
Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes
ἀλλὰ τί ἦ μοι ταῦτα περὶ δρῦν ἢ περὶ πέτρην;
But what is my business round tree or rock?

Hesiod, Theogony (trans. M. L. West)

The main reference for this talk is the book Probability on Trees and Networks, by Lyons and Peres.

1 Generating Uniform Spanning Trees
In this talk, all graphs will be finite. Recall that a tree is a connected graph containing no cycles, and that
a spanning tree of a graph G is a subgraph that is both a tree and which contains all the vertices of G. Also
recall that a walk on a graph is a sequence of vertices with the property that all pairs of subsequent vertices
are adjacent in the graph.

Ultimately, the goal of this talk is to understand what we can say about a uniformly random spanning
tree of a given graph G (this makes sense because G is finite, so it has only finitely many spanning trees).
To get there, we will first see a beautiful method for sampling a uniform spanning tree; note that doing this
is not obviously easy—even counting the number of spanning trees is, a priori, a difficult task.

For a walk v0, v1, . . . , vn in a graph G, we define its loop erasure by deleting all cycles that the path traces
out in the order they appear. More concretely, if the path contains no cycles, we do nothing; otherwise,
there will be some minimal 1 ≤ j ≤ n for which vj = vi for some i < j. Then we delete vi, vi+1, . . . , vj−1

from our walk and iterate this process.

Definition. A rooted tree is a tree T together with a specified vertex r (called the root). We orient all the
edges of T towards r; in other words, every root other than r has exactly one outgoing edge, and r has none.

Definition (Wilson’s Algorithm). Given a connected graph G and a vertex r, we define a growing sequence
of rooted trees Ti as follows:

1. Set T0 = {r}

2. If Ti−1 is a spanning tree of G, we stop. Otherwise, we pick an arbitrary vertex v not contained in
Ti−1 and start a simple random walk at v. Eventually this walk will hit a vertex in Ti−1, and let P be
the loop erasure of this path from v to Ti−1. Then define Ti = Ti−1 ∪ P .

Observe that each step will take finite time a.s., since G is finite. Also observe that each Ti is a tree,
since we are adding a pendent loopless path to the previous tree at each step. Also observe that since we
only terminate once all vertices have been incorporated, we will get a (rooted) spanning tree at the end of
the process. The astonishing thing is its distribution:

Theorem. Wilson’s Algorithm produces a uniformly random rooted spanning tree. In particular, if we forget
the root, we get a uniformly random spanning tree of G.

Remark. Wilson’s Algorithm can be similarly defined for any weighted, directed graph, or even more
generally, for any Markov chain. It turns out that in all these cases, it will produce the (appropriate
analogue of) a uniform spanning tree. The same proof works, but to maintain notational simplicity, we will
work with the unweighted, undirected case.

Proof. The key idea is to “pre-process” all the randomness that we might ever use. Specifically, for each
non-root vertex v in the graph, form an infinite sequence of independent random variables {S(i)

v }i≥1, where
each S

(i)
v is uniformly distributed on the neighbors of v. The idea is the following: the first time we get to

v and need to pick a neighbor to continue our simple random walk, we will use the neighbor given by S
(1)
v .

The second time we get to v, we will use S
(2)
v , and so on. This will certainly be the same process as if we had

performed the random choice the moment we needed it, since the process doesn’t know “when we flipped
the coins,” as it were. Nevertheless, this is a very useful perspective on what’s happening.

1

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

Now, we will define a new process, and prove that it is both equivalent to Wilson’s Algorithm and that
it produces a uniform spanning tree. Specifically, think of placing all the random variables S

(i)
v in a stack

below each vertex v. Then the top of the stack simply assigns, to each vertex v, one of its neighbors. This
naturally has the structure of a directed graph: we draw a directed edge from v to its neighbor S

(1)
v .

