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Ma il mio mistero è chiuso in me

Nessun dorma, from Puccini’s Turandot
Libretto: G. Adami and R. Simoni

1 Turán’s theorem

How many edges can we place among n vertices in such a way that we make no triangle?
This is perhaps the first question asked in the field of extremal graph theory, which is the
topic of this talk. Upon some experimentation, one can make the conjecture that the best
thing to do is to split the vertices into two classes, of sizes x and n − x, and then connect
any two vertices in different classes. This will not contain a triangle, since by the pigeonhole
principle, among any three vertices there will be two in the same class, which will not be
adjacent. This construction will have x(n− x) edges, and by the AM-GM inequality, we see
that this is maximized when x and n− x are as close as possible; namely, our classes should
have sizes bn

2
c and dn

2
e. Thus, this graph will have bn

2
cdn

2
e ≈ n2

4
≈ 1

2

(
n
2

)
edges.

Indeed, this is the unique optimal construction, as was proved by Mantel in 1907. In
1941, Turán considered a natural extension of this problem, where we forbid not a triangle,
but instead a larger complete graph Kr+1. As before, a natural construction is to split the
vertices into r almost-equal classes and connect all pairs of vertices in different classes.

Definition 1. The Turán graph T (n, r) is the graph on n vertices gotten by splitting the
vertices into r classes of sizes bn

r
c or dn

r
e, and connecting any pair in different classes.

A simple computation shows that the number of edges in T (n, r) is

e(T (n, r)) ≈
(

1− 1

r

)(
n

2

)
,

though the precise number of edges depends on n mod r. As a generalization of Mantel’s
theorem (which corresponds to r = 2), Turán proved the following theorem.

Theorem 1 (Turán 1941). If a graph G on n vertices contains no Kr+1, then it has at most
e(T (n, r)) edges. Moreover, if e(G) = e(T (n, r)), then G ∼= T (n, r), i.e. T (n, r) is the unique
extremal graph.

There are by now dozens of proofs of this theorem, but here is one that I find particularly
nice.

Proof. Let G be a Kr+1-free graph with the maximum possible number of edges. It suffices
to prove that G ∼= T (n, r). For a vertex x, let deg(x) denote its degree. Suppose there exist
vertices x, y, z in G such that x ∼ z, but x � y � z. Suppose moreover that deg(y) < deg(x).
Then we create a new graph G′ by deleting y and replacing it with a copy of x, namely a
new vertex x′ whose neighbors are the same as the neighbors of x. Since x � x′, we can’t
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have created any new Kr+1, so G′ is also Kr+1-free. But G′ has more edges than G, since in
going from G to G′ we deleted deg(y) edges and added deg(x) > deg(y) edges, contradicting
the maximality of G.

So we may assume that deg(y) ≥ deg(x). By the same argument, deg(y) ≥ deg(z). In
this case, we make a new graph G′′ by deleting both x and z and replacing them both by
copies of y. Since we assumed that x ∼ z, we deleted deg(x) + deg(z)− 1 edges, and added
in their place 2 deg(y) edges, which is more. Thus, e(G′′) > e(G), again contradicting the
maximality of G.

In either case we get a contradiction, so we find that there is no triple of vertices x, y, z
such that x ∼ z but x � y � z. This means that non-adjacency is a transitive relation, and
thus an equivalence relation. So we may partition the vertices of G into equivalence classes,
i.e. partition G into some number k of blocks such that each block has no internal edges,
but all pairs of vertices in different blocks are adjacent. Since G is Kr+1-free, we must have
that k < r + 1. At this point, a simple argument using the AM-GM inequality (or Jensen’s
inequality) shows that the construction that maximizes edges is to take k = r and to make
the classes as equal as possible in size. Thus, G ∼= T (n, r).

