New perspectives on the uncertainty principle

Yuval Wigderson (Stanford)
Joint with Avi Wigderson

November 2, 2020

Uncertainty: that is appropriate for the matters of this world.

Joel and Ethan Coen The Ballad of Buster Scruggs

Heisenberg (1927): It is impossible to simultaneously determine a particle's position and momentum to arbitrary precision.

Heisenberg (1927): It is impossible to simultaneously determine a particle's position and momentum to arbitrary precision.

Kennard, Weyl (1927-8): Mathematical formalism:

$$\sigma_x \sigma_p \geq \frac{h}{4\pi}$$
.

Heisenberg (1927): It is impossible to simultaneously determine a particle's position and momentum to arbitrary precision.

Kennard, Weyl (1927-8): Mathematical formalism:

$$\sigma_x \sigma_p \geq \frac{h}{4\pi}$$
.

Also applies to any pair of canonically conjugate variables: quantities related by a Fourier transform.

Heisenberg (1927): It is impossible to simultaneously determine a particle's position and momentum to arbitrary precision.

Kennard, Weyl (1927-8): Mathematical formalism:

$$\sigma_x \sigma_\rho \geq \frac{h}{4\pi}$$
.

Also applies to any pair of canonically conjugate variables: quantities related by a Fourier transform.

From physics to math: relations to functional analysis, microlocal analysis, wavelets, signal processing,...

Introduction

Our perspective

xamples

nterlude

Example

Conclusior

Continuous

Given $f: \mathbb{R} \to \mathbb{C}$, we define

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

Continuous

Given $f: \mathbb{R} \to \mathbb{C}$, we define

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

We can recover f from \hat{f} as

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi.$$

Continuous

Given $f: \mathbb{R} \to \mathbb{C}$, we define

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

We can recover f from \hat{f} as

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi.$$

Discrete

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$,

$$\hat{f}(\xi) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) e^{-2\pi i x \xi/N}$$

and we can recover

$$f(x) = \frac{1}{\sqrt{N}} \sum_{\xi=0}^{N-1} \hat{f}(\xi) e^{2\pi i x \xi/N}.$$

Continuous

Given $f: \mathbb{R} \to \mathbb{C}$, we define

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx.$$

We can recover f from \hat{f} as

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i x \xi} d\xi.$$

Discrete

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$,

$$\hat{f}(\xi) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) e^{-2\pi i x \xi/N}$$

and we can recover

$$f(x) = \frac{1}{\sqrt{N}} \sum_{\xi=0}^{N-1} \hat{f}(\xi) e^{2\pi i x \xi/N}.$$

Throughout, f is "nice enough". It suffices that f, $\hat{f} \in L^1$.

For $f: \mathbb{R} \to \mathbb{C}$

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

Examples

For $f: \mathbb{R} \to \mathbb{C}$

• If f has compact support, then \hat{f} does not.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

For $f: \mathbb{R} \to \mathbb{C}$

• If f has compact (finite-measure) support, then \hat{f} does not.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

For $f: \mathbb{R} \to \mathbb{C}$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

Introduction Our perspective Examples Interlude E

For $f: \mathbb{R} \to \mathbb{C}$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$
 where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

For $f: \mathbb{R} \to \mathbb{C}$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$

where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

• Hirschman, Beckner:

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

where $||f||_2 = 1$ and $H(f) = \int_{\mathbb{D}} |f(x)|^2 \log |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

For
$$f: \mathbb{R} \to \mathbb{C}$$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$

where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

• Hirschman, Beckner:

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

where $||f||_2 = 1$ and $H(f) = \int_{\mathbb{D}} |f(x)|^2 \log |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

Donoho-Stark:

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \geq N.$$

For
$$f: \mathbb{R} \to \mathbb{C}$$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$

where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

• Hirschman, Beckner:

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

where $||f||_2 = 1$ and $H(f) = \int_{\mathbb{R}} |f(x)|^2 \log |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

Donoho-Stark:

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \geq N.$$

• If $||f|_S||_2 \ge (1 - \varepsilon) ||f||_2$ and $||\hat{f}|_T||_2 \ge (1 - \delta) ||\hat{f}||_2$, then $|S||T| \ge N(1 - \varepsilon - \delta)^2$.