If this directed graph has no cycles, we stop the process. Otherwise, we arbitrarily pick one of the cycles
and “pop” it from the stack. This means eliminating the top element of the stack for each vertex in this
cycle and moving the rest of the stack upwards (i.e. replacing S

(i)
v with S

(i+1)
v). This gives us a new directed

graph, and we repeat this process.
Finally, we will record throughout which level of the stack each directed edge comes from. Recall that a

directed edge represents a pair (v, S
(i)
v), so we simply mark this edge with the “color” i. Thus, in the first

step, all edges have color 1, and after we pop the first cycle, all the edges in that cycle will have color 2
while everything else will still have color 1, and so on. Then by a colored cycle, we just mean a cycle in one
of these directed graphs, together with the marking of which level in the stack each of its edges came from.

Example. Suppose that we have a have a graph with five vertices, called r, a, b, c, d, and suppose that the
stacks look like this:

color a b c d r
1 b a d c
2 r d b c
3 d a a c
...

...
Then we have the following sequence of colored directed graphs, where we first choose to pop the ab cycle:

r

a

bc

d

1 111

r

a

bc

d

2
2

11

r

a

bc

d

2
2

2

2

r

a

bc

d

2

3
33

The following key lemma, which is completely deterministic, is the heart of the proof, and also explains
why Wilson’s Algorithm always works despite the huge amount of arbitrary choices that it allows us to make.

Lemma (Key lemma). In the above process, it doesn’t matter what order we pop the cycles in. More
formally, suppose each vertex comes with an (arbitrary) infinite stack, and we perform the above process.
Then one of the following two cases occurs:

1. Any order of popping will never terminate (i.e. infinitely many cycles will be popped)

2. In any order of popping, the same set of colored cycles will be popped.

Proof. Suppose that C is any colored cycle that can be popped at some point in some popping order. That
means that there is a sequence of colored cycles C1, . . . , Ck = C such that we can pop the cycles in that
order. Let C ′ ̸= C1 be any other cycle that can be popped at the beginning. Then we will show that either
C ′ = C or else C can still be popped via a sequence that begins with C ′. This suffices, since it implies that
any alternative choice of popping sequence either preserves the infinite number of poppings or preserves the
(finite) set of cycles to be popped.

If C ′ is vertex-disjoint from C1 ∪ · · · ∪ Ck, then popping it first will not affect any of the stacks in the
sequence C1, . . . , Ck, so we will still be able to pop that sequence. Therefore, let 1 ≤ m ≤ k be the first
index for which C ′ ∩ Cm ̸= ∅. Let x be some vertex shared by C ′ and Cm. Then since C ′ can be popped
at the first stage, all its edges must have color 1. Since x was not in the sequence C1, . . . , Cm−1, and since
Cm can be popped after all of those, the color on the edge leaving x in Cm must also be 1, since x was
never popped. Thus, the successor of x in Cm is the same as its successor in C ′. Applying this same

2

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

argument to the successor of x, and then to its successor, and so on, implies that C ′ = Cm. But then
Cm is vertex-disjoint from C1, . . . , Cm−1, so either C ′ = C or else we can pop these cycles in the order
Cm, C1, . . . , Cm−1, Cm+1, . . . , Ck.

Going back to Wilson’s Algorithm, we see that if we pre-process all the randomness, we do just have
some method for popping the stacks in some order (namely loop-erasing the random walks). So Wilson’s
Algorithm will produce the same spanning tree distribution as any other method of popping the stacks, since
we just proved that the specific method doesn’t matter.

Since Wilson’s Algorithm terminates in finite time a.s., we see that when we sample our stacks randomly,
we will a.s. only need to pop finitely many cycles. Thus, we can think of our collection of stacks as a union
of finitely many colored cycles O sitting on top of a spanning tree T , and then a bunch of junk beneath
T (which we’ll never see since we terminate the process once we hit T). Observe that if (O, T) is such a
pair that can arise in our stacks, then (O, T ′) can also arise for any other spanning tree T ′: indeed, any
spanning tree can live under the set of cycles. But this implies that the appearance of O is independent of
the appearance of T , and any T is equally likely, so the distribution of the final spanning tree is uniform.

2 Harmonic Functions
Definition. Given a graph G = (V,E), a function f : V → R is called harmonic at a vertex v if its value at
v is the average of its values on the neighbors of v, i.e.

f(v) =
1

deg(v)
∑

u:uv∈E

f(u)

or equivalently ∑
u:uv∈E

(f(u)− f(v)) = 0

We say f is harmonic on a set W of vertices if it’s harmonic at w for all v ∈ W .
We won’t need this interpretation, but f is harmonic if and only if it’s in the kernel of the graph Laplacian,

so this definition matches our usual notion of harmonicity.

