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Warmup question

Definition
A Ramsey coloring for a graph G is a red/blue coloring of E(KN) with
no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle G = K3.

Here N = 5, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers
of red and blue edges?
A Ramsey coloring for the path G = Pn.

Here N ≈ 3
2n, and there are ≈ 5

9
(N
2
)
red and ≈ 4

9
(N
2
)

blue edges.

⌊ n
2 ⌋−1 n−1

Question: Say a coloring is ε-balanced if both colors have ≥ ε
(N
2
)

edges. Is every Ramsey coloring ε-balanced, where ε > 0 is fixed?
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Introduction

Definition
The Ramsey number r(G) of a graph G is the least N such that every
two-edge-coloring of KN contains a monochromatic copy of G.

Example: r(K3) = 6 and r(Pn) = n+ ⌊n2⌋ − 1.
For a complete graph Kn,

2n/2 < r(Kn) < 22n

The upper bound implies that r(G) exists for all G.

Conjecture (Conlon–Fox–Sudakov 2020)
Delete a single vertex of G to obtain H. Then

r(G) ≤ C · r(H)

for some absolute constant C > 0.

Introduction Positive results Negative results Conclusion
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Motivations
Conjecture (Conlon–Fox–Sudakov 2020)
Delete a single vertex of G to obtain H. Then r(G) ≤ C · r(H) for
some absolute constant C > 0.

Why should we care about this conjecture?
• It’s natural to study how natural parameters behave under
natural operations.

• It implies concentration of Ramsey numbers of random graphs.
If true, log r(G(n,p)) lies w.h.p. in an interval of length O(

√n).
• We know little about “local” behavior of Ramsey numbers.
Extremely basic questions about the relationship between r(Kn)
and r(Kn−1) are wide open.

Introduction Positive results Negative results Conclusion
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Motivations
Conjecture (Conlon–Fox–Sudakov 2020)
Delete a single vertex of G to obtain H. Then r(G) ≤ C · r(H) for
some absolute constant C > 0.

Why should we believe this conjecture?

• It’s true “on average”.
Build G up one vertex at a time, as G1,G2,…,Gn = G.
r(G1) = 1 and r(Gn) < 4n, so r(Gi+1) ≤ 4 · r(Gi) for an average i.

• It’s “almost” true.
r(G) ≤ 2n · r(H).

• It’s true for dense graphs.
If G has ≥ δn2 edges, then r(G) ≤ C(δ) · r(H).

• It “should be even truer” for sparse graphs.
If G has o(n2) edges, then r(G) ≤ 2o(n).

• It’s related to the warmup question.
If G has an ε-balanced Ramsey coloring, then r(G) ≤ C(ε) · r(H).

Introduction Positive results Negative results Conclusion
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It’s “almost” true
Proposition (Conlon–Fox–Sudakov 2020)
Delete a single vertex of G to obtain H. Then r(G) ≤ 2n · r(H).

Proof.
Fix a coloring on 2n · r(H) vertices and a
vertex v. We seek a monochromatic G.

WLOG v has ≥ n · r(H) red neighbors.
If some w ∈ R has ≥ r(H) blue neighbors
in R, we are done.
If not, the blue graph on R has ≥ n · r(H)
vertices and max degree < r(H)
=⇒ a red Kn ⊇ G by Turán’s theorem.

v

Rw

≥ r(H)

Theorem (W. 2022)
Under the same hypotheses, r(G) ≤ C

√
n logn · r(H).

Introduction Positive results Negative results Conclusion
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Balanced colorings
Recall: A Ramsey coloring for G has no monochromatic copy of G
and is on r(G) − 1 vertices.
An ε-balanced coloring of KN has ≥ ε

(N
2
)
edges in both colors.

Proposition
If G has an ε-balanced Ramsey coloring, then r(G) ≤ 100

ε · r(H).

Lemma: In an ε-balanced coloring of KN, there are vertices v,w with
|NR(v) ∩ NB(w)| ≥ ε

100N.

Proof of Proposition.
Fix an ε-balanced Ramsey coloring for G, on N := r(G) − 1 vertices.
Find v and w as in Lemma.
Then NR(v) ∩ NB(w) has no monochromatic H.

r(H) > |NR(v) ∩ NB(w)| ≥ ε
100N =

ε
100 (r(G) − 1).
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It’s true for dense graphs

Proposition
If G has an ε-balanced Ramsey coloring, then r(G) ≤ 100

ε · r(H).

Corollary (Conlon–Fox–Sudakov 2020)
If G has ≥ δn2 edges, then r(G) ≤ C(δ) · r(H).