For $f: \mathbb{R} \to \mathbb{C}$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$

where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

• Hirschman, Beckner:

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

where $||f||_2 = 1$ and $H(f) = \int_{\mathbb{D}} |f(x)|^2 \log |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

• Donoho-Stark:

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \geq N.$$

- If $||f||_S||_2 \ge (1 \varepsilon)||f||_2$ and $||\hat{f}|_T||_2 \ge (1 \delta)||\hat{f}||_2$, then $|S||T| \ge N(1 \varepsilon \delta)^2$.
- Tao: If N is prime, $|\operatorname{supp}(f)| + |\operatorname{supp}(\hat{f})| \ge N + 1.$

For $f: \mathbb{R} \to \mathbb{C}$

- If f has compact (finite-measure) support, then \hat{f} does not.
- Hardy: f and \hat{f} cannot both decay faster than e^{-x^2} .
- Heisenberg:

$$V(f)V(\hat{f}) \ge \frac{\|f\|_2^2 \|\hat{f}\|_2^2}{16\pi^2},$$

where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

• Hirschman, Beckner:

$$H(f) + H(\hat{f}) \ge \log \frac{e}{2}$$

where $||f||_2 = 1$ and $H(f) = \int_{\mathbb{R}} |f(x)|^2 \log |f(x)|^2 dx$.

For $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$

• Donoho-Stark:

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \geq N.$$

- If $||f||_S||_2 \ge (1 \varepsilon)||f||_2$ and $||\hat{f}|_T||_2 \ge (1 \delta)||\hat{f}||_2$, then $|S||T| \ge N(1 \varepsilon \delta)^2$.
- Tao: If N is prime, $|\operatorname{supp}(f)| + |\operatorname{supp}(\hat{f})| \ge N + 1.$
- Dembo-Cover-Thomas:

$$H(f) + H(\hat{f}) \ge \log N$$
,

where
$$||f||_2 = 1$$
 and $H(f) = \sum_{x=0}^{N-1} |f(x)|^2 \log |f(x)|^2$.

Introduction

Introduction

Our new perspective on the uncertainty principle

Introduction

Our new perspective on the uncertainty principle

Examples

Introduction

Our new perspective on the uncertainty principle

Examples

Interlude: generality and extensions

Introduction

Our new perspective on the uncertainty principle

Examples

Interlude: generality and extensions

More examples

Introduction

Our new perspective on the uncertainty principle

Examples

Interlude: generality and extensions

More examples

Conclusion

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$:

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right|$$

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx$$

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

which implies that

$$\|\hat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi)| \le \|f\|_1.$$

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

which implies that

$$\|\hat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi)| \le \|f\|_1.$$

Similarly, $||f||_{\infty} \leq ||\hat{f}||_{1}$.

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

which implies that

$$\|\hat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi)| \le \|f\|_1.$$

Similarly, $||f||_{\infty} \leq ||\hat{f}||_{1}$. Multiplying these together, we find

$$\frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

Introduction

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

which implies that

$$\|\hat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi)| \le \|f\|_1.$$

Similarly, $||f||_{\infty} \leq ||\hat{f}||_{1}$. Multiplying these together, we find

$$\frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

 $||f||_1/||f||_{\infty}$ measures localization; this is an uncertainty principle!

Introduction

The primary uncertainty principle

We can bound $\|\hat{f}\|_{\infty}$ by $\|f\|_{1}$: observe that for any $\xi \in \mathbb{R}$,

$$|\hat{f}(\xi)| = \left| \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx \right| \le \int_{-\infty}^{\infty} |f(x)| |e^{-2\pi i x \xi}| dx = ||f||_1$$

which implies that

$$\|\hat{f}\|_{\infty} = \sup_{\xi \in \mathbb{R}} |\hat{f}(\xi)| \le \|f\|_1.$$

Similarly, $||f||_{\infty} \leq ||\hat{f}||_{1}$. Multiplying these together, we find

$$\frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

 $||f||_1/||f||_{\infty}$ measures localization; this is the uncertainty principle!