Harmonic functions turn out to be extremely useful; unfortunately, they don’t exist:

Lemma. If G is a finite, connected graph, then the only functions harmonic on all of V are constants
functions.

Proof. The idea is that harmonic functions satisfy a maximal principle, very similar to the maximal principle
we know for harmonic functions on Rn.

Let f : V → R be harmonic on all of V , and let W ⊆ V be the set of vertices where f attains its
maximum (f attains a maximum since V is finite). Then W ̸= ∅, and if W = V , then f is constant. So
suppose not; since G is connected, there is some v ∈ W adjacent to some u /∈ W . Thus, f(u) < f(v), so the
average of f on the neighbors of v will also be strictly less than f(v), so f is not harmonic at v.

Note that we can run the same argument with the minimum instead of the maximum, and we can thus
find that a non-constant function must be non-harmonic at at least two vertices. This turns out to be the
only restriction:

Lemma. For any A ⊆ V with |A| ≥ 2 and any f0 : A → R, there is a unique f : V → R such that f |A = f0
and f is harmonic on V \A.

Note that this is a discrete analogue of the Dirichlet problem: we specify boundary conditions (on A),
and can find a unique harmonic extension to the rest of the domain. Also note that the assumption |A| ≥ 2
isn’t strictly necessary—if |A| = 1, then the unique harmonic extension will just be the constant function
agreeing with f0.

3

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

Proof. We first prove uniqueness. Observe that if f, g are harmonic at v, then any linear combination of f
and g is also harmonic at v. Therefore, suppose we had two harmonic extensions f, g of f0. Then f − g is
also harmonic on V \ A, and (f − g)|A ≡ 0. But by the previous lemma, we know that f − g attains both
its maximum and minimum in A, and thus f − g ≡ 0, so f = g.

Existence can be proved with fairly simple linear algebra, but it will follow more concretely from any one
of the following examples of harmonic functions.

Example. Fix a graph G = (V,E), a subset A ⊆ V , and a function f0 : A → R.

1. For any vertex v ∈ V , run a simple random walk starting at v. Let Y be the first vertex of A that this
random walk hits, and define f(v) = E[f0(Y)]. Then we certainly have that f |A = f0, since Y = v if
we start in A. For harmonicity, let the random walk be v = X0, X1, . . . Then we have that

f(v) = E[f0(Y)]

=
∑
a∈A

f0(a)Pr(Y = a)

=
∑
a∈A

f0(a)

[∑
u:uv∈E

Pr(Y = a | X1 = u)Pr(X1 = u)

]

=
1

deg(v)
∑

u:uv∈E

∑
a∈A

f0(a)Pr(Y = a | X1 = u)

=
1

deg(v)
∑

u:uv∈E

E[f0(Y | X1 = u)]

=
1

deg(v)
∑

u:uv∈E

f(u)

where we use the fact that the random walk is a Markov chain, so conditioning on X1 = u is the same
as just starting the random walk at u.

2. Think of every edge of the graph as a 1 Ohm resistor, and impose a voltage of f0(a) for each a ∈ A.
Let f(v) be the voltage at v in equilibrium. Then for any v /∈ A and any u adjacent to v, we have that
f(u)− f(v) is the voltage difference along the resistor uv, which by Ohm’s law is equal to the current
flowing from u to v. By Kirkhoff’s node law, the total current flowing at a vertex must be zero, i.e.∑

u:uv∈E

(f(u)− f(v)) = 0

Thus, f is harmonic.

3. Suppose every edge of the graph is a spring of spring constant 1. Imagine attaching each vertex of A
to the real line, at position f0(a). Then let the rest of the vertices find their equilibrium positions, and
let these positions be f . By Hooke’s law, the force an edge uv applies to v is f(u) − f(v). The fact
that the system is in equilibrium just means that the forces acting on every non-fixed vertex balance,
which just means that ∑

u:uv∈E

(f(u)− f(v)) = 0

Thus, f is harmonic.

