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Also applies to any pair of canonically conjugate variables:
quantities related by a Fourier transform.

From physics to math: relations to functional analysis, microlocal
analysis, wavelets, signal processing,...
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The Fourier transform
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The Fourier transform

Continuous

Givenf: R — C, we define
f(§) = / f(x)e™2mx¢ dx.

We can recover ffrom f as
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Throughout, fis “nice enough”.

It suffices that £, f € L1,
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Example 1:

Support size

Examples

Iff:Z/NZ — C, then
; 1 iR
flloo < — f(x)| = )
Il < 2 31601 = U2
So in the discrete setting,

1l 11l

Ifloo [Iflloo

Therefore, the same argument
gives the Donoho-Stark UP:

For non-zero f: Z/NZ — C,
jsupp(f)] - [supp(F)] > N.
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Iff: R — Cis e-supported on S and fis §-supported on T, then
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Proof.
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All our results follow from the primary uncertainty principle
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How general is this?

All our results follow from the primary uncertainty principle

Il 1

[flloe 1flloo
as well as "universal” bounds that hold for a single function.
(x) only needed that || ]l < [|f]|1, || fllos < IIf]l1-

Theorem

Let A, B be linear operators with

IAll1—00 < 1, [1Bll1s00 <1, and [[BAf]loo 2 K| f]cc.

Then
Il IAf

1l NAflleo —

We call such operators k-Hadamard. Examples from coding theory,
block designs, quantum algebra, fractional Fourier transforms...
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Theorem

Forany 1 < p < oo and any non-zerof: R — C,
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Proof.
Foranyg:R — C,

lgllg = /R 190IP dx < [lgll2S /R 1900 dx = (1912 gl

—1 -1
So [lglf ™~ llglls < ligllss ligllf- Therefore,

p—1
gl - < gl ) P
llglle 19l

Introduction Our perspective Examples Interlude Examples Conclusion




Example 3: Other norms

Theorem

Forany 1 < p < oo and any non-zerof: R — C,

Il Wl
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Proof.
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Example 4: The Heisenberg uncertainty principle

Theorem

Fornon-zerof: R — C,

([Terreorax) ([~ eitwrde) = cimigiig
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Introduction Our perspective Examples Interlude Examples Conclusion



Example 4: The Heisenberg uncertainty principle

V(F)V(F) > C|I 1311 F]13, where V(f) = [ x?|f(x)|? dx.

Il 1Fls

il 171 > 1 as a primary uncertainty principle.
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Introduction Our perspective Examples Interlude Examples Conclusion



Example 4: The Heisenberg uncertainty principle

V(F)V(F) > C|I 1311 F]13, where V(f) = [ x?|f(x)|? dx.

Il 1Fls
IFll2 IFll2

So we want a lower bound on V(g) in terms of ||g]|1/]|9]|2-

4
. V@) & (ugm)
Lemma: 70z > ¢ {fgr; ) -

Proof sketch: Let T= £(||gll1/lgll2)? so that f_TT|g\ < Zlgllr. Then

Here, we will use > 1 as a primary uncertainty principle.

1
gl s/ 19(x)| dx
2 |x|>T

Introduction Our perspective Examples Interlude Examples Conclusion



Example 4: The Heisenberg uncertainty principle

VIOV(F) = CIFIIIFIB, where V(F) = Jy x| f()I? x.
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Using the same ideas, we can prove uncertainty relations for other
f'

The constant we get is not optimal. This is probably an unavoidable
shortcoming of this technique.
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The only property of the Fourier transform we used is that it and its
inverse are bounded L' — L. Thus, this works in much greater
generality.

® Continuous case:
> Linear canonical transforms: given M = (25) € SL,(R) with b # 0,

(Lwf)(E) = % / () 2 /b g
! — o0

® Discrete case:

» We can obtain uncertainty principles for many “structured” linear
operators: Hadamard matrices, conference matrices, incidence
matrices from discrete geometry, error-correcting codes. ..

> We can also get uncertainty principles for random matrices. The
Fourier transform isn't so special—almost all matrices satisfy
uncertainty!

Conclusion



Further extensions and open problems

Theorem

Let A, B be linear operators with

141500 < 1, [Bll1se0 < 1, and [IBAf]lse > Ki|fllac.
Then Il [Af]
1 1
e > k.
T
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Further extensions and open problems

Theorem

Let A, B be linear operators with

HAH14ﬂm < L

Blliseo <1, and [|BAT|loo > K|l ]l co-

Then
Il AT

lloc [|1AFlloc —

Arbitrary pairs of norms — very useful for non-abelian groups.
Multiple operators Ay, ..., A, — are there any applications?
Non-linear operators?

Can one prove the multidimensional Heisenberg uncertainty
principle with these techniques? If f: R” — C, then

. 2 .
([ wxigireorax) ([ neigiicor o) = se 121713

The main interest is getting the correct dependence on n.

Conclusion



Thank you!
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