Introduction

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1.$$
 (*

(*)

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

Say we wish to prove an uncertainty principle

$$L(f) \cdot L(\hat{f}) \ge C$$

for some "measure of localization" L.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

Say we wish to prove an uncertainty principle

$$L(f) \cdot L(\hat{f}) \ge C$$

for some "measure of localization" L.

(*) contains all the "uncertainty".

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

Say we wish to prove an uncertainty principle

$$L(f) \cdot L(\hat{f}) \ge C$$

for some "measure of localization" L.

(*) contains all the "uncertainty". It suffices to prove

$$L(g) \ge c \frac{\|g\|_1}{\|g\|_{\infty}}$$

for any single function g. Then plug in g = f, $g = \hat{f}$.

Introduction

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1. \tag{*}$$

Say we wish to prove an uncertainty principle

$$L(f) \cdot L(\hat{f}) \ge C$$

for some "measure of localization" L.

(*) contains all the "uncertainty". It suffices to prove

$$L(g) \ge c \frac{\|g\|_1}{\|g\|_{\infty}}$$
 or $L(g) \ge \left(\frac{\|g\|_1}{\|g\|_{\infty}}\right)^c$ or ...

for any single function g. Then plug in g = f, $g = \hat{f}$.

Introduction

Our perspective

xamples

nterlude

Example:

Conclusion

For any
$$g:\mathbb{R} \to \mathbb{C}$$
,
$$\|g\|_1 = \int_{\mathbb{R}} |g(x)| \, \mathrm{d}x$$

For any
$$g:\mathbb{R}\to\mathbb{C}$$
,
$$\|g\|_1=\int_{\mathbb{R}}|g(x)|\,\mathrm{d}x$$

$$=\int_{\mathrm{SUDD}(g)}|g(x)|\,\mathrm{d}x$$

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,
$$\|g\|_1 = \int_{\mathbb{R}} |g(x)| \, dx$$
$$= \int_{\text{supp}(g)} |g(x)| \, dx$$
$$\leq |\text{supp}(g)| \|g\|_{\infty}$$

where $|\cdot|$ is Lebesgue measure.

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,
$$\|g\|_1 = \int_{\mathbb{R}} |g(x)| \, \mathrm{d}x$$

$$= \int_{\mathrm{supp}(g)} |g(x)| \, \mathrm{d}x$$

$$\leq |\mathrm{supp}(g)| \|g\|_{\infty}$$
 where $|\cdot|$ is Lebesgue measure. So
$$|\mathrm{supp}(g)| \geq \frac{\|g\|_1}{\|g\|_{\infty}}.$$

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$||g||_1 = \int_{\mathbb{R}} |g(x)| dx$$

$$= \int_{\text{supp}(g)} |g(x)| dx$$

$$< |\text{supp}(g)| ||g||_{\infty}$$

where $|\cdot|$ is Lebesgue measure. So

$$|\operatorname{supp}(g)| \ge \frac{\|g\|_1}{\|g\|_{\infty}}.$$

Therefore

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \ge \frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}}$$

Introduction

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$||g||_1 = \int_{\mathbb{R}} |g(x)| dx$$

$$= \int_{\text{supp}(g)} |g(x)| dx$$

$$< |\text{supp}(g)| ||g||_{\infty}$$

where | · | is Lebesgue measure.

So

$$|\operatorname{supp}(g)| \ge \frac{\|g\|_1}{\|g\|_{\infty}}.$$

Therefore

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \ge \frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}}$$

> 1.

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$||g||_1 = \int_{\mathbb{R}} |g(x)| dx$$

$$= \int_{\text{supp}(g)} |g(x)| dx$$

$$< |\text{supp}(g)|||g||_{\infty}$$

where $|\cdot|$ is Lebesgue measure. So

$$|\operatorname{supp}(g)| \ge \frac{\|g\|_1}{\|g\|_{\infty}}.$$

Therefore

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \ge \frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}}$$
 $> 1.$

If $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$, then

$$\|\hat{f}\|_{\infty} \le \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |f(x)| = \frac{\|f\|_1}{\sqrt{N}}.$$