These examples are very important, and they also prove that harmonic extensions exist. For the second
and third examples, this “proof” requires us to either believe or prove that the equilibrium state always
exists. However, the first example is a complete proof, since we know that a simple random walk on a finite
graph will hit any set A in finite time a.s.

4

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

The main reason these examples are important is that harmonic functions are unique, and thus, in some
sense, all these examples are the same. We will, in particular, exploit the connection between random walks
and currents repeatedly. To do so, we will first build up a bit the theory of graphs as electrical networks,
and then use this to understand random walks, and then use those to understand uniform spanning trees.

3 Electrical Networks
From now on, we will adopt the following convenient convention: E⃗ will now represent the set of oriented
edges of the graph. This means that every edge {u, v} will appear twice in E⃗, once as uv and once as vu.
For each oriented edge e = uv, let χe : E⃗ → R be the unit flow along e, namely

χe(e
′) = [1uv − 1vu](e

′) =

1 e′ = uv

−1 e′ = vu

0 otherwise

Let H denote the vector space of all antisymmetric functions on E⃗, namely all f : E⃗ → R satisfying
f(vu) = −f(uv) for all edges uv. We make H a Hilbert space by putting on it the natural inner product

⟨f, g⟩ = 1

2

∑
e∈E⃗

f(e)g(e)

The 1/2 is put in this formula just to make it so that if we pick only one orientation for each edge, then
we will be summing exactly once over every edge. Observe that {χe}e∈E form an orthonormal basis for H,
where we only include one orientation of each edge in this basis.

Define the following two subspaces of H, called the star space and the cycle space, respectively:

S = span
{ ∑

u:uv∈E

χuv

∣∣∣∣∣ v ∈ V

}
C = span

{
n∑

i=1

χei

∣∣∣∣∣ e1, . . . , en an oriented cycle
}

Lemma. S = C⊥. In other words, H = S ⊕ C and S ⊥ C.

Proof. This is essentially saying that the first cohomology of the graph is generated by its cycles. For a
formal proof, first observe that certainly S ⊥ C; this is because the inner product of any star with any cycle
will be zero if they’re edge-disjoint, and will also be zero if they’re not, since in that case the cycle must
include two edges incident with the star vertex, so their contributions will cancel. So it remains to prove
that H = S ⊕ C, or equivalently that (S ⊕ C)⊥ = 0. For that, we need to define the coboundary operator:
given a function F : V → R, we define its coboundary dF ∈ H by

(dF)(uv) = F (u)− F (v)

Then the key property is that a function f ∈ H is orthogonal to C if and only if f = dF for some function
F : V → R. One direction is immediate: dF ⊥ C since for any oriented cycle e1, . . . , en,⟨

dF,
n∑

i=1

χei

⟩
=

n∑
i=1

(F (vi)− F (vi−1)) = 0

where ei = vi−1vi. For the converse, if f ⊥ C, then we can “integrate” it to a function F : V → R by
declaring F (v) = 0 for some starting vertex v, then F (u) = f(vu) for every neighbor u of v, and continuing
in this fashion: any time we get to a new vertex, we declare F to take the value that makes it so that dF
agrees with f on the edge just traversed. Then the fact that f is orthogonal to all cycles precisely means that
all possible ways of making these choices are consistent, so we get a well-defined function F with f = dF .

5

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

Now, to prove that (S⊕C)⊥ = 0, suppose f ∈ (S⊕C)⊥. By the above, we can find F such that f = dF .
But then for any v ∈ V ,

0 =

⟨
f,

∑
u:uv∈E

χuv

⟩
=

∑
u:uv∈E

(F (u)− F (v))

Thus, F is harmonic at every vertex, so it is constant. Therefore, dF ≡ 0, which is what we wanted to
prove.

Let PS be the orthogonal projection operator onto the star space S, and define Ie = PSχe.

Lemma. Ie is the unit current along e, i.e. it records the current flowing along every edge when we impose
a current of 1 entering the tail of e and a current of 1 exiting its head. Equivalently, Ie = dF , where F is the
unique function harmonic everywhere but the endpoints of e, taking value 0 at the head of e and normalized
so that the inner product of dF with the star at the tail is 1.

