Ramsey numbers upon vertex deletion

Yuval Wigderson

Tel Aviv University December 4, 2022

Introduction

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$.

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$. Here N = 5, and there are 5 red and 5 blue edges.

Negative results

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$. Here N = 5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?

Negative results

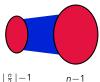
Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$. Here N = 5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?

A Ramsey coloring for the path $G = P_n$.



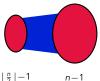
Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$. Here N = 5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?

A Ramsey coloring for the path $G = P_n$. Here $N \approx \frac{3}{2}n$, and there are $\approx \frac{5}{9} {N \choose 2}$ red and $\approx \frac{4}{9} {N \choose 2}$ blue edges.



Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E(K_N)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G = K_3$. Here N = 5, and there are 5 red and 5 blue edges.

 $|\frac{n}{2}| - 1$

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?

A Ramsey coloring for the path $G = P_n$. Here $N \approx \frac{3}{2}n$, and there are $\approx \frac{5}{9} {N \choose 2}$ red and $\approx \frac{4}{9} {N \choose 2}$ blue edges.

Question: Say a coloring is ε -balanced if both colors have $\geq \varepsilon {N \choose 2}$ edges. Is every Ramsey coloring ε -balanced, where $\varepsilon > 0$ is fixed?

n-1

Introduction

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Example: $r(K_3) = 6$

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Example: $r(K_3) = 6$ and $r(P_n) = n + \lfloor \frac{n}{2} \rfloor - 1$.

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Example: $r(K_3) = 6$ and $r(P_n) = n + \lfloor \frac{n}{2} \rfloor - 1$. For a complete graph K_{n} ,

 $2^{n/2} < r(K_n) < 2^{2n}.$

Introduction

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Example: $r(K_3) = 6$ and $r(P_n) = n + \lfloor \frac{n}{2} \rfloor - 1$. For a complete graph K_{n} ,

$$2^{n/2} < r(K_n) < 2^{2n}$$
.

The upper bound implies that r(G) exists for all G.

Definition

The Ramsey number r(G) of a graph G is the least N such that every two-edge-coloring of K_N contains a monochromatic copy of G.

Example: $r(K_3) = 6$ and $r(P_n) = n + \lfloor \frac{n}{2} \rfloor - 1$. For a complete graph K_n ,

$$2^{n/2} < r(K_n) < 2^{2n}.$$

The upper bound implies that r(G) exists for all G.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then

 $r(G) \leq C \cdot r(H)$

for some absolute constant C > 0.

Introduction

Negative results

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we care about this conjecture?

• It's natural to study how natural parameters behave under natural operations.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r(K_n)$ and $r(K_{n-1})$ are wide open.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r(K_n)$ and $r(K_{n-1})$ are wide open.

For example, we expect $r(K_n) - r(K_{n-1}) > 2^{cn}$, but the state of the art is $r(K_n) - r(K_{n-1}) \ge 4n - 8$. [Burr-Erdős-Faudree-Schelp]

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r(K_n)$ and $r(K_{n-1})$ are wide open.

For example, we expect $r(K_n) - r(K_{n-1}) > 2^{cn}$, but the state of the art is $r(K_n) - r(K_{n-1}) \ge 4n - 6$. [Xu-Shao-Radziszowski]

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$. $r(G_1) = 1$ and $r(G_n) < 4^n$, so $r(G_{i+1}) \le 4 \cdot r(G_i)$ for an average *i*.

It's "almost" true.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$. $r(G_1) = 1$ and $r(G_n) < 4^n$, so $r(G_{i+1}) \le 4 \cdot r(G_i)$ for an average *i*.

• It's "almost" true. $r(G) \le 2n \cdot r(H)$.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o(n^2)$ edges, then $r(G) \le 2^{o(n)}$.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o(n^2)$ edges, then $r(G) \le 2^{o(n)}$.
- It's related to the warmup question.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$. $r(G_1) = 1$ and $r(G_n) < 4^n$, so $r(G_{i+1}) \le 4 \cdot r(G_i)$ for an average *i*.

