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Background

Heisenberg (1927): It is impossible to simultaneously determine a
particle’s position and momentum to arbitrary precision.
Kennard, Weyl (1927–8): Mathematical formalism:

σxσp ≥ h
4π .

Also applies to any pair of canonically conjugate variables:
quantities related by a Fourier transform.
From physics to math: relations to functional analysis, PDEs,
microlocal analysis, wavelets, signal processing,…
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The Fourier transform

Continuous
Given f : ℝ → ℂ, we define

f̂(ξ) =
∫ ∞

−∞
f(x)e−2πixξ dx.

We can recover f from f̂ as

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξ dξ.

Throughout, f is “nice enough”.
It suffices that f, f̂ ∈ L1.

Discrete
For f : ℤ/Nℤ → ℂ,

f̂(ξ) = 1√
N

N−1∑
x=0

f(x)e−2πixξ/N

and we can recover

f(x) = 1√
N

N−1∑
ξ=0

f̂(ξ)e2πixξ/N.
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The uncertainty principle(s)
For f : ℝ → ℂ

• If f has compact (finite-measure)
support, then f̂ does not.

• Hardy: f and f̂ cannot both
decay faster than e−x2 .

• Heisenberg:

V( f)V( f̂) ≥
∥ f∥22∥ f̂∥22
16π2 ,

where V( f) =
∫
ℝ x2| f(x)|2 dx.

• Hirschman, Beckner:
H( f) + H( f̂) ≥ log e

2 ,

where ∥ f∥2 = 1 and
H( f) =

∫
ℝ| f(x)|2 log| f(x)|2 dx.

For f : ℤ/Nℤ → ℂ
• Donoho–Stark:

|supp( f)||supp( f̂)| ≥ N.
• If ∥ f |S∥2 ≥ (1 − ε)∥ f∥2 and

∥ f̂ |T∥2 ≥ (1 − δ)∥ f̂∥2, then
|S||T | ≥ N(1 − ε − δ)2.

• Biró, Meshulam, Tao: If N is
prime,

|supp( f)| + |supp( f̂)| ≥ N+ 1.
• Dembo–Cover–Thomas:

H( f) + H( f̂) ≥ logN,
where ∥ f∥2 = 1 and
H( f) =∑N−1

x=0 | f(x)|2 log| f(x)|2.
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The primary uncertainty principle

We can bound ∥ f̂∥∞ by ∥ f∥1: observe that for any ξ ∈ ℝ,

| f̂(ξ)| =
∣∣∣∣∫ ∞

−∞
f(x)e−2πixξ dx

∣∣∣∣ ≤
∫ ∞

−∞
| f(x)||e−2πixξ |dx = ∥ f∥1

which implies that

∥ f̂∥∞ = sup
ξ∈ℝ

| f̂(ξ)| ≤ ∥ f∥1.

Similarly, ∥ f∥∞ ≤ ∥ f̂∥1. Multiplying these together, we find

∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ 1. (*)

∥ f∥1/∥ f∥∞ measures localization; this is the uncertainty principle!
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How to derive other uncertainty principles

∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ 1 (*)

Say we wish to prove an uncertainty principle

L( f) · L( f̂) ≥ C

for some “measure of localization” L.
(*) contains all the “uncertainty”. It suffices to prove

L(g) ≥ c ∥g∥1
∥g∥∞

or L(g) ≥
(

∥g∥1
∥g∥∞

)c
or …

for any single function g. Then plug in g = f,g = f̂ .
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Example 1: Support size
For any g : ℝ → ℂ,

∥g∥1 =

∫
ℝ
|g(x)|dx

=

∫
supp(g)

|g(x)|dx

≤ |supp(g)|∥g∥∞

where | · | is Lebesgue measure.
So

|supp(g)| ≥ ∥g∥1
∥g∥∞

.

Therefore

|supp( f)||supp( f̂)| ≥ ∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ 1.

If f : ℤ/Nℤ → ℂ, then

∥ f̂∥∞ ≤ 1√
N

N−1∑
x=0

| f(x)| = ∥ f∥1√
N

.

So in the discrete setting,

∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ N.

Therefore, the same argument
gives the Donoho–Stark UP:
For non-zero f : ℤ/Nℤ → ℂ,

|supp( f)| · |supp( f̂)| ≥ N.

Introduction Our perspective Examples Interlude Examples Conclusion



Example 2: Approximate support
Say that g is ε-supported on E ⊂ ℝ if∫

E
|g(x)|dx ≥ (1 − ε)∥g∥1.

Theorem (Williams)
If f : ℝ → ℂ is ε-supported on S and f̂ is δ-supported on T, then

|S||T| ≥ (1 − ε)(1 − δ).

Proof.
If g is ε-supported on E, then

(1 − ε)∥g∥1 ≤
∫
E

|g(x)|dx ≤ |E|∥g∥∞ =⇒ |E| ≥ (1 − ε)
∥g∥1
∥g∥∞

.

So

|S||T| ≥
(
(1 − ε)

∥ f∥1
∥ f∥∞

)(
(1 − δ)

∥ f̂∥1
∥ f̂∥∞

)
≥ (1 − ε)(1 − δ).
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How general is this?
All our results follow from the primary uncertainty principle

∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ 1, (*)

as well as “universal” bounds that hold for a single function.
(*) only needed that ∥ f̂∥∞ ≤ ∥ f∥1, ∥ f∥∞ ≤ ∥ f̂∥1.