Proof. Let F be as in the statement. Then dF ⊥ C by our previous proof, and thus dF ∈ S. Consider
χe − dF . We have that for any v ∈ V ,⟨

χe − dF,
∑

u:uv∈E

χuv

⟩
=

⟨
χe,

∑
u:uv∈E

χuv

⟩
−

⟨
dF,

∑
u:uv∈E

χuv

⟩
By our previous computation, the second term is zero unless v is a vertex where F is not harmonic, i.e.
unless v is an endpoint of e. Similarly, the first term is zero unless v is one of the endpoints of e. Moreover,
their signs will agree in both of these cases, and thus, by our normalization, this quantity will always be
zero. In other words, (χe − dF) ⊥ S. So (χe − dF) ∈ C. This means that

χe = dF + (χe − dF)

is the orthogonal decomposition of χe as an element of S plus an element of C. Thus, dF = PSχe = Ie, as
desired.

Using this fact, we can compute the representation of the operator PS as a matrix Y with respect to the
orthogonal basis {χe}e∈E , where again we pick only one orientation for each edge. Specifically, the (e, f)
entry in this matrix is exactly ⟨PSχe, χf ⟩, which we can compute as

Y (e, f) = ⟨PSχe, χf ⟩ = ⟨Ie, χf ⟩ = Ie(f)

Since PS is a projection operator, it’s self-adjoint, so Y (e, f) is also equal to If (e). The matrix Y is called the
transfer current matrix, since it measures how much current is transferred between edges: when we impose
a total current of 1 Ampere between the endpoints of an edge e, how much current flows in another edge f?

4 Back to Spanning Trees
The astonishing and important theorem that ties this whole talk together is the following:

Theorem (Burton–Pemantle). Let T denote a uniformly random spanning tree of a graph G. Then for any
collection of edges e1, . . . , ek, we have that

Pr(e1 ∈ T, . . . , ek ∈ T) = det[Y (ei, ej)]1≤i,j≤k

Remark. This says that when we consider the uniform spanning tree as a point process on E, then it is a
determinantal point process, with kernel Y . Note that in particular,

Pr(e ∈ T, f ∈ T) = Y (e, e)Y (f, f)− Y (e, f)2 = Pr(e ∈ T)Pr(f ∈ T)− Y (e, f)2

which implies that there is an anticorrelation in the appearance of points in this point process. This is an
instance of the more general phenomenon that points in determinantal point process are “repelled”.

6

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

The proof of the Burton–Pemantle theorem proceeds by induction on k. The base case is an important
result in its own right:

Theorem (Kirkhoff’s Effective Resistance Formula).

Pr(e ∈ T) = Y (e, e) = Ie(e)

Proof. Let e = uv. To sample T , we run Wilson’s Algorithm, setting our root to be v and taking u as our
first vertex. We now run a loop-erased random walk starting at u, and stop once it hits v. If the final step
goes across e, then e will be added to T by Wilson’s Algorithm, whereas if the final step hits v via some
other edge, then e will never be added to T . Thus,

Pr(e ∈ T) = Pr(first hit of v is along e in a SRW starting at u)

Note that since we only care about the final step, we can replace the loop-erased random walk by a simple
random walk.

Now, for any vertex w, let F (w) be the expected number of times a simple random walk starting at w
hits u before its first hit of v. Then F (v) = 0, and F is harmonic on V \ {u, v} by conditioning on the first
step of the random walk. Additionally, again by conditioning on the first step of the random walk, we see
that

F (u) = 1 +
1

deg(u)
∑

w:uw∈E

F (w)

Therefore, thinking of F as a voltage, the total current flowing out of u is∑
w:uw∈E

(F (u)− F (w)) = deg(u)

Therefore, by renormalizing so as to get the definition of Ie, we see that

Ie(e) =
F (u)− F (v)

deg(u) =
F (u)

deg(u)

On the other hand, observe that the probability that we first hit v while traversing u is the same as the
sum over all visits to u (before the first visit to v) of the probability that at that visit, e is the edge we next
choose to follow. By linearity of expectation, this is precisely F (u)/deg(u), as desired.

