Ramsey numbers upon vertex deletion

Yuval Wigderson

Tel Aviv University
October 26, 2022

Warmup question

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$.

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$. Here $N=5$, and there are 5 red and 5 blue edges.

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$. Here $N=5$, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$. Here $N=5$, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?
A Ramsey coloring for the path $G=P_{n}$.

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$. Here $N=5$, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?
A Ramsey coloring for the path $G=P_{n}$. Here $N \approx \frac{3}{2} n$, and there are $\approx \frac{5}{9}\binom{N}{2}$ red and $\approx \frac{4}{9}\binom{N}{2}$ blue edges.

Warmup question

Definition

A Ramsey coloring for a graph G is a red/blue coloring of $E\left(K_{N}\right)$ with no monochromatic copy of G, where N is as large as possible.

The only Ramsey coloring for the triangle $G=K_{3}$. Here $N=5$, and there are 5 red and 5 blue edges.

Question: In a Ramsey coloring, are there roughly equal numbers of red and blue edges?
A Ramsey coloring for the path $G=P_{n}$. Here $N \approx \frac{3}{2} n$, and there are $\approx \frac{5}{9}\binom{N}{2}$ red and $\approx \frac{4}{9}\binom{N}{2}$ blue edges.

Question: Say a coloring is ε-balanced if both colors have $\geq \varepsilon\binom{N}{2}$ edges. Is every Ramsey coloring ε-balanced, where $\varepsilon>0$ is fixed?

Introduction

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Example: $r\left(K_{3}\right)=6$

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Example: $r\left(K_{3}\right)=6$ and $r\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$.

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Example: $r\left(K_{3}\right)=6$ and $r\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$.
For a complete graph K_{n},

$$
2^{n / 2}<r\left(K_{n}\right)<2^{2 n} .
$$

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Example: $r\left(K_{3}\right)=6$ and $r\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$.
For a complete graph K_{n},

$$
2^{n / 2}<r\left(K_{n}\right)<2^{2 n} .
$$

The upper bound implies that $r(G)$ exists for all G.

Introduction

Definition

The Ramsey number $r(G)$ of a graph G is the least N such that every two-edge-coloring of K_{N} contains a monochromatic copy of G.

Example: $r\left(K_{3}\right)=6$ and $r\left(P_{n}\right)=n+\left\lfloor\frac{n}{2}\right\rfloor-1$.
For a complete graph K_{n},

$$
2^{n / 2}<r\left(K_{n}\right)<2^{2 n} .
$$

The upper bound implies that $r(G)$ exists for all G.

Conjecture (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then

$$
r(G) \leq C \cdot r(H)
$$

for some absolute constant $C>0$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r\left(K_{n}\right)$ and $r\left(K_{n-1}\right)$ are wide open.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r\left(K_{n}\right)$ and $r\left(K_{n-1}\right)$ are wide open.
For example, we expect $r\left(K_{n}\right)-r\left(K_{n-1}\right)>2^{c n}$, but the state of the art is $r\left(K_{n}\right)-r\left(K_{n-1}\right) \geq 4 n-8$. [Burr-Erdős-Faudree-Schelp]

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we care about this conjecture?

- It's natural to study how natural parameters behave under natural operations.
- It implies concentration of Ramsey numbers of random graphs. If true, $\log r(G(n, p))$ lies w.h.p. in an interval of length $O(\sqrt{n})$.
- We know little about "local" behavior of Ramsey numbers. Extremely basic questions about the relationship between $r\left(K_{n}\right)$ and $r\left(K_{n-1}\right)$ are wide open.
For example, we expect $r\left(K_{n}\right)-r\left(K_{n-1}\right)>2^{c n}$, but the state of the art is $r\left(K_{n}\right)-r\left(K_{n-1}\right) \geq 4 n-6$. [Xu-Shao-Radziszowski]

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

- It's "almost" true.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

- It's "almost" true.

$$
r(G) \leq 2 n \cdot r(H) .
$$

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average". Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.
- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average". Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.
- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average". Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.
- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average". Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.
- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o\left(n^{2}\right)$ edges, then $r(G) \leq 2^{\circ(n)}$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has o $\left(n^{2}\right)$ edges, then $r(G) \leq 2^{\circ(n)}$.
- It's related to the warmup question.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average". Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right)<4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.
- It's "almost" true. $r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs. If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
- It "should be even truer" for sparse graphs. If G has $o\left(n^{2}\right)$ edges, then $r(G) \leq 2^{\circ(n)}$.
- It's related to the warmup question. If G has an ε-balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G. WLOG v has $\geq n \cdot r(H)$ red neighbors.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G. WLOG v has $\geq n \cdot r(H)$ red neighbors.
If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G. WLOG v has $\geq n \cdot r(H)$ red neighbors.
If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.
If not, the blue graph on R has $\geq n \cdot r(H)$ vertices and max degree $<r(H)$

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G. WLOG v has $\geq n \cdot r(H)$ red neighbors.
If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.
If not, the blue graph on R has $\geq n \cdot r(H)$ vertices and max degree $<r(H)$ $\Longrightarrow \mathrm{a}$ red $K_{n} \supseteq G$ by Turán's theorem.