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o(n^2)$ edges, then $r(G) \le 2^{o(n)}$.
- It's related to the warmup question. If G has an ε -balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

Proposition (Conlon-Fox-Sudakov 2020)

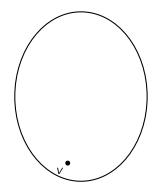
Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

Proof.

Fix a coloring on $2n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.



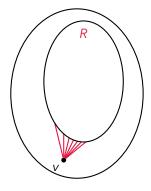
Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

Proof.

```
Fix a coloring on 2n \cdot r(H) vertices and a vertex v. We seek a monochromatic G.
```

```
WLOG v has \geq n \cdot r(H) red neighbors.
```



Proposition (Conlon-Fox-Sudakov 2020)

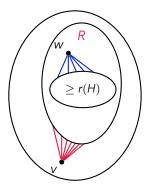
Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

Proof.

Fix a coloring on $2n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.

WLOG v has $\geq n \cdot r(H)$ red neighbors.

If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.



Negative results

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

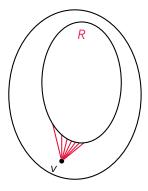
Proof.

Fix a coloring on $2n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.

WLOG v has $\geq n \cdot r(H)$ red neighbors.

If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.

If not, the blue graph on *R* has $\ge n \cdot r(H)$ vertices and max degree < r(H)



Negative results

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

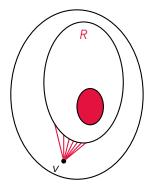
Proof.

Fix a coloring on $2n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.

WLOG v has $\geq n \cdot r(H)$ red neighbors.

If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.

If not, the blue graph on *R* has $\ge n \cdot r(H)$ vertices and max degree < r(H) \implies a red $K_n \supseteq G$ by Turán's theorem.



Negative results

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2n \cdot r(H)$.

Proof.

Fix a coloring on $2n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.

WLOG v has $\geq n \cdot r(H)$ red neighbors.

If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.

If not, the blue graph on R has $\ge n \cdot r(H)$ vertices and max degree < r(H) \implies a red $K_n \supseteq G$ by Turán's theorem. \Box

R

Theorem (W. 2022)

Under the same hypotheses, $r(G) \leq C\sqrt{n \log n} \cdot r(H)$.

Introduction

Positive results

Negative results

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on r(G) - 1 vertices.

An ε -balanced coloring of K_N has $\geq \varepsilon \binom{N}{2}$ edges in both colors.

Recall: A Ramsey coloring for *G* has no monochromatic copy of *G* and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\geq \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\ge \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\ge \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Negative results

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\ge \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Fix an ε -balanced Ramsey coloring for G, on $N \coloneqq r(G) - 1$ vertices.

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\ge \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Fix an ε -balanced Ramsey coloring for G, on N := r(G) - 1 vertices. Find v and w as in Lemma.

Recall: A Ramsey coloring for *G* has no monochromatic copy of *G* and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\geq \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Fix an ε -balanced Ramsey coloring for G, on N := r(G) - 1 vertices. Find v and w as in Lemma. Then $N_R(v) \cap N_B(w)$ has no monochromatic H.

Recall: A Ramsey coloring for *G* has no monochromatic copy of *G* and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\geq \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Fix an ε -balanced Ramsey coloring for G, on $N \coloneqq r(G) - 1$ vertices. Find v and w as in Lemma. Then $N_R(v) \cap N_B(w)$ has no monochromatic H.

 $r(H) > |N_R(v) \cap N_B(w)|$

Recall: A Ramsey coloring for *G* has no monochromatic copy of *G* and is on r(G) - 1 vertices. An ε -balanced coloring of K_N has $\geq \varepsilon \binom{N}{2}$ edges in both colors.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Lemma: In an ε -balanced coloring of K_N , there are vertices v, w with $|N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N.$

Proof of Proposition.