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$||g||_1 = \int_{\mathbb{R}} |g(x)| dx$$

$$= \int_{\text{supp}(g)} |g(x)| dx$$

$$< |\text{supp}(g)|||g||_{\infty}$$

where $|\cdot|$ is Lebesgue measure. So

$$|\operatorname{supp}(g)| \ge \frac{\|g\|_1}{\|g\|_{\infty}}.$$

Therefore

$$|\operatorname{supp}(f)||\operatorname{supp}(\hat{f})| \ge \frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}}$$
 $> 1.$

If $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$, then

$$\|\hat{f}\|_{\infty} \le \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |f(x)| = \frac{\|f\|_1}{\sqrt{N}}.$$

So in the discrete setting,

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_\infty} \ge N.$$

For any $g: \mathbb{R} \to \mathbb{C}$,

$$||g||_1 = \int_{\mathbb{R}} |g(x)| dx$$

$$= \int_{\text{supp}(g)} |g(x)| dx$$

 $\leq |\mathrm{supp}(g)| \|g\|_{\infty}$

where $|\cdot|$ is Lebesgue measure. So

$$|\operatorname{supp}(g)| \ge \frac{\|g\|_1}{\|g\|_{\infty}}.$$

Therefore

$$\begin{aligned} |\mathrm{supp}(f)||\mathrm{supp}(\hat{f})| &\geq \frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_\infty} \\ &> 1. \end{aligned}$$

If $f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$, then

$$\|\hat{f}\|_{\infty} \le \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |f(x)| = \frac{\|f\|_1}{\sqrt{N}}.$$

So in the discrete setting,

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_\infty} \ge N.$$

Therefore, the same argument gives the Donoho-Stark UP:

For non-zero
$$f: \mathbb{Z}/N\mathbb{Z} \to \mathbb{C}$$
, $|\operatorname{supp}(f)| \cdot |\operatorname{supp}(\hat{f})| > N$.

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{E} |g(x)| \, \mathrm{d} x \ge (1 - \varepsilon) \|g\|_{1}.$$

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{F} |g(x)| \, \mathrm{d}x \ge (1 - \varepsilon) \|g\|_{1}.$$

Theorem (Williams)

If $f: \mathbb{R} \to \mathbb{C}$ is ε -supported on S and \hat{f} is δ -supported on T, then $|S||T| > (1 - \varepsilon)(1 - \delta)$.

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{E} |g(x)| \, \mathrm{d}x \ge (1 - \varepsilon) \|g\|_{1}.$$

Theorem (Williams)

If $f: \mathbb{R} \to \mathbb{C}$ is ε -supported on S and \hat{f} is δ -supported on T, then $|S||T| \geq (1 - \varepsilon)(1 - \delta)$.

Proof.

If g is ε -supported on E, then

$$(1-\varepsilon)\|g\|_1 \le \int_{\varepsilon} |g(x)| \, \mathrm{d} x$$

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{E} |g(x)| \, \mathrm{d}x \ge (1 - \varepsilon) \|g\|_{1}.$$

Theorem (Williams)

If $f: \mathbb{R} \to \mathbb{C}$ is ε -supported on S and \hat{f} is δ -supported on T, then $|S||T| \geq (1 - \varepsilon)(1 - \delta)$.

Proof.

If g is ε -supported on E, then

$$(1-\varepsilon)\|g\|_1 \le \int_{\varepsilon} |g(x)| \, dx \le |E|\|g\|_{\infty}$$

Introduction

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{F} |g(x)| \, \mathrm{d}x \ge (1 - \varepsilon) \|g\|_{1}.$$

Theorem (Williams)

If $f: \mathbb{R} \to \mathbb{C}$ is ε -supported on S and \hat{f} is δ -supported on T, then $|S||T| > (1 - \varepsilon)(1 - \delta)$.

Proof.

If g is ε -supported on E, then

$$(1-\varepsilon)\|g\|_1 \le \int_E |g(x)| \, dx \le |E|\|g\|_\infty \implies |E| \ge (1-\varepsilon) \frac{\|g\|_1}{\|g\|_\infty}.$$

Introduction

Say that g is ε -supported on $E \subset \mathbb{R}$ if

$$\int_{E} |g(x)| \, \mathrm{d}x \ge (1 - \varepsilon) \|g\|_{1}.$$

Theorem (Williams)

If $f: \mathbb{R} \to \mathbb{C}$ is ε -supported on S and \hat{f} is δ -supported on T, then $|S||T| \ge (1 - \varepsilon)(1 - \delta)$.