It's "almost" true

Proposition (Conlon-Fox-Sudakov 2020)

Delete a single vertex of G to obtain H. Then $r(G) \leq 2 n \cdot r(H)$.

Proof.

Fix a coloring on $2 n \cdot r(H)$ vertices and a vertex v. We seek a monochromatic G. WLOG v has $\geq n \cdot r(H)$ red neighbors.
If some $w \in R$ has $\geq r(H)$ blue neighbors in R, we are done.
If not, the blue graph on R has $\geq n \cdot r(H)$ vertices and max degree $<r(H)$ $\Longrightarrow \mathrm{a}$ red $K_{n} \supseteq G$ by Turán's theorem.

Theorem (W. 2022)
Under the same hypotheses, $r(G) \leq C \sqrt{n \log n} \cdot r(H)$.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Fix an ε-balanced Ramsey coloring for G, on $N:=r(G)-1$ vertices.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Fix an ε-balanced Ramsey coloring for G, on $N:=r(G)-1$ vertices.
Find v and w as in Lemma.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Fix an ε-balanced Ramsey coloring for G, on $N:=r(G)-1$ vertices.
Find v and w as in Lemma.
Then $N_{R}(v) \cap N_{B}(w)$ has no monochromatic H.

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Fix an ε-balanced Ramsey coloring for G, on $N:=r(G)-1$ vertices.
Find v and w as in Lemma.
Then $N_{R}(v) \cap N_{B}(w)$ has no monochromatic H.

$$
r(H)>\left|N_{R}(v) \cap N_{B}(w)\right|
$$

Balanced colorings

Recall: A Ramsey coloring for G has no monochromatic copy of G and is on $r(G)-1$ vertices.
An ε-balanced coloring of K_{N} has $\geq \varepsilon\binom{N}{2}$ edges in both colors.

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Lemma: In an ε-balanced coloring of K_{N}, there are vertices v, w with

$$
\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N .
$$

Proof of Proposition.

Fix an ε-balanced Ramsey coloring for G, on $N:=r(G)-1$ vertices.
Find v and w as in Lemma.
Then $N_{R}(v) \cap N_{B}(w)$ has no monochromatic H.

$$
r(H)>\left|N_{R}(v) \cap N_{B}(w)\right| \geq \frac{\varepsilon^{2}}{16} N=\frac{\varepsilon^{2}}{16}(r(G)-1) .
$$

It's true for dense graphs

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.

It's true for dense graphs

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Corollary (Conlon-Fox-Sudakov 2020)
If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

It's true for dense graphs

Proposition

If G has an ε-balanced Ramsey coloring, then $r(G) \leq \frac{16}{\varepsilon^{2}} \cdot r(H)$.
Corollary (Conlon-Fox-Sudakov 2020)
If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.
This follows immediately from the Proposition and from:
Theorem (Erdős-Szemerédi 1972): If G has $\geq \delta n^{2}$ edges, then every Ramsey coloring for G is $\varepsilon(\delta)$-balanced.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right) \leq 4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

- It's "almost" true.
$r(G) \leq 2 n \cdot r(H)$.
- It's true for dense graphs.

If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

- It "should be even truer" for sparse graphs.

If G has $o\left(n^{2}\right)$ edges, then $r(G) \leq 2^{\circ(n)}$.

- It's related to the warmup question.

If G has an ε-balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

Motivations

Conjecture (Conlon-Fox-Sudakov 2020)
Delete a single vertex of G to obtain H. Then $r(G) \leq C \cdot r(H)$ for some absolute constant $C>0$.

Why should we believe this conjecture?

- It's true "on average".

Build G up one vertex at a time, as $G_{1}, G_{2}, \ldots, G_{n}=G$. $r\left(G_{1}\right)=1$ and $r\left(G_{n}\right) \leq 4^{n}$, so $r\left(G_{i+1}\right) \leq 4 \cdot r\left(G_{i}\right)$ for an average i.

- It's "almost" true.

$$
r(G) \leq 2 n \cdot r(H) . \quad r(G) \leq C \sqrt{n \log n} \cdot r(H)
$$

- It's true for dense graphs.

If G has $\geq \delta n^{2}$ edges, then $r(G) \leq C(\delta) \cdot r(H)$.

- It "should be even truer" for sparse graphs.

If G has $o\left(n^{2}\right)$ edges, then $r(G) \leq 2^{\circ(n)}$.

- It's related to the warmup question.

If G has an ε-balanced Ramsey coloring, then $r(G) \leq C(\varepsilon) \cdot r(H)$.

The conjecture is false

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

Corollary (W. 2022)

For every $\varepsilon>0$, there exists a graph G such that no Ramsey coloring of G is ε-balanced.

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

Corollary (W. 2022)

For every $\varepsilon>0$, there exists a graph G such that no Ramsey coloring of G is ε-balanced.
Let $G_{k, n}$ consist of K_{k+1} plus $n-k-1$ other vertices, joined to a single vertex of the clique.