Despite its simple statement and proof, Turán’s theorem is surprisingly powerful and
useful. In practice, it is often most useful as a “global-to-local” principle: it asserts that if a
graph is globally dense (namely having more than ≈ (1− 1

r
)
(
n
2

)
edges), then it has a locally

very dense part, namely a complete subgraph Kr+1. This is useful because in many proofs,
you can construct a graph which you know is dense for some unrelated reason, and Turán’s
theorem allows you to then restrict to a complete subgraph. As a different cool application,
I leave to you to prove the following simple result.

Theorem 2 (Katona, 1969). Let X, Y be independent random vectors drawn from some
discrete distribution on Rd. Then

Pr(‖X + Y ‖ ≥ 1) ≥ 1

2
Pr(‖X‖ ≥ 1)2.

2 The Erdős–Stone theorem

Turán generalized Mantel’s theorem by forbidding not just a triangle, but an arbitrary
complete subgraph. However, there is no reason to restrict our attention to complete graphs,
and we can make the following definition.

Definition 2. The extremal number of a graph H and an integer n, denoted ex(n,H), is
the maximum number of edges among all graphs on n vertices that do not contain H as a
subgraph.

In this language, Turán’s theorem says that ex(n,Kr+1) ∼ (1 − 1
r
)
(
n
2

)
. However, it tells

us nothing about e.g. ex(n,C4) and ex(n,C5), where Ck denotes the cycle graph of length k;
note that since C3 is the triangle, these are also natural generalizations of Mantel’s theorem.
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It turns out that the order of ex(n,H) is closely related to the chromatic number χ(H).
Recall that a proper k-coloring of H is a function f : V (H) → {1, . . . , k} such that f(x) 6=
f(y) whenever x ∼ y. The chromatic number χ(H) of H is defined as the minimum k for
which a proper k-coloring exists. The connection between χ(H) and ex(n,H) can be first
seen by the following simple observation.

Proposition 1. Let r = χ(H)− 1. Then T (n, r) contains no copy of H.

Proof. Suppose we had a copy of H in T (n, r). We can view this as an injective map
ι : V (H) → V (T (n, r)). If we let the classes of T (n, r) be V1, . . . , Vr, then we can define
f : V (H) → {1, . . . , r} by letting f(v) be the index of ι(v), namely f(v) = s if ι(v) ∈ Vs.
Then f is a proper r-coloring of H, since two vertices with the same label must be mapped
into the same class of T (n, r), and must therefore be non-adjacent. But this contradicts that
χ(H) > r, proving the claim.

This proposition immediately implies that

ex(n,H) ≥ e(T (n, χ(H)− 1)) ≈
(

1− 1

χ(H)− 1

)(
n

2

)
.

Astonishingly, this lower bound is asymptotically correct, as shown by the following funda-
mental result.

Theorem 3 (Erdős–Stone 1946). For any graph H,

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
,

where the o(1) tends to 0 as n→∞.

Note that the Erdős–Stone theorem does not assert that the Turán graph is the extremal
graph, simply that it has almost as many edges as the extremal graph. In fact, we can in
general do better than the Turán graph. The simplest example is the following graph:

H =

It has chromatic number 3, but we have that ex(n,H) ≥ n2

4
+ n

4
, which is more by the

linear factor n/4 than the number of edges in the Turán graph T (n, 2). Indeed, to see that
ex(n,H) ≥ n2

4
+ n

4
, consider the graph gotten by adding n/4 disjoint edges to one part of

the Turán graph T (n, 2):
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It is not too hard to verify that this graph contains no copy of this H, and we see that it
has more edges than T (n, 2). However, the Erdős–Stone theorem says that we can never do
much better than T (n, χ(H)−1); namely, we can only add a sub-quadratic number of edges.

The proof of the Erdős–Stone theorem is a bit too complicated for this talk, but by the
end we’ll actually have most of the necessary tools to prove it.