Proof.

If g is ε -supported on E, then

$$(1-\varepsilon)\|g\|_1 \le \int_E |g(x)| \, \mathrm{d}x \le |E|\|g\|_\infty \quad \Longrightarrow \quad |E| \ge (1-\varepsilon) \frac{\|g\|_1}{\|g\|_\infty}.$$

So

$$|S||T| \geq \frac{(1-\varepsilon)\|f\|_1}{\|f\|_{\infty}} \cdot \frac{(1-\delta)\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}} \geq (1-\varepsilon)(1-\delta).$$

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

(*) only needed that $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, $\|f\|_{\infty} \leq \|\hat{f}\|_{1}$.

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

(*) only needed that $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, $\|f\|_{\infty} \leq \|\hat{f}\|_{1}$.

Theorem

Let A be a linear operator with

$$||A||_{1\to\infty} \le 1$$
, $||A^{-1}||_{1\to\infty} \le 1$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge 1.$$

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_1}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

(*) only needed that $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, $\|f\|_{\infty} \leq \|\hat{f}\|_{1}$.

Theorem

Let A, B be linear operators with

$$||A||_{1\to\infty} \le 1$$
, $||B||_{1\to\infty} \le 1$, and $||BAf||_{\infty} \ge ||f||_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge 1.$$

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

(*) only needed that $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, $\|f\|_{\infty} \leq \|\hat{f}\|_{1}$.

Theorem

Let A, B be linear operators with

$$||A||_{1\to\infty} \le 1$$
, $||B||_{1\to\infty} \le 1$, and $||BAf||_{\infty} \ge \frac{k}{k} ||f||_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

All our results follow from the primary uncertainty principle

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1, \tag{*}$$

as well as "universal" bounds that hold for a single function.

(*) only needed that $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$, $\|f\|_{\infty} \leq \|\hat{f}\|_{1}$.

Theorem

Let A, B be linear operators with

$$||A||_{1\to\infty} \le 1$$
, $||B||_{1\to\infty} \le 1$, and $||BAf||_{\infty} \ge k||f||_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

We call such operators *k-Hadamard*. Examples from coding theory, block designs, quantum algebra, fractional Fourier transforms...

Theorem

For any
$$1 \le p \le \infty$$
 and any non-zero $f : \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_p} \cdot \frac{\|f\|_1}{\|\hat{f}\|_p} \ge 1.$$

Theorem

For any
$$1 \leq p \leq \infty$$
 and any non-zero $f: \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_{\rho}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\rho}} \geq 1.$$

Proof.

For any
$$g:\mathbb{R} \to \mathbb{C}$$
,

$$||g||_p^p = \int_{\mathbb{R}} |g(x)|^p dx$$

Theorem

For any
$$1 \le p \le \infty$$
 and any non-zero $f: \mathbb{R} \to \mathbb{C}$,
$$\frac{\|f\|_1}{\|f\|_p} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_p} \ge 1.$$

Proof.

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$||g||_{\rho}^{p} = \int_{\mathbb{R}} |g(x)|^{p} dx \le ||g||_{\infty}^{p-1} \int_{\mathbb{R}} |g(x)| dx$$

Theorem

For any
$$1 \leq p \leq \infty$$
 and any non-zero $f: \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_p} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_p} \ge 1.$$

Proof.

For any
$$g: \mathbb{R} \to \mathbb{C}$$
,

$$\|g\|_p^p = \int_{\mathbb{R}} |g(x)|^p dx \le \|g\|_{\infty}^{p-1} \int_{\mathbb{R}} |g(x)| dx = \|g\|_{\infty}^{p-1} \|g\|_1.$$

Introduction

Theorem

For any
$$1 \leq p \leq \infty$$
 and any non-zero $f: \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_p} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_p} \ge 1.$$

Proof.

For any $g: \mathbb{R} \to \mathbb{C}$,

$$\|g\|_p^p = \int_{\mathbb{R}} |g(x)|^p dx \le \|g\|_{\infty}^{p-1} \int_{\mathbb{R}} |g(x)| dx = \|g\|_{\infty}^{p-1} \|g\|_1.$$

So $||g||_1^{p-1}||g||_p^p \le ||g||_{\infty}^{p-1}||g||_1^p$.