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

Corollary (W. 2022)

For every $\varepsilon>0$, there exists a graph G such that no Ramsey coloring of G is ε-balanced.
Let $G_{k, n}$ consist of K_{k+1} plus $n-k-1$ other vertices, joined to a single vertex of the clique.
Delete the central vertex to obtain $H_{k, n}$, consisting of K_{k} plus $n-k-1$ isolated vertices.

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

Corollary (W. 2022)

For every $\varepsilon>0$, there exists a graph G such that no Ramsey coloring of G is ε-balanced.
Let $G_{k, n}$ consist of K_{k+1} plus $n-k-1$ other vertices, joined to a single vertex of the clique.
Delete the central vertex to obtain $H_{k, n}$, consisting of K_{k} plus $n-k-1$ isolated vertices.

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

The conjecture is false

Theorem (W. 2022)

There exists an n-vertex graph G with $r(G)=\Omega(n \log n)$, but by deleting a vertex from G we obtain H with $r(H)=n-1$.

Corollary (W. 2022)

For every $\varepsilon>0$, there exists a graph G such that no Ramsey coloring of G is ε-balanced.
Let $G_{k, n}$ consist of K_{k+1} plus $n-k-1$ other vertices, joined to a single vertex of the clique.
Delete the central vertex to obtain $H_{k, n}$, consisting of K_{k} plus $n-k-1$ isolated vertices.

Lemma

$$
\begin{aligned}
& \text { 1. } r\left(G_{k, n}\right)>k(n-1) \\
& \text { 2. } r\left(H_{k, n}\right)=n-1 \text { if } n \geq 4^{k}
\end{aligned}
$$

The theorem follows by choosing $k=\left\lfloor\frac{1}{2} \log _{2} n\right\rfloor$.

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}.

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic K_{k}

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of Lemma

Lemma

1. $r\left(G_{k, n}\right)>k(n-1)$
2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of (1).

Proof of Lemma

Lemma

$$
\text { 1. } r\left(G_{k, n}\right)>k(n-1)
$$

2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size $n-1$.

$$
k=3
$$

Proof of Lemma

Lemma

$$
\text { 1. } r\left(G_{k, n}\right)>k(n-1)
$$

2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size $n-1$. Color all edges within a block red, between blocks blue. (The Turán coloring)

$$
k=3
$$

Proof of Lemma

Lemma

$$
\text { 1. } r\left(G_{k, n}\right)>k(n-1)
$$

2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size $n-1$. Color all edges within a block red, between blocks blue. (The Turán coloring) No red $G_{k, n}$ since $G_{k, n}$ is connected.

$k=3$

Proof of Lemma

Lemma

$$
\text { 1. } r\left(G_{k, n}\right)>k(n-1)
$$

2. $r\left(H_{k, n}\right)=n-1$ if $n \geq 4^{k}$

Proof of (2).

$r\left(H_{k, n}\right) \geq n-1$ since $H_{k, n}$ has $n-1$ vertices.
Fix a coloring of K_{n-1}. Since $r\left(K_{k}\right)<4^{k} \leq n$, there is a monochromatic $K_{k} \Longrightarrow$ monochromatic $H_{k, n}$.

Proof of (1).

Split $K_{k(n-1)}$ into k blocks of size $n-1$. Color all edges within a block red, between blocks blue. (The Turán coloring) No red $G_{k, n}$ since $G_{k, n}$ is connected.

$$
k=3
$$ No blue $G_{k, n}$ since $K_{k+1} \subseteq G_{k, n}$.

More colors

More colors

For $q \geq 3$, let $r(G ; q)$ be the q-color Ramsey number of G.

More colors

For $q \geq 3$, let $r(G ; q)$ be the q-color Ramsey number of G.
Theorem (W. 2022)
For every $q \geq 3$, there exists $\theta>0$ such that:
There exists an n-vertex graph G with $r(G ; q)>n^{1+\theta}$, but by deleting a vertex from G we obtain H with $r(H ; q)=n-1$.

More colors

For $q \geq 3$, let $r(G ; q)$ be the q-color Ramsey number of G.
Theorem (W. 2022)
For every $q \geq 3$, there exists $\theta>0$ such that:
There exists an n-vertex graph G with $r(G ; q)>n^{1+\theta}$, but by deleting a vertex from G we obtain H with $r(H ; q)=n-1$.

Lemma

1. $r\left(G_{k, n} ; q\right)>r\left(K_{k} ; q-1\right)(n-1)$
2. $r\left(H_{k, n} ; q\right)=n-1$ if $n \geq q^{q k}$

More colors

For $q \geq 3$, let $r(G ; q)$ be the q-color Ramsey number of G.

Theorem (W. 2022)

For every $q \geq 3$, there exists $\theta>0$ such that:
There exists an n-vertex graph G with $r(G ; q)>n^{1+\theta}$, but by deleting a vertex from G we obtain H with $r(H ; q)=n-1$.

Lemma

$$
\begin{aligned}
& \text { 1. } r\left(G_{k, n} ; q\right)>r\left(K_{k} ; q-1\right)(n-1) \\
& \text { 2. } r\left(H_{k, n} ; q\right)=n-1 \text { if } n \geq q^