Ramsey numbers upon vertex deletion

Yuval Wigderson

Tel Aviv University
March 17, 2023



Warmup question

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
Here N =5, and there are 5 red and 5 blue edges.

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
Here N =5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers
of red and blue edges?

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
Here N =5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers
of red and blue edges?

A Ramsey coloring for the path G = P,.

Introduction Positive results Negative results Conclusion



Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
Here N =5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers
of red and blue edges?

A Ramsey coloring for the path G = P,.
Here N = %n, and there are ~ %(g’) red and =~ g(’;’)
blue edges.

Introduction Positive results Negative results Conclusion



Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(Ky) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K.
Here N =5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers
of red and blue edges?

A Ramsey coloring for the path G = P,.

Here N ~ %n, and there are ~ %(g’) red and ~ g(g’)

blue edges.

13)-1 n—1

Question: Say a coloring is e-balanced if both colors have > e(’;/)
edges. Is every Ramsey coloring e-balanced, where g > 0 is fixed?

Introduction Positive results Negative results Conclusion



Introduction

Introduction Positive results Negative results Conclusion



Introduction
Definition

The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Introduction Positive results Negative results Conclusion



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6

Introduction Positive results Negative results Conclusion



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.

Introduction Positive results Negative results Conclusion



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.
For a complete graph Kj,,

272 < r(K,) < 22"

Introduction Positive results Negative results Conclusion



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.
For a complete graph Kj,,

2n/2 < I’(K ) < 21.99999999n
n

Introduction Positive results Negative results Conclusion



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.
For a complete graph Kj,,

2n/2 < I’(K ) < 21.99999999n
n

The upper bound implies that r(G) exists for all G.

Introduction



Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of Ky contains a monochromatic copy of G.

Example: r(K3) =6andr(P,) =n+ 5] — 1.
For a complete graph Kj,,

2n/2 < I’(Kn) < 21.99999999n
The upper bound implies that r(G) exists for all G.
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Build G up one vertex at a time, as Gy, Gy, ..., G, = G.
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¢ It "should be even truer” for sparse graphs.
If G has o(n?) edges, then r(G) < 2°().

® |t's related to the warmup question.
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Theorem (W. 2022)
Under the same hypotheses, r(G) < Cy/nlogn - r(H).
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Proposition

A

E
2
=

If G has an e-balanced Ramsey coloring, then r(G)
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It's true for dense graphs

Proposition
If G has an e-balanced Ramsey coloring, then r(G) < % -r(H).

Corollary (Conlon-Fox-Sudakov 2020)
If G has > &n? edges, then r(G) < C(8) - r(H).

This follows immediately from the Proposition and from:

Theorem (Erdés-Szemerédi 1972): If G has > 8n? edges, then
every Ramsey coloring for G is g(8)-balanced.
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Corollary (W. 2022)

For every € > 0, there exists a graph G such that no Ramsey coloring
of G is e-balanced.

Let Gy , consist of Ky, 1 plus n — k — 1 other

vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain Hy ,, consisting Hze

of K plus n — k — 1 isolated vertices.

Lemma
1. r(Grp) > k(n—1)
2. r(He,) =n—1ifn > 4k

The theorem follows by choosing k = |1 log, n]|.
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Fix a coloring of K,_1.
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Gs9
1. f(Gip) > k(n = 1) %

2. r(Hg,) =n—1ifn > 4k

Proof of (2).

r(He,) > n — 1 since Hy, has n — 1 vertices.
Fix a coloring of K,_1. Since r(Ky) < 4k < n, there is a
monochromatic Ky = monochromatic Hy .

Proof of (1).

Split Ki(n—1 into k blocks of size n — 1.
Color all edges within a block red, between
blocks blue. (The Turdn coloring)

No red Gy, since Gi, is connected.

No blue Gy, since K1 C Gy p.
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More colors

Forg > 3, let r(G; g) be the g-color Ramsey number of G.

Theorem (W. 2022)

Forevery q > 3, there exists 8 > 0 such that:
There exists an n-vertex graph G with r(G; q) > n'*9, but by deleting
a vertex from G we obtain Hwith r(H; q) =n — 1.
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Ramsey multiplicity

Fact: Let G have n vertices. Every two-edge-coloring of Ky contains
at least one monochromatic copy of G.
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Ramsey multiplicity

Fact: Let G have n vertices. Every two-edge-coloring of Ky contains
at least (¢ — o(1))N" monochromatic copies of G.

The Ramsey multiplicity constant of G is the largest ¢(G) for which
this holds.

Conjecture (Erdés 1962, Burr-Rosta 1980)

If G has m edges, then c(G) = 2",

This conjecture is false [Sidorenko 1989, Thomason 1989].
Question (Huang 2022)

Delete a single edge of G to obtain H. Does there exist an absolute
constant C > 0 such that c(H) < C-¢(G)?

Theorem (Fox-W. 2022)
Let G = Gs,, forn > 10", Then c(G) = 4'~". H
LetH =G\ e. Thenc(H) =3"".
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Theorem (W. 2022)

Delete a vertex of G to obtain H. Then r(G)/r(H) = O(y/nlogn).
There exists G with r(G)/r(H) = Q(logn).
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Theorem (W. 2022)
Delete a vertex of G to obtain H. Then r(G)/r(H) = O(y/nlogn).
There exists G with r(G)/r(H) = Q(logn).

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.

For g > 3 colors, the gap is worse.

Theorem (W. 2022)

Forq > 3, we have r(G; q)/r(H; q) < 2°("). There exists G with
r(G; q)/r(H; q) > n® for some 8 = 8(q) > 0.

The upper bound is proved in the same way, but it's uninteresting
because r(G;q) is already typically exponential in n.

Conclusion
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Open problems |l

Rather than asking for worst case, we could ask about average case.

Conjecture
For most choices of v € V(G), we have r(G) < C-r(G\ v).

This could have applications to concentration of log r(G(n, p)).

What about edge deletion?

Conjecture
Delete an edge of G to obtain H. Then r(G) < C - r(H).

Intuition: Deleting an edge can't split G into many components.
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Thank you!
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