Example 3: Other norms

Theorem

For any $1 \le p \le \infty$ and any non-zero $f : \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_{\rho}} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_{\rho}} \ge 1.$$

Proof.

For any $g: \mathbb{R} \to \mathbb{C}$,

$$\|g\|_{p}^{p} = \int_{\mathbb{R}} |g(x)|^{p} dx \le \|g\|_{\infty}^{p-1} \int_{\mathbb{R}} |g(x)| dx = \|g\|_{\infty}^{p-1} \|g\|_{1}.$$

So $||g||_1^{p-1}||g||_p^p \le ||g||_{\infty}^{p-1}||g||_1^p$. Therefore,

$$\frac{\|g\|_1}{\|g\|_p} \ge \left(\frac{\|g\|_1}{\|g\|_{\infty}}\right)^{\frac{p-1}{p}}$$

Example 3: Other norms

Theorem

For any $1 \leq p \leq \infty$ and any non-zero $f : \mathbb{R} \to \mathbb{C}$,

$$\frac{\|f\|_1}{\|f\|_p} \cdot \frac{\|\hat{f}\|_1}{\|\hat{f}\|_p} \ge 1.$$

Proof.

For any $g:\mathbb{R} \to \mathbb{C}$,

$$\|g\|_{p}^{p} = \int_{\mathbb{R}} |g(x)|^{p} dx \le \|g\|_{\infty}^{p-1} \int_{\mathbb{R}} |g(x)| dx = \|g\|_{\infty}^{p-1} \|g\|_{1}.$$

So $\|g\|_1^{p-1}\|g\|_p^p \le \|g\|_{\infty}^{p-1}\|g\|_1^p$. Therefore,

$$\frac{\|g\|_{1}}{\|g\|_{p}} \ge \left(\frac{\|g\|_{1}}{\|g\|_{\infty}}\right)^{\frac{p-1}{p}} \implies \frac{\|f\|_{1}}{\|f\|_{p}} \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{p}} \ge \left(\frac{\|f\|_{1}}{\|f\|_{\infty}} \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}}\right)^{\frac{p-1}{p}} \ge 1. \quad \Box$$

Theorem

For non-zero $f: \mathbb{R} \to \mathbb{C}$,

$$\left(\int_{-\infty}^{\infty} x^2 |f(x)|^2 \, \mathrm{d}x \right) \left(\int_{-\infty}^{\infty} \xi^2 |\hat{f}(\xi)|^2 \, \mathrm{d}\xi \right) \ge C \|f\|_2^2 \|\hat{f}\|_2^2.$$

$$V(f)V(\hat{f}) \ge C||f||_2^2||\hat{f}||_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|\hat{f}\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|\hat{f}\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

$$V(f)V(\hat{f}) \ge C \|f\|_2^2 \|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|f\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma:
$$\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$$
.

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|f\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$.

$$V(f)V(\hat{f}) \ge C \|f\|_2^2 \|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|f\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2} \|g\|_1 \le \int_{|x| > T} |g(x)| \, \mathrm{d} x$$

Introduction

Our perspective

Interlude

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|f\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2} \|g\|_1 \le \int_{|x| > T} \frac{x}{x} |g(x)| \, \mathrm{d} x$$

Introduction

Our perspective

Interlude

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|f\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2} \|g\|_1 \le \int_{|x| > T} \frac{x}{x} |g(x)| \, \mathrm{d}x \le \left(\int_{|x| > T} \frac{1}{x^2} \, \mathrm{d}x \right)^{\frac{1}{2}} \, \left(\int_{\mathbb{R}} x^2 |g(x)|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}$$

Introduction

Our perspective

xamples

nterlude

Examples

$$V(f)V(\hat{f}) \ge C \|f\|_2^2 \|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|\hat{f}\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2}\|g\|_1 \leq \int_{|x| > T} \frac{x}{x} |g(x)| \, \mathrm{d} x \leq \underbrace{\left(\int_{|x| > T} \frac{1}{x^2} \, \mathrm{d} x\right)^{\frac{1}{2}}}_{\sqrt{2/T}} \underbrace{\left(\int_{\mathbb{R}} x^2 |g(x)|^2 \, \mathrm{d} x\right)^{\frac{1}{2}}}_{\sqrt{V(g)}}.$$

