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What is Ramsey theory?

“Complete disorder is impossible.” —Theodore Motzkin

Any large object contains a large structured subobject.

Theorem (Kővári–Sós–Turán 1954, Chvátal 1969)
In any 2-coloring of an N × N grid, there is a logN × logN
monochromatic subgrid.

Theorem (van der Waerden 1927, Gowers 2001)
In any 2-coloring of N points, there are log log log log logN evenly
spaced monochromatic points.

Theorem (Gallai 1945, Witt 1952, Shelah 1988)
In any 2-coloring of an N × N grid, there is a w(N) × w(N) evenly
spaced monochromatic subgrid.

All of these hold for q > 2 colors, and even have density versions.

Quantitative question: How quickly does f grow?
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What is Ramsey theory?

Given an N × N grid, if the points are colored red or blue, how large
of a monochromatic subgrid can we find?

2-coloring = partition into two parts

monochromatic = entirely within one part

We are interested in the worst case, adversarial colorings.
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monochromatic = entirely within one part
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Connections to other areas of mathematics

Techniques: Ramsey-theoretic questions have led to the
development of powerful and general methods.
Applications: Proving something about an object is easier if you
can pass to a structured subobject!

Ramsey theory

Extremal combinatorics
probabilistic method
Szemerédi’s regularity lemma
dependent random choice
χ-boundedness

Theoretical CS
circuit complexity
communication complexity
algorithms
randomness extractors
structure vs. randomness

Logic
decidability
ultrafilters
stable theories

Functional analysis
structure of Banach spaces

Ergodic theory
Furstenburg correspondence
Furstenburg–Zimmer

structure theorem

Group theory
quasirandom groups
global hypercontractivity

Geometry
points in convex position
sphere packing

Number theory
uniformity norms
arithmetic regularity
Green–Tao theorem
Lp almost periodicity
inverse theorems

Fermat’s last theorem
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Fermat and Schur

Claim (Fermat 1637); Theorem (Wiles 1995)
For every q ⩾ 3, there is no non-trivial integer solution to

xq + yq = zq.

Theorem (Dickson 1909, Schur 1916)
If N is sufficiently large with respect to q, then there is a non-trivial
integer solution to

xq + yq ≡ zq (mod N).

Schur: “I will show how Dickson’s theorem follows almost
immediately from a very simple lemma, which belongs more to
combinatorics than to number theory.”

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs
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Schur’s combinatorial lemma

To prove the theorem of Dickson and Schur, it suffices to prove:

No matter how we color the elements of {1,2,…,N} with q colors,
there is a monochromatic solution to

x+ y = z,

assuming N is sufficiently large with respect to q.

This is a Ramsey-theoretic statement, but it’s still about numbers.

It follows from the following purely combinatorial statement.

Nomatter how we color the edges between N vertices with q colors,
there is a monochromatic triangle, assuming N is sufficiently large.

1 2 3 4 5

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs
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It follows from the following purely combinatorial statement.

Nomatter how we color the edges between N vertices with q colors,
there is a monochromatic triangle, assuming N is sufficiently large.

1 2 3 4 5
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Ramsey’s theorem

Theorem (Schur 1916)
No matter how we color the edges between N vertices with q colors,
there is a monochromatic triangle, assuming N is sufficiently large.

Theorem (Ramsey 1929)

Fix integers t and q. If N is sufficiently large, then no matter how we
color the edges between N vertices with q colors, there is a
monochromatic Kt.

How large?
The Ramsey number R(t;q) is the least N for which Ramsey’s
theorem holds.
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Classical bounds on Ramsey numbers

Ramsey (1929): Fix integers t and q. If N is sufficiently large, then in
any q-coloring of E(KN), there is a monochromatic Kt.

The Ramsey number R(t;q) is the least N for which this holds.

Essentially every proof of Ramsey’s theorem yields an upper bound
on R(t;q). Ramsey’s proof gave R(t;2) ⩽ t!.

Theorem (Erdős–Szekeres 1935)
R(t;2) < 4t.

R(t;q) < qqt.

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt. These are hard to find!

Theorem (Erdős 1947)
R(t;2) > 2t/2.

R(t;q) > qt/2.
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Book graphs

Theorem (Ramsey 1929): If N is sufficiently large, every 2-coloring
of E(KN) contains a monochromatic Kt.

Theorem (Erdős–Szekeres 1935): R(t;2) < 4t.

Definition
The book graph Bs,m consists of a Ks joined tom other vertices.

...
...

Key observation: Finding a large monochromatic book in KN helps
us find a monochromatic Kt.

In them “page” vertices, it suffices to find a blue Kt or a red Kt−s.
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Finding large books

Key observation: Finding a large monochromatic book in KN helps
us find a monochromatic Kt.

Erdős–Faudree–Rousseau–Schelp (1978), Thomason (1982): How
large of a monochromatic book can we guarantee?

Theorem (Conlon 2019)
Every 2-coloring of E(KN) contains a monochromatic Bs,m with

m ⩾ 2−sN − o(N)

(and this is asymptotically tight).