Theorem
Let A,B be a linear operators with

∥A∥1→∞ ≤ 1, ∥B∥1→∞ ≤ 1, and ∥BAf∥∞ ≥ k∥ f∥∞.

Then
∥ f∥1
∥ f∥∞

· ∥Af∥1
∥Af∥∞

≥ k.

We call such operators k-Hadamard. Examples from coding theory,
block designs, quantum algebra, fractional Fourier transforms…
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Example 3: Other norms

Theorem
For any 1 ≤ p ≤ ∞ and any non-zero f : ℝ → ℂ,

∥ f∥1
∥ f∥p

· ∥ f̂∥1
∥ f̂∥p

≥ 1.

Proof.
For any g : ℝ → ℂ,

∥g∥pp =

∫
ℝ
|g(x)|p dx ≤ ∥g∥p−1

∞

∫
ℝ
|g(x)|dx = ∥g∥p−1

∞ ∥g∥1.

So ∥g∥p−1
1 ∥g∥pp ≤ ∥g∥p−1

∞ ∥g∥p1 . Therefore,

∥g∥1
∥g∥p

≥
(

∥g∥1
∥g∥∞

) p−1
p

=⇒ ∥ f∥1
∥ f∥p

∥ f̂∥1
∥ f̂∥p

≥
(

∥ f∥1
∥ f∥∞

∥ f̂∥1
∥ f̂∥∞

) p−1
p

≥ 1.
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Example 4: The Heisenberg uncertainty principle
V( f)V( f̂) ≥ C∥ f∥22∥ f̂∥22, where V( f) =

∫
ℝ x2| f(x)|2 dx.

Here, we will use ∥ f∥1
∥ f∥2

∥ f̂∥1
∥ f̂∥2

≥ 1 as a primary uncertainty principle.
So we want a lower bound on V(g) in terms of ∥g∥1/∥g∥2.

Lemma: V(g)
∥g∥2

2
≥ c

(
∥g∥1
∥g∥2

)4
.

Proof sketch: Let T = 1
8 (∥g∥1/∥g∥2)2, so that

∫ T
−T|g| ≤ 1

2∥g∥1. Then

1
2∥g∥1 ≤

∫
|x|>T

x
x |g(x)|dx ≤

(∫
|x|>T

1
x2 dx

) 1
2

︸ ︷︷ ︸√
2/T

(∫
ℝ
x2|g(x)|2 dx

) 1
2

︸ ︷︷ ︸√
V(g)

.

Using the same ideas, we can prove uncertainty relations for other
moments and norms of | f |, | f̂ |; similar to results of Cowling–Price.
The constant we get is not optimal. This is probably an unavoidable
shortcoming of this technique.

Introduction Our perspective Examples Interlude Examples Conclusion



Summary

• Many (but not all!) uncertainty principles follow from a simple
and general framework.

∥ f∥1
∥ f∥∞

· ∥ f̂∥1
∥ f̂∥∞

≥ 1

• To prove other uncertainty principles, simply prove a bound
that holds for any single function.

• Standard proofs of many of these results use special properties
of the Fourier transform; we only use basic calculus facts.

• Shortcomings: rarely gets the correct constant, cannot prove all
uncertainty principles. But these lead to interesting questions…

• The only property of the Fourier transform we used is that it and
its inverse are bounded L1 → L∞. Thus, this works in much
greater generality.
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Other operators for which this works

The only property of the Fourier transform we used is that it and its
inverse are bounded L1 → L∞. Thus, this works in much greater
generality.

• Continuous case:
▶ Linear canonical transforms: givenM = ( a b

c d ) ∈ SL2(ℝ) with b ̸= 0,

(LM f)(ξ) = 1√
ib

∫ ∞

−∞
f(x)eiπ(dξ2−2xξ+ax2)/b dx.

• Discrete case:
▶ We can obtain uncertainty principles for many “structured” linear

operators: Hadamard matrices, conference matrices, incidence
matrices from discrete geometry, error-correcting codes…

▶ We can also get uncertainty principles for random matrices. The
Fourier transform isn’t so special—almost all matrices satisfy
uncertainty!
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Further extensions and open problems
Theorem
Let A,B be linear operators with

∥A∥1→∞ ≤ 1, ∥B∥1→∞ ≤ 1, and ∥BAf∥∞ ≥ k∥ f∥∞.

Then
∥ f∥1
∥ f∥∞

· ∥Af∥1
∥Af∥∞

≥ k.

• Arbitrary pairs of norms — very useful for non-abelian groups.
• Multiple operators A1,…,An — are there any applications?
• Do some non-linear operators have uncertainty principles?
• Can one prove the multidimensional Heisenberg uncertainty
principle with these techniques? If f : ℝn → ℂ, then(∫

ℝn
∥x∥22| f(x)|2 dx

)(∫
ℝn

∥ξ∥22| f̂(ξ)|2 dξ
)

≥ n2
16π2 ∥ f∥22∥ f̂∥22.

The main interest is getting the correct dependence on n.
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Thank you!
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