Introduction

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|\hat{f}\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2} \|g\|_{1} \le \int_{|x| > T} \frac{x}{x} |g(x)| \, \mathrm{d}x \le \underbrace{\left(\int_{|x| > T} \frac{1}{x^{2}} \, \mathrm{d}x\right)^{\frac{1}{2}}}_{\sqrt{2/T}} \underbrace{\left(\int_{\mathbb{R}} x^{2} |g(x)|^{2} \, \mathrm{d}x\right)^{\frac{1}{2}}}_{\sqrt{V(g)}}.$$

Using the same ideas, we can prove uncertainty relations for other moments and norms of |f|, $|\hat{f}|$; similar to results of Cowling-Price.

Introduction

Our perspective

xamples

nterlude

Examples

Conclusion

$$V(f)V(\hat{f}) \ge C\|f\|_2^2\|\hat{f}\|_2^2$$
, where $V(f) = \int_{\mathbb{R}} x^2 |f(x)|^2 dx$.

Here, we will use $\frac{\|f\|_1}{\|f\|_2} \frac{\|\hat{f}\|_1}{\|\hat{f}\|_2} \ge 1$ as a primary uncertainty principle.

So we want a lower bound on V(g) in terms of $||g||_1/||g||_2$.

Lemma: $\frac{V(g)}{\|g\|_2^2} \ge c \left(\frac{\|g\|_1}{\|g\|_2}\right)^4$.

Proof sketch: Let $T = \frac{1}{8}(\|g\|_1/\|g\|_2)^2$, so that $\int_{-T}^{T} |g| \le \frac{1}{2}\|g\|_1$. Then

$$\frac{1}{2} \|g\|_{1} \le \int_{|x| > T} \frac{x}{x} |g(x)| \, \mathrm{d}x \le \underbrace{\left(\int_{|x| > T} \frac{1}{x^{2}} \, \mathrm{d}x\right)^{\frac{1}{2}}}_{\sqrt{2/T}} \underbrace{\left(\int_{\mathbb{R}} x^{2} |g(x)|^{2} \, \mathrm{d}x\right)^{\frac{1}{2}}}_{\sqrt{V(g)}}.$$

Using the same ideas, we can prove uncertainty relations for other moments and norms of |f|, $|\hat{f}|$; similar to results of Cowling-Price.

The constant we get is not optimal. This is probably an unavoidable shortcoming of this technique.

Introduction

Our perspective

Examples

nterlud

Examples

Conclusion

 Many (but not all!) uncertainty principles follow from a simple and general framework.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1$$

 Many (but not all!) uncertainty principles follow from a simple and general framework.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1$$

 To prove other uncertainty principles, simply prove a bound that holds for any single function.

 Many (but not all!) uncertainty principles follow from a simple and general framework.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1$$

- To prove other uncertainty principles, simply prove a bound that holds for any single function.
- Standard proofs of many of these results use special properties of the Fourier transform; we only use basic calculus facts.

 Many (but not all!) uncertainty principles follow from a simple and general framework.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1$$

- To prove other uncertainty principles, simply prove a bound that holds for any single function.
- Standard proofs of many of these results use special properties of the Fourier transform; we only use basic calculus facts.
- Shortcomings: rarely gets the correct constant, cannot prove all uncertainty principles. But these lead to interesting questions...

 Many (but not all!) uncertainty principles follow from a simple and general framework.

$$\frac{\|f\|_{1}}{\|f\|_{\infty}} \cdot \frac{\|\hat{f}\|_{1}}{\|\hat{f}\|_{\infty}} \ge 1$$

- To prove other uncertainty principles, simply prove a bound that holds for any single function.
- Standard proofs of many of these results use special properties of the Fourier transform; we only use basic calculus facts.
- Shortcomings: rarely gets the correct constant, cannot prove all uncertainty principles. But these lead to interesting questions...
- The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

Introduction

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

Continuous case:

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

- Continuous case:
 - ▶ Linear canonical transforms: given $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ with $b \neq 0$,

$$(L_M f)(\xi) = \frac{1}{\sqrt{ib}} \int_{-\infty}^{\infty} f(x) e^{i\pi(d\xi^2 - 2x\xi + ax^2)/b} dx.$$