Proof of the Burton–Pemantle Theorem. First, suppose that there is some cycle among the edges e1, . . . , ek.
Then certainly Pr(e1 ∈ T, . . . , ek ∈ T) = 0, since no spanning tree may contain a cycle. So we first need to
prove that in this case, det[Y (ei, ej)] = 0. Write the indicator of this cycle as

∑
i aiχei , where ai ∈ {−1, 0, 1}

(we allow 0 since some edges aren’t in the cycle, and need to allow signs to deal with orientations of the
edges). Then we have that for any j,

k∑
i=1

aiY (ei, ej) =
k∑

i=1

aiIej (ei) =
∑

an oriented cycle
Iej = 0

since the sum of any current over an oriented cycle is 0. Therefore, we’ve found a linear combination of the
columns of [Y (ei, ej)] that sums to zero, and thus det[Y (ei, ej)] = 0 in this case, which is what we needed.
So from now on, assume that the edges e1, . . . , ek contain no cycles.

The proof now proceeds by induction on k, with the base case being Kirkhoff’s theorem. For the inductive
case, we write

Pr(e1 ∈ T, . . . , ek ∈ T) = Pr(ek ∈ T | e1, . . . , ek−1 ∈ T)Pr(e1, . . . , ek−1 ∈ T)

7

Yuval Wigderson Uniform Spanning Trees and Determinantal Point Processes

Let Yk be the matrix [Y (ei, ej)]1≤i,j≤k and Yk−1 the submatrix [Y (ei, ej)]1≤i,j≤k−1. Then by the inductive
hypothesis, we want to prove that

detYk
?
= Pr(ek ∈ T | e1 ∈ T, . . . , ek−1 ∈ T)detYk−1

Consider the graph G/{e1, . . . , ek−1} gotten by contracting all the edges e1, . . . , ek−1 (i.e. identifying their
two endpoints as a single vertex). Then the key observation is that since there is no cycle among the edges
e1, . . . , ek−1, there is a bijection between spanning trees in G/{e1, . . . , ek−1} and spanning trees in G that
contain e1, . . . , ek−1. Therefore, conditioning on e1, . . . , ek−1 ∈ T is the same as moving to the uniform
spanning tree in G/{e1, . . . , ek−1}, i.e.

Pr(ek ∈ T | e1, . . . , ek−1 ∈ T) = Pr(ek ∈ TG/{e1,...,ek−1})

where TG/{e1,...,ek−1} is a uniform spanning tree in G/{e1, . . . , ek−1}.
Finally, we need the following lemma:

Lemma. Let
Z = (span{Ie1 , . . . , Iek−1

})⊥ ⊆ H

and let PZ be the orthogonal projection onto Z. Let Îe1 denote the unit current across e1 in the graph
G/{e1, . . . , ek−1}. Then

Îek = PZIek

Proof. The key property is that since there are no cycles among e1, . . . , ek, ek will not be contracted to a
loop in G/{e1, . . . , ek−1}. However, the actual proof is a bit technical and not particularly interesting (it’s
little more than linear algebra), so we’ll skip it.

With this lemma, we know that

Pr(ek ∈ T | e1, . . . , ek−1 ∈ T) = Pr(ek ∈ TG/{e1,...,ek−1}) = Îek(ek)

by Kirkhoff’s Theorem. Additionally,

Îek = PZIek = Iek −
k−1∑
i=1

aiIei

for some constants ai, by the definition of Z. Let Ŷ be the matrix gotten from Yk by subtracting these same
multiples of each row from the final row. In other words Ŷ has the same entries as Yk in the first k− 1 rows,
whereas its (k, j) entry is

Ŷ (k, j) = Y (k, j)−
k−1∑
i=1

aiY (i, j) = Iek(ej)−
k−1∑
i=1

aiIei(ej) = Îek(ej)

However, for all 1 ≤ j ≤ k − 1, the edge ej was contracted to a loop in G/{e1, . . . , ek−1}, so no current
flows through that edge, i.e. Îek(ej) = 0. So the final row of Ŷ has zeros everywhere other than in the final
position, where it has Îek(ek). So expanding detYk = det Ŷ along the final row, we find that

detYk = det Ŷ = Îek(ek)detYk−1

as desired.

8