Theorem (Conlon–Fox–W. 2022)
Every 2-coloring of E(KN) contains a monochromatic Bs,m with

m ⩾ 2−sN − Os

(
N

(log log logN)1/25

)
.

This result is still too weak to improve the bound R(t;2) < 4t.
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The book algorithm

Theorem (Erdős–Szekeres 1935)
R(t;2) < 4t.

R(t;q) < qqt.

Theorem (Campos–Griffiths–Morris–Sahasrabudhe 2023)

R(t;2) < 3.993t.

They introduced a “book algorithm” which can find some
sufficiently large monochromatic book.

Theorem (Gupta–Ndiaye–Norin–Wei 2024)

R(t;2) < 3.799t.

Theorem (Balister–Bollobás–Campos–Griffiths–Hurley–
Morris–Sahasrabudhe–Tiba 2024)

R(t;q) < (qq − εq)t.
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Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;2) > 2t/2.

Proof: Let N = 2t/2. Consider a random 2-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
21−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!
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What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;2) > 2t/2.

Proof: Let N = 2t/2. Consider a random 2-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
21−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;2) > 2t/2.

Proof: Let N = 2t/2. Consider a random 2-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
21−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;2) > 2t/2.

Proof: Let N = 2t/2. Consider a random 2-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
21−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;q) > qt/2.

Proof: Let N = 2t/2. Consider a random 2-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
21−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;q) > qt/2.

Proof: Let N = qt/2. Consider a random q-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
q1−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Erdős’s lower bound

For a lower bound on R(t;q) we need a construction: a coloring of
E(KN) with no monochromatic Kt.

Theorem (Erdős 1947)
R(t;q) > qt/2.

Proof: Let N = qt/2. Consider a random q-coloring of E(KN).

𝔼[#monochromatic Kt] =
(
N
t

)
q1−( t2) < 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.

This is the origin of the probabilistic method in combinatorics.

The best known upper bound is essentially (qq)t — a very big gap!

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Multicolor Ramsey numbers

Theorem (Erdős 1947)

R(t;q) >
(
q
1
2

)t
.

Theorem (Abbott 1972)

R(t;q) >
(
2
1
4q

)t
.

Theorem (Conlon–Ferber 2021)

R(t;q) >
(
2
7
24q

)t
.

Theorem (W. 2021)

R(t;q) >
(
2
3
8q

)t
.
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The Conlon–Ferber coloring for q = 3

We color E(KN) in red, blue, and green as follows.

The green edges are defined by linear algebra over 𝔽2.

Fact 1: No green Kt.

Fact 2: ⩽ 2
5
8 t
2
t-sets with no green edge.

0000
1100

1010

1001
0110

0101

0011

1111

Keep each vertex with probability p.

Color all remaining pairs red or blue at random.

𝔼[#red or blue Kt] ⩽

2
5
8 t
2

· pt · 21−( t2).

Choose p = 2− 1
8 t to make this < 1, hence no red or blue Kt.

No green Kt by Fact 1, so R(t;3) > N ≈ p · 2t = 2
7
8 t.

This works over larger fields, but the bounds aren’t very good.
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A different approach for q = 4

We’ll try coloring the edges in red, blue, green, and yellow.

Overlay two random copies of the
linear-algebraic graph in green and yellow.

Fact 1: No green or yellow Kt.
Fact 2: ⩽ 2

1
4 t
2
t-sets with no green and no

yellow edge.

Keep each vertex with probability p.

Color all remaining pairs red or blue at random.

𝔼[#red or blue Kt] ⩽ 2
1
4 t
2

· pt · 21−( t2).

Pick p = 2
1
4 t to obtain R(t;4) > N ≈ p · 2t = 2

5
4 t.

How are we picking p > 1???
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Random homomorphisms to the rescue

Sometimes, one can handle probabilities larger than 1!

Let p be any positive real number, and let N = p · 2t.

Pick a uniformly random function f : [N] → {0,1}t.

0000
1100

1010

1001
0110

0101

0011

1111

1 2 3 N1010 0011 0101 0101 0011 0110 0101 1111 1010 0000 0101

Connect vertices in [N] iff their labels are adjacent.

Fact 1: No Kt.

Fact 2: ⩽ pt · 2 5
8 t
2
t-sets with no edge.

So the above argument works for any p, if interpreted correctly.
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Putting it all together

Theorem (W. 2021)

R(t;q) >
(
2
3
8q−1

4

)t

.

Proof: Let p =
(
2

3
8q− 5

4

)t
, let N = p · 2t, and pick q − 2 random

functions [N] → {0,1}t. Overlay the resulting graphs in the first
q − 2 colors, then color the remaining pairs randomly red or blue.

By optimizing this technique, Sawin proved that

R(t;q) >
(
20.383q−0.267

)t
.
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Fermat’s last theorem and Ramsey numbers

Upper bounds on Ramsey numbers

Lower bounds on Ramsey numbers

Ramsey theory and random graphs
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Folkman’s theorem

Theorem (Folkman 1970, Nešetřil–Rödl 1976)
For all integers t,q, there exists a graph G such that every q-coloring
of E(G) contains a monochromatic Kt and G is Kt+1-free.