Conclusion

Introduction Our perspective Examples Interlude Ex

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

- Continuous case:
 - ▶ Linear canonical transforms: given $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ with $b \neq 0$,

$$(L_M f)(\xi) = \frac{1}{\sqrt{ib}} \int_{-\infty}^{\infty} f(x) e^{i\pi(d\xi^2 - 2x\xi + ax^2)/b} dx.$$

Discrete case:

Introduction

Our perspective

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

- Continuous case:
 - ▶ Linear canonical transforms: given $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ with $b \neq 0$,

$$(L_M f)(\xi) = \frac{1}{\sqrt{ib}} \int_{-\infty}^{\infty} f(x) e^{i\pi(d\xi^2 - 2x\xi + ax^2)/b} dx.$$

- Discrete case:
 - We can obtain uncertainty principles for many "structured" linear operators: Hadamard matrices, conference matrices, incidence matrices from discrete geometry, error-correcting codes...

Introduction

The only property of the Fourier transform we used is that it and its inverse are bounded $L^1 \to L^\infty$. Thus, this works in much greater generality.

- Continuous case:
 - ▶ Linear canonical transforms: given $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ with $b \neq 0$,

$$(L_M f)(\xi) = \frac{1}{\sqrt{ib}} \int_{-\infty}^{\infty} f(x) e^{i\pi(d\xi^2 - 2x\xi + ax^2)/b} dx.$$

- Discrete case:
 - We can obtain uncertainty principles for many "structured" linear operators: Hadamard matrices, conference matrices, incidence matrices from discrete geometry, error-correcting codes...
 - We can also get uncertainty principles for random matrices. The Fourier transform isn't so special—almost all matrices satisfy uncertainty!

Introduction

Theorem

Let A, B be linear operators with

$$\|A\|_{1\to\infty} \leq 1, \|B\|_{1\to\infty} \leq 1, \text{ and } \|BAf\|_{\infty} \geq k\|f\|_{\infty}.$$

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

Theorem

Let A, B be linear operators with

$$||A||_{1\to\infty} \le 1$$
, $||B||_{1\to\infty} \le 1$, and $||BAf||_{\infty} \ge k||f||_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

Arbitrary pairs of norms – very useful for non-abelian groups.

Conclusion

Theorem

Let A, B be linear operators with

$$\|A\|_{1\to\infty} \leq 1, \|B\|_{1\to\infty} \leq 1, \text{ and } \|BAf\|_{\infty} \geq k\|f\|_{\infty}.$$

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

- Arbitrary pairs of norms very useful for non-abelian groups.
- Multiple operators $A_1, ..., A_n$ are there any applications?

Introduction

Theorem

Let A, B be linear operators with

$$\|A\|_{1\to\infty} \le 1$$
, $\|B\|_{1\to\infty} \le 1$, and $\|BAf\|_{\infty} \ge k\|f\|_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

- Arbitrary pairs of norms very useful for non-abelian groups.
- Multiple operators $A_1, ..., A_n$ are there any applications?
- Non-linear operators?

Theorem

Let A, B be linear operators with

$$||A||_{1\to\infty} \le 1$$
, $||B||_{1\to\infty} \le 1$, and $||BAf||_{\infty} \ge k||f||_{\infty}$.

Then

$$\frac{\|f\|_1}{\|f\|_\infty} \cdot \frac{\|Af\|_1}{\|Af\|_\infty} \ge k.$$

- Arbitrary pairs of norms very useful for non-abelian groups.
- Multiple operators $A_1, ..., A_n$ are there any applications?
- Non-linear operators?
- Can one prove the multidimensional Heisenberg uncertainty principle with these techniques? If $f : \mathbb{R}^n \to \mathbb{C}$, then

$$\left(\int_{\mathbb{R}^n} \|x\|_2^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}^n} \|\xi\|_2^2 |\hat{f}(\xi)|^2 d\xi\right) \ge \frac{n^2}{16\pi^2} \|f\|_2^2 \|\hat{f}\|_2^2.$$

The main interest is getting the correct dependence on n.

Thank you!