Fix an ε -balanced Ramsey coloring for G, on $N \coloneqq r(G) - 1$ vertices. Find v and w as in Lemma. Then $N_R(v) \cap N_B(w)$ has no monochromatic H.

$$r(H) > |N_R(v) \cap N_B(w)| \ge \frac{\varepsilon}{100}N = \frac{\varepsilon}{100}(r(G) - 1).$$

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Corollary (Conlon-Fox-Sudakov 2020) If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

Proposition

If G has an ε -balanced Ramsey coloring, then $r(G) \leq \frac{100}{\varepsilon} \cdot r(H)$.

Corollary (Conlon-Fox-Sudakov 2020) If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

This follows immediately from the Proposition and from: **Theorem (Erdős-Szemerédi 1972):** If *G* has $\geq \delta n^2$ edges, then every Ramsey coloring for *G* is $\varepsilon(\delta)$ -balanced.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$. $r(G_1) = 1$ and $r(G_n) \le 4^n$, so $r(G_{i+1}) \le 4 \cdot r(G_i)$ for an average *i*.

- It's "almost" true. $r(G) \le 2n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o(n^2)$ edges, then $r(G) \le 2^{o(n)}$.

• It's related to the warmup question. If G has an ε -balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant C > 0.

Why should we believe this conjecture?

• It's true "on average".

Build G up one vertex at a time, as $G_1, G_2, ..., G_n = G$. $r(G_1) = 1$ and $r(G_n) \le 4^n$, so $r(G_{i+1}) \le 4 \cdot r(G_i)$ for an average *i*.

- It's "almost" true. $r(G) \le 2n \cdot r(H)$. $r(G) \le C\sqrt{n \log n} \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^2$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o(n^2)$ edges, then $r(G) \le 2^{o(n)}$.

• It's related to the warmup question. If G has an ε -balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

Introduction

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Corollary (W. 2022)

For every $\varepsilon > 0$, there exists a graph G such that no Ramsey coloring of G is ε -balanced.

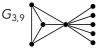
Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Corollary (W. 2022)

For every $\varepsilon > 0$, there exists a graph G such that no Ramsey coloring of G is ε -balanced.

Let $G_{k,n}$ consist of K_{k+1} plus n - k - 1 other vertices, joined to a single vertex of the clique.



Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Corollary (W. 2022)

For every $\varepsilon > 0$, there exists a graph G such that no Ramsey coloring of G is ε -balanced.

Let $G_{k,n}$ consist of K_{k+1} plus n - k - 1 other vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain $H_{k,n}$, consisting of K_k plus n - k - 1 isolated vertices.

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Corollary (W. 2022)

For every $\varepsilon > 0$, there exists a graph G such that no Ramsey coloring of G is ε -balanced.

Let $G_{k,n}$ consist of K_{k+1} plus n - k - 1 other vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain $H_{k,n}$, consisting of K_k plus n - k - 1 isolated vertices.

Lemma

1.
$$r(G_{k,n}) > k(n-1)$$

2. $r(H_{k,n}) = n-1$ if $n > 4^k$

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G) = \Omega(n \log n)$, but by deleting a vertex from G we obtain H with r(H) = n - 1.

Corollary (W. 2022)

For every $\varepsilon > 0$, there exists a graph G such that no Ramsey coloring of G is ε -balanced.

Let $G_{k,n}$ consist of K_{k+1} plus n - k - 1 other vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain $H_{k,n}$, consisting of K_k plus n - k - 1 isolated vertices.

Lemma

1.
$$r(G_{k,n}) > k(n-1)$$

2.
$$r(H_{k,n}) = n - 1$$
 if $n \ge 4^k$

The theorem follows by choosing $k = \lfloor \frac{1}{2} \log_2 n \rfloor$.

