptotically minimizes the

number of monochromatic Kk+1 which a worst-case Kk lies in. Thus, while Erdős’s original
conjecture is false, its local version is true. Moreover, our structural result, Theorem 2.8,
actually shows that something stronger is true: if a coloring has fewer monochromatic Kk+1

than a random coloring, then some Kk lies in more monochromatic Kk+1 than it would in a
random coloring.

Theorem 3.5 (Conlon–Fox–W. 2020). For every k ≥ 2 and ε > 0, there exists some δ > 0

such that the following holds. If a two-coloring of E(KN) contains at most (21−(k+1
2 )−ε)

(
N
k+1

)
monochromatic copies of Kk+1, then some monochromatic copy of Kk lies in at least (2−k +
δ − o(1))N monochromatic copies of Kk+1.
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