This follows immediately from the Proposition and from:
Theorem (Erdős–Szemerédi 1972): If G has ≥ δn2 edges, then
every Ramsey coloring for G is ε(δ)-balanced.
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Motivations
Conjecture (Conlon–Fox–Sudakov 2020)
Delete a single vertex of G to obtain H. Then r(G) ≤ C · r(H) for
some absolute constant C > 0.

Why should we believe this conjecture?
• It’s true “on average”.
Build G up one vertex at a time, as G1,G2,…,Gn = G.
r(G1) = 1 and r(Gn) ≤ 4n, so r(Gi+1) ≤ 4 · r(Gi) for an average i.

• It’s “almost” true.
r(G) ≤ 2n · r(H).

r(G) ≤ C
√
n logn · r(H).

• It’s true for dense graphs.
If G has ≥ δn2 edges, then r(G) ≤ C(δ) · r(H).

• It “should be even truer” for sparse graphs.
If G has o(n2) edges, then r(G) ≤ 2o(n).

• It’s related to the warmup question.
If G has an ε-balanced Ramsey coloring, then r(G) ≤ C(ε) · r(H).

Introduction Positive results Negative results Conclusion
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The conjecture is false

Theorem (W. 2022)
There exists an n-vertex graph G with r(G) = Ω(n logn), but by
deleting a vertex from G we obtain H with r(H) = n − 1.

Corollary (W. 2022)
For every ε > 0, there exists a graph G such that no Ramsey coloring
of G is ε-balanced.
Let Gk,n consist of Kk+1 plus n − k − 1 other
vertices, joined to a single vertex of the clique.

Delete the central vertex to obtain Hk,n, consisting
of Kk plus n − k − 1 isolated vertices.

G3,9
H3,9

Lemma
1. r(Gk,n) > k(n − 1)
2. r(Hk,n) = n − 1 if n ≥ 4k

The theorem follows by choosing k = ⌊1
2 log2 n⌋.
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Proof of Lemma
Lemma
1. r(Gk,n) > k(n − 1)
2. r(Hk,n) = n − 1 if n ≥ 4k

G3,9
H3,9

Proof of (2).
r(Hk,n) ≥ n − 1 since Hk,n has n − 1 vertices.
Fix a coloring of Kn−1. Since r(Kk) < 4k ≤ n, there is a
monochromatic Kk =⇒ monochromatic Hk,n.

Proof of (1).
Split Kk(n−1) into k blocks of size n − 1.

Color all edges within a block red, between
blocks blue. (The Turán coloring)
No red Gk,n since Gk,n is connected.
No blue Gk,n since Kk+1 ⊆ Gk,n.

k = 3

n − 1

Introduction Positive results Negative results Conclusion
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More colors

For q ≥ 3, let r(G;q) be the q-color Ramsey number of G.

Theorem (W. 2022)
For every q ≥ 3, there exists θ > 0 such that:
There exists an n-vertex graph G with r(G;q) > n1+θ , but by deleting
a vertex from G we obtain H with r(H;q) = n − 1.
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Ramsey multiplicity

Fact: Let G have n vertices. Every two-edge-coloring of KN contains
at least one monochromatic copy of G.
The Ramsey multiplicity constant of G is the largest c(G) for which
this holds.
Conjecture (Erdős 1962, Burr–Rosta 1980)
If G has m edges, then c(G) = 21−m.

This conjecture is false [Sidorenko 1989, Thomason 1989].

Question (Huang 2022)
Delete a single edge of G to obtain H. Does there exist an absolute
constant C > 0 such that c(H) ≤ C · c(G)?

Theorem (Fox–W. 2022)
Let G = G5,n for n ≥ 10100. Then c(G) = 41−n.

Let H = G \ e. Then c(H) = 31−n.

G
H
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Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then r(G)/r(H) = O(

√
n logn).

There exists G with r(G)/r(H) = Ω(logn).

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.

For q ≥ 3 colors, the gap is worse.

Theorem (W. 2022)
For q ≥ 3, we have r(G;q)/r(H;q) < 2O(n). There exists G with
r(G;q)/r(H;q) > nθ for some θ = θ(q) > 0.

The upper bound is proved in the same way, but it’s uninteresting
because r(G;q) is already typically exponential in n.
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Open problems II

Rather than asking for worst case, we could ask about average case.

Conjecture
For most choices of v ∈ V(G), we have r(G) ≤ C · r(G \ v).

This could have applications to concentration of log r(G(n,p)).

What about edge deletion?

Conjecture
Delete an edge of G to obtain H. Then r(G) ≤ C · r(H).

Intuition: Deleting an edge can’t split G into many components.
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Thank you!
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