3 The problem of Zarankiewicz

If we accept the o(n2) error term, then the Erdős–Stone theorem completely answers the
question of how large ex(n,H) is. However, in one crucial case, we should not accept this
error term. Namely, if H is bipartite, then χ(H) = 2, and the Erdős–Stone theorem simply
says that ex(n,H) = o(n2). In other words, if H is bipartite, the main term vanishes, and
the error term becomes the new main term. Thus, the Erdős–Stone theorem says almost
nothing about bipartite graphs.

For historical reasons, the study of extremal numbers for bipartite graphs is often called
the problem of Zarankiewicz. To get a taste for how this theory goes, let’s consider ex(n,C4).

Theorem 4 (Kővari–Sós–Turán 1954). ex(n,C4) = O(n3/2).

Proof. Let G be a graph with no C4. We need to prove that G has at most Cn3/2 edges, for
some constant C. Let X denote the number of paths of length 2 in G, namely the number of
copies of in G. We can count X in two ways. First, if we fix the two endpoints
of this path, then the fact that G is C4-free means that there is at most one choice for the
middle vertex, implying that X ≤

(
n
2

)
. On the other hand, if we fix the middle vertex to be

some vertex v, then there are exactly
(
deg(v)

2

)
paths with v as their middle vertex, implying

that

X =
∑
v∈V

(
deg(v)

2

)
≈ 1

2

∑
v∈V

deg(v)2 ≥ 1

2n

(∑
v∈V

deg(v)

)2

,

where the last inequality follows from Cauchy–Schwarz. If we observe that
∑

v deg(v) =
2e(G), since every edge in G is counted exactly twice in this sum (once for each endpoint),
then we find that (

n

2

)
≥ X &

1

2n

(∑
v∈V

deg(v)

)2

=
2e(G)2

n
.
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Rearranging shows that e(G) ≤ Cn3/2, as claimed.

The key idea in this proof was to treat the cycle C4 as K2,2, namely the complete bipartite
graph where both classes have two vertices. Indeed, we used that G was K2,2-free to conclude
that every pair of endpoints contributed at most one path to the count X. In fact, Kővari,
Sós, and Turán used the same idea to upper-bound ex(n,Ks,t) for all s and t.

Theorem 5 (Kővari–Sós–Turán 1954). For all fixed s ≤ t, ex(n,Ks,t) = O(n2−1/s).

The proof is essentially identical to the above, except that we use Hölder’s inequality (or
Jensen’s inequality) instead of Cauchy–Schwarz. Much like Turán’s theorem, this result is
much more useful than it appears at first glance; here is one cute application that I leave as
another exercise.

Theorem 6. For a set S ⊆ Z2 and an integer k, let

dk(S) = max
A,B⊂Z
|A|=|B|=k

|S ∩ (A×B)|
k2

,

and define the upper density of S to be d(S) = lim supk→∞ dk(S). Then for any S ⊆ Z2,
d(S) ∈ {0, 1}.

The problem of Zarankiewicz becomes much more interesting once we start to search for
lower bounds. Namely, can we find constructions of Ks,t-free graphs that match the Kővari–
Sós–Turán upper bound? In short, the answer is somewhere between yes and no. Let’s begin
with ex(n,C4) again.

Theorem 7 (Klein 1938, Erdős–Rényi–Sós 1966, Brown 1966). There exists a C4-free graph
on n vertices with Ω(n3/2) edges.

Proof. Let q be a prime power, and let Fq denote the finite field of order q. Let G be a
bipartite graph with two parts P and L, where P = F2q and L consists of all lines in F2

q.
There are roughly q2 lines in F2q, so G has n = Θ(q2) vertices. We connect a point p ∈ P to
a line ` ∈ L if and only if p is incident to `. Since every line contains q points, the number
of edges in G is |L|q = Θ(q3) = Θ(n3/2). Moreover, we claim that G is C4-free. Indeed, a C4

in G would have to consist of two points p1, p2 and two lines `1, `2 such that pi is incident
with `j for i, j ∈ {1, 2}. However, two lines in F2q can intersect in at most one point, so such
a configuration cannot exist, as claimed.