The original proofs produced unbelievably large G.
Much better bounds can be proved using random graphs.
Let GN,p be a random subgraph of KN obtained by keeping each
edge with probability p.

Question

When is

Pr(GN,p is q-color Ramsey for Kt)

close to 1? Close to 0?

This is the central question at the intersection of Ramsey theory and
random graph theory.
An exact answer was conjectured by Kohayakawa–Kreuter (1997).
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The Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

Let H1,…,Hq be graphs

with m2(H1) ⩾ · · · ⩾ m2(Hq) & m2(H2) > 1.

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽

cθ(N),

1 if p ⩾

Cθ(N),

where C > c > 0 are constants, and θ(N) = N−1/m2(H1,H2) for

m2(H) := max
J⊆H

eJ − 1
vJ − 2

and m2(H1,H2) := max
J⊆H1

eJ
vJ − 2+ 1

m2(H2)

.

Assuming the conjecture, one obtains a three-line proof of
Folkman’s theorem with good bounds.
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Progress on the Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽ cθ(N),
1 if p ⩾ Cθ(N).

For ~25 years: Only proved in certain special cases.

Theorem (Mousset–Nenadov–Samotij 2020)

The 1-statement is true.

Theorem (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W. 2023)

The 0-statement is equivalent to a deterministic statement.
The only possible obstructions are constant-sized subgraphs of GN,p.

Theorem (Christoph–Martinsson–Steiner–W. 2024)

The deterministic statement is true (hence so is the KK conjecture).

We prove a much more general graph partitioning theorem.
The proof uses max-flow min-cut, ideas from matroid theory,…

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Progress on the Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽ cθ(N),
1 if p ⩾ Cθ(N).

For ~25 years: Only proved in certain special cases.

Theorem (Mousset–Nenadov–Samotij 2020)

The 1-statement is true.

Theorem (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W. 2023)

The 0-statement is equivalent to a deterministic statement.
The only possible obstructions are constant-sized subgraphs of GN,p.

Theorem (Christoph–Martinsson–Steiner–W. 2024)

The deterministic statement is true (hence so is the KK conjecture).

We prove a much more general graph partitioning theorem.
The proof uses max-flow min-cut, ideas from matroid theory,…

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Progress on the Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽ cθ(N),
1 if p ⩾ Cθ(N).

For ~25 years: Only proved in certain special cases.

Theorem (Mousset–Nenadov–Samotij 2020)

The 1-statement is true.

Theorem (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W. 2023)

The 0-statement is equivalent to a deterministic statement.
The only possible obstructions are constant-sized subgraphs of GN,p.

Theorem (Christoph–Martinsson–Steiner–W. 2024)

The deterministic statement is true (hence so is the KK conjecture).

We prove a much more general graph partitioning theorem.
The proof uses max-flow min-cut, ideas from matroid theory,…

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Progress on the Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽ cθ(N),
1 if p ⩾ Cθ(N).

For ~25 years: Only proved in certain special cases.

Theorem (Mousset–Nenadov–Samotij 2020)

The 1-statement is true.

Theorem (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W. 2023)

The 0-statement is equivalent to a deterministic statement.

The only possible obstructions are constant-sized subgraphs of GN,p.

Theorem (Christoph–Martinsson–Steiner–W. 2024)

The deterministic statement is true (hence so is the KK conjecture).

We prove a much more general graph partitioning theorem.
The proof uses max-flow min-cut, ideas from matroid theory,…

What is Ramsey theory? Fermat’s last theorem Upper bounds Lower bounds Random graphs



Progress on the Kohayakawa–Kreuter conjecture

Conjecture (Kohayakawa–Kreuter 1997)

lim
N→∞

Pr(GN,p is Ramsey for (H1,…,Hq)) =

{
0 if p ⩽ cθ(N),
1 if p ⩾ Cθ(N).

For ~25 years: Only proved in certain special cases.

Theorem (Mousset–Nenadov–Samotij 2020)

The 1-statement is true.

Theorem (Bowtell–Hancock–Hyde, Kuperwasser–Samotij–W. 2023)

The 0-statement is equivalent to a deterministic statement.
The only possible obstructions are constant-sized subgraphs of GN,p.

Theorem (Christoph–Martinsson–Steiner–W. 2024)

The deterministic statement is true (hence so is the KK conjecture).

We prove a much more general graph partitioning theorem.
The proof uses max-flow min-cut, ideas from matroid theory,…
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Thank you!

Ramsey theory

Extremal combinatorics
probabilistic method
Szemerédi’s regularity lemma
dependent random choice
χ-boundedness

Theoretical CS
circuit complexity
communication complexity
algorithms
randomness extractors
structure vs. randomness

Logic
decidability
ultrafilters
stable theories

Functional analysis
structure of Banach spaces

Ergodic theory
Furstenburg correspondence
Furstenburg–Zimmer

structure theorem

Group theory
quasirandom groups
global hypercontractivity

Geometry
points in convex position
sphere packing

Number theory
uniformity norms
arithmetic regularity
Green–Tao theorem
Lp almost periodicity
inverse theorems
Fermat’s last theorem
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