Lemma

1.
$$r(G_{k,n}) > k(n-1)$$

2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$

Introduction

Negative results

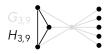
Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$

Proof of (2).

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$



Proof of (2).

$$r(H_{k,n}) \ge n-1$$
 since $H_{k,n}$ has $n-1$ vertices.

Lemma

1.
$$r(G_{k,n}) > k(n-1)$$

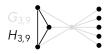
2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$

Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} .

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n-1$ if $n \ge 4^k$

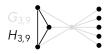


Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic K_k

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n-1$ if $n \ge 4^k$

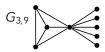


Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$



Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Proof of (1).

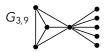
Introduction

Positive results

Negative results

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$

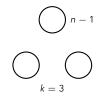


Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size n - 1.



Introduction

Positive result

Negative results

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$ G_{3,9}

Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size n - 1. Color all edges within a block red, between blocks blue. (The Turán coloring)

Introduction

Positive results

Negative results

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$

G_{3,9}

Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size n - 1. Color all edges within a block red, between blocks blue. (The Turán coloring) No red $G_{k,n}$ since $G_{k,n}$ is connected.

Negative results

Lemma

1. $r(G_{k,n}) > k(n-1)$ 2. $r(H_{k,n}) = n - 1$ if $n \ge 4^k$ G_{3,9}

Proof of (2).

 $r(H_{k,n}) \ge n - 1$ since $H_{k,n}$ has n - 1 vertices. Fix a coloring of K_{n-1} . Since $r(K_k) < 4^k \le n$, there is a monochromatic $K_k \Longrightarrow$ monochromatic $H_{k,n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size n - 1. Color all edges within a block red, between blocks blue. (The Turán coloring) No red $G_{k,n}$ since $G_{k,n}$ is connected. No blue $G_{k,n}$ since $K_{k+1} \subseteq G_{k,n}$.

Introduction

Negative results

Introduction

Negative results

For $q \ge 3$, let r(G; q) be the q-color Ramsey number of G.

For $q \ge 3$, let r(G; q) be the q-color Ramsey number of G.

Theorem (W. 2022)

For every $q \ge 3$, there exists $\theta > 0$ such that: There exists an n-vertex graph G with $r(G;q) > n^{1+\theta}$, but by deleting a vertex from G we obtain H with r(H;q) = n - 1.

For $q \ge 3$, let r(G; q) be the q-color Ramsey number of G.

Theorem (W. 2022)

For every $q \ge 3$, there exists $\theta > 0$ such that: There exists an n-vertex graph G with $r(G;q) > n^{1+\theta}$, but by deleting a vertex from G we obtain H with r(H;q) = n - 1.

Lemma

1.
$$r(G_{k,n};q) > r(K_k;q-1)(n-1)$$

2.
$$r(H_{k,n};q) = n - 1$$
 if $n \ge q^{qk}$

For $q \ge 3$, let r(G; q) be the q-color Ramsey number of G.

Theorem (W. 2022)

For every $q \ge 3$, there exists $\theta > 0$ such that: There exists an n-vertex graph G with $r(G;q) > n^{1+\theta}$, but by deleting a vertex from G we obtain H with r(H;q) = n - 1.

Lemma

1.
$$r(G_{k,n}; q) > r(K_k; q - 1)(n - 1)$$

2.
$$r(H_{k,n};q) = n-1$$
 if $n \ge q^{qk}$

The theorem follows by choosing $k = \lfloor \frac{1}{q} \log_q n \rfloor$ and using the fact that $r(K_k; q - 1) > 2^{ck}$ for $q \ge 3$.

Introduction

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r(G_{k,n})$ because $G_{k,n}$ is connected.

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r(G_{k,n})$ because $G_{k,n}$ is connected.

Deleting a vertex splits $G_{k,n}$ into many small connected components, leading to a good upper bound on $r(H_{k,n})$.