For K3,3, the Kővari–Sós–Turán upper bound is ex(n,K3,3) = O(n5/3). Also for this,
there is a matching lower bound.

Theorem 8 (Brown 1966). There exists a K3,3-free graph on n vertices with Ω(n5/3) edges.
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Proof sketch. Let p be a prime that is 3 mod 4. We define a graph G whose vertex set is
V = F3p, so that n = p3. We connect two vertices x = (x1, x2, x3), y = (y1, y2, y3) ∈ F3p if their
“Euclidean distance” is 1, namely if

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 = 1.

Since this is a single polynomial constraint, the neighborhood of each vertex is a codimension-
one variety, so we expect that each vertex has Θ(p2) neighbors, which turns out to be true.
Thus, the number of edges in G is n·Θ(p2) = Θ(p5) = Θ(n5/3). Moreover, it turns out that G
is K3,3-free. Indeed, a K3,3 in G corresponds to three “unit spheres” in F3p intersecting in at
least 3 points. In R3, we know that three unit spheres can intersect in only two points (since
any two intersect in a circle, and a circle and a sphere can only intersect in two points). It
turns out that the same holds over F3

p (at least when p ≡ 3 mod 4, though this construction
can be modified to work when p ≡ 1 mod 4).

Seeing these two examples, it is clear what we should do to construct Ks,s-free graphs with
Ω(n2−1/s) edges for larger s. We should work in Fsq, and have our graphs be defined by some
algebraic condition so that the neighborhood of each vertex is a codimension-one variety.
By a result in algebraic geometry known as the Lang–Weil bound, this will imply that every
vertex will have Θ(qs−1) neighbors (assuming some technical conditions which should hold
in general), so the number of edges will indeed be Ω(n2−1/s). So all that remains is to pick
this algebraic equation intelligently so that the resulting graph is Ks,s-free. Unfortunately,
even though this technique has been around since the 1960s, no one has been able to make
it work even in the case s = 4.1

However, if we recall that the same Kővari–Sós–Turán upper bound holds for ex(n,Ks,t)
for all s ≤ t, then some more is known. Namely, the following holds.

Theorem 9 (Kollár–Rónyai–Szabó 1996, Alon–Rónyai–Szabó 1999). If t ≥ (s−1)!+1, then
ex(n,Ks,t) = Θ(n2−1/s).

Thus, for example, we know that ex(n,K4,7) = Θ(n7/4), though we still have no matching
lower bound for the Kővari–Sós–Turán upper bound of ex(n,K4,4) = O(n7/4). The construc-
tion used in both these results is known as a norm graph. The simpler one, which only works
when t ≥ s! + 1, is as follows. We build a bipartite graph with parts A and B, where A and
B are both equal to Fps . If we let N : Fps → Fp be the norm associated to the field extension
Fps/Fp, then we connect x ∈ A to y ∈ B whenever N(x + y) = 1. This is a single algebraic
condition, so by the argument above, this graph will have Θ(n2−1/s) edges. Moreover, it
turns out that it will indeed be Ks,t-free for t ≥ s! + 1, though proving this is not so easy; it

1Additionally, a recent result of Blagojević, Bukh, and Karasev shows that this technique sketched above
cannot work without some modification. More precisely, they show that for any polynomial equation over
Z, reducing it mod p cannot give a Ks,s-free graph as described above for s ≥ 4. This implies that any
construction along these lines must use a different equation as p varies, rather than using a single equation
that we reduce mod p. Their proof uses a very interesting technique, showing that there is a topological
obstruction to this working; the only property they use of the polynomial equation over Z is that it defines
a continuous map on Rs.
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relies on some algebraic geometry and number theory, and somehow has to do with the fact
that the condition N(x+y) = 1 mixes additive and multiplicative properties of the field Fps .
To obtain the stronger result that works for t ≥ (s− 1)! + 1, one has to use a modification
of this construction, though the basic idea is similar.

