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no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
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Question: In a Ramsey coloring, are there roughly equal numbers
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A Ramsey coloring for the path G = P,.

Here N ~ %n, and there are ~ %(g’) red and ~ g(g’)

blue edges.

13)-1 n—1

Question: Say a coloring is e-balanced if both colors have > s(g’)
edges. Is every Ramsey coloring e-balanced, where g > 0 is fixed?
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two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.
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Theorem (W. 2022)
Under the same hypotheses, r(G) < Cy/nlogn - r(H).
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Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G
and is on r(G) — 1 vertices.
An e-balanced coloring of Ky has > (%) edges in both colors.

Proposition

If G has an e-balanced Ramsey coloring, then r(G) < 120 . r(H).

Lemma: In an e-balanced coloring of Ky, there are vertices v, w with
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Fix an e-balanced Ramsey coloring for G, on N := r(G) — 1 vertices.
Find v and w as in Lemma.
Then Ng(v) N Ng(w) has no monochromatic H.

€

r(H) > IN&(V) N Na(W)] > 525N = === ((G) = 1).
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Proposition
If G has an e-balanced Ramsey coloring, then r(G) < @ -r(H).

Corollary (Conlon-Fox-Sudakov 2020)
If G has > &n? edges, then r(G) < C(8) - r(H).

This follows immediately from the Proposition and from:

Theorem (Erdés-Szemerédi 1972): If G has > n? edges, then
every Ramsey coloring for G is g(6)-balanced.
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There exists an n-vertex graph G with r(G) = Q(nlogn), but by
deleting a vertex from G we obtain H with r(H) =n — 1.

Corollary (W. 2022)

For every € > 0, there exists a graph G such that no Ramsey coloring
of G is e-balanced.

Let Gy , consist of Ky, 1 plus n — k — 1 other

vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain Hy ,, consisting Hz9
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Proof of (2).

r(He,) > n — 1 since Hy, has n — 1 vertices.
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Lemma G
1. 1(Gyn) > k(n — 1) ¥ %

2. r(Hg,) =n—1ifn > 4k

Proof of (2).

r(He,) > n — 1 since Hy, has n — 1 vertices.
Fix a coloring of K,_1. Since r(Ky) < 4k < n, there is a
monochromatic Ky = monochromatic Hy .

Proof of (1).

Split Ki(n—1y into k blocks of size n — 1.
Color all edges within a block red, between
blocks blue. (The Turdn coloring)

No red Gy, since Gy, is connected.

No blue Gy, since K1 C Gy .
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For every q > 3, there exists 6 > 0 such that:
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More colors

Forq > 3, let r(G; q) be the g-color Ramsey number of G.
Theorem (W. 2022)

For every q > 3, there exists 6 > 0 such that:
There exists an n-vertex graph G with r(G; q) > n'*?, but by deleting
a vertex from G we obtain Hwith r(H; q) =n — 1.

Lemma

1. 1(Gin/ q) > r(Kiy g = 1)(n = 1)
2. r(Hgnq) =n—1ifn>q%

The theorem follows by choosing k = L% log, n| and using the fact
that (K, g — 1) > 2% for g > 3.
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Philosophy

The heart of the proof is connectivity. The Turdn coloring gives a
good lower bound on r(Gy ) because Gy, is connected.

Deleting a vertex splits Gy, into many small connected
components, leading to a good upper bound on r(H, ).

The same principle shows up in many Ramsey-theoretic problems:
Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...

In general, the Turan coloring is one of very few general-purpose
constructions in Ramsey theory. Finding new constructions could
lead to progress on many questions.

Plausibly, the “right” notion here is expansion. However, | don't
know an analogue of the Turadn coloring that “detects” expansion.

Conclusion
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Theorem (W. 2022)

Delete a vertex of G to obtain H. Then r(G)/r(H) = O(y/nlogn).
There exists G with r(G)/r(H) = Q(log n).
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There exists G with r(G)/r(H) = Q(log n).
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Potentially, new colorings could improve the lower bound.

For g > 3 colors, the gap is worse.

Theorem (W. 2022)

For q > 3, we have r(G; q)/r(H; q) < 2°("). There exists G with
r(G;q)/r(H; q) > n® for some 8 = 8(q) > 0.
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Theorem (W. 2022)
Delete a vertex of G to obtain H. Then r(G)/r(H) = O(y/nlogn).
There exists G with r(G)/r(H) = Q(log n).

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.

For g > 3 colors, the gap is worse.

Theorem (W. 2022)

For q > 3, we have r(G; q)/r(H; q) < 2°("). There exists G with
r(G;q)/r(H; q) > n® for some 8 = 8(q) > 0.

The upper bound is proved in the same way, but it's uninteresting
because r(G;q) is already typically exponential in n.

Conclusion
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Open problems |l

Rather than asking for worst case, we could ask about average case.

Conjecture
For most choices of v € V(G), we have r(G) < C-r(G\ v).

This could have applications to concentration of log r(G(n, p)).

What about edge deletion?

Conjecture
Delete an edge of G to obtain H. Then r(G) < C - r(H).

Intuition: Deleting an edge can't split G into many components.
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Thank you!
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