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r(G_{k,n})$ because $G_{k,n}$ is connected.

Deleting a vertex splits $G_{k,n}$ into many small connected components, leading to a good upper bound on $r(H_{k,n})$.

The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers... The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r(G_{k,n})$ because $G_{k,n}$ is connected.

Deleting a vertex splits $G_{k,n}$ into many small connected components, leading to a good upper bound on $r(H_{k,n})$.

The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...

In general, the Turán coloring is one of very few general-purpose constructions in Ramsey theory. Finding new constructions could lead to progress on many questions. The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r(G_{k,n})$ because $G_{k,n}$ is connected.

Deleting a vertex splits $G_{k,n}$ into many small connected components, leading to a good upper bound on $r(H_{k,n})$.

The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...

In general, the Turán coloring is one of very few general-purpose constructions in Ramsey theory. Finding new constructions could lead to progress on many questions.

Plausibly, the "right" notion here is expansion. However, I don't know an analogue of the Turán coloring that "detects" expansion.

Introduction

Theorem (W. 2022)

Delete a vertex of G to obtain H. Then $r(G)/r(H) = O(\sqrt{n \log n})$. There exists G with $r(G)/r(H) = \Omega(\log n)$.

Theorem (W. 2022)

Delete a vertex of G to obtain H. Then $r(G)/r(H) = O(\sqrt{n \log n})$. There exists G with $r(G)/r(H) = \Omega(\log n)$.

Problem: Close this gap.

Theorem (W. 2022)

Delete a vertex of G to obtain H. Then $r(G)/r(H) = O(\sqrt{n \log n})$. There exists G with $r(G)/r(H) = \Omega(\log n)$.

Problem: Close this gap.

Potentially, new colorings could improve the lower bound.

Theorem (W. 2022)

Delete a vertex of G to obtain H. Then $r(G)/r(H) = O(\sqrt{n \log n})$. There exists G with $r(G)/r(H) = \Omega(\log n)$.

Problem: Close this gap. Potentially, new colorings could improve the lower bound.

For $q \ge 3$ colors, the gap is worse.

Theorem (W. 2022)

For $q \ge 3$, we have $r(G; q)/r(H; q) < 2^{O(n)}$. There exists G with $r(G; q)/r(H; q) > n^{\theta}$ for some $\theta = \theta(q) > 0$.

Negative results

Theorem (W. 2022)

Delete a vertex of G to obtain H. Then $r(G)/r(H) = O(\sqrt{n \log n})$. There exists G with $r(G)/r(H) = \Omega(\log n)$.

Problem: Close this gap. Potentially, new colorings could improve the lower bound.

For $q \ge 3$ colors, the gap is worse.

Theorem (W. 2022)

For $q \ge 3$, we have $r(G; q)/r(H; q) < 2^{O(n)}$. There exists G with $r(G; q)/r(H; q) > n^{\theta}$ for some $\theta = \theta(q) > 0$.

The upper bound is proved in the same way, but it's uninteresting because r(G;q) is already typically exponential in n.

Introduction

Positive result

Negative results

Rather than asking for worst case, we could ask about average case.

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \setminus v)$.

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \setminus v)$.

This could have applications to concentration of $\log r(G(n, p))$.

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \setminus v)$.

This could have applications to concentration of $\log r(G(n, p))$.

What about edge deletion?

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \setminus v)$.

This could have applications to concentration of $\log r(G(n, p))$.

What about edge deletion?

Conjecture

Delete an edge of G to obtain H. Then $r(G) \leq C \cdot r(H)$.

Negative results

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \setminus v)$.

This could have applications to concentration of $\log r(G(n, p))$.

What about edge deletion?

Conjecture

Delete an edge of G to obtain H. Then $r(G) \leq C \cdot r(H)$.

Intuition: Deleting an edge can't split *G* into many components.

Thank you!

Introduction