In short, our understanding of the extremal numbers of Ks,t is somewhat muddled. When
t is much larger than s, we know the exact order of ex(n,Ks,t), but even ex(n,K4,4) is
unknown. Most people believe that the Kővari–Sós–Turán upper bound is tight, but no one
is sure, and it seems possible that a stronger upper bound might hold.

Another natural class of bipartite graphs is the class of even cycles. For these, we have
the following upper bound.

Theorem 10 (Bondy–Simonovits 1974). Let t ≥ 2 be fixed. Then ex(n,C2t) = O(n1+1/t).

For t = 2, we recover the upper bound ex(n,C4) = O(n3/2) we saw above, and we also
know that this bound is tight. Moreover, the Bondy–Simonovits upper bound is known to
be tight also for C6 and C10; namely, there are algebraic constructions of C6- and C10-free
graphs with Ω(n4/3) and Ω(n6/5) edges, respectively. However, for any other value of t, it
is not known whether this upper bound is tight. As with the case of complete bipartite
graphs, it seems that some algebraic construction is the right approach, but no one knows
what exactly this construction should be.

Let me finish by stating a famous conjecture of Erdős and Simonovits, which remains
wide open.

Conjecture. For every bipartite graph H, there exists a rational number α ∈ [1, 2) with
ex(n,H) = Θ(nα). Conversely, for every rational α ∈ [1, 2), there exists a bipartite graph H
with ex(n,H) = Θ(nα).

4 Hypergraphs

Definition 3. A `-uniform hypergraph is a pair H = (V,E), where V is a finite set and E
consists of unordered `-tuples of elements of V . Thus, a graph is just a 2-uniform hypergraph.

For topologists, it may be convenient to think of an `-uniform hypergraph as just a finite
(` − 1)-dimensional simplicial complex. However, note that we are only interested in the
top-dimensional simplices when we speak of hypergraphs.

Definition 4. Given a fixed `-uniform hypergraph H, let ex(n,H) denote the maximum
number of edges in an `-uniform hypergraph on n vertices which does not contain H as a
subhypergraph.

Note that if H is `-uniform, then ex(n,H) ≤
(
n
`

)
= O(n`). As with graphs, the most basic

hypergraphs whose extremal numbers we wish to understand are the complete hypergraphs.

Definition 5. Given integers k ≥ ` ≥ 2, the complete `-uniform hypergraph on k vertices,
denoted K

(`)
k is the hypergraph whose vertex set is {1, . . . , k}, and whose edges consist of all

`-tuples of integers in {1, . . . , k}.
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It is pretty easy to show that there exists a real number, say Ck,`, such that ex(n,K
(`)
k ) =

(Ck,` + o(1))
(
n
`

)
. However, unlike the graph case, there isn’t any pair k > ` > 2 for which

we know the value of Ck,`. In fact, Erdős offered $500 to evaluate this number for a single

pair (k, `), and $1000 to evaluate it in general. For the simplest case, of K
(3)
4 , we know

5

9

(
n

3

)
≤ ex(n,K

(3)
4 ) ≤ 0.561666

(
n

3

)
.

The lower bound is a simple construction of Turán, which he conjectured to be tight, and the
upper bound is due to Razborov and follows from a lengthy computer-aided computation.
There are several reasons why the hypergraph case appears to be much harder than the graph
case; one main reason is that we cannot expect a result like Turán’s theorem, which finds the
unique extremal graph. For instance, for the case of ex(n,K

(3)
4 ), there exist exponentially

many different hypergraphs on n vertices with (5
9

+ o(1))
(
n
3

)
edges and no K

(3)
4 . Assuming

Turán’s conjecture is correct (that 5
9

is the right answer), this shows that we cannot hope
for a single “best” hypergraph.

There is a lot more to be said about Turán-type problems, both for graphs and for
hypergraphs, but this is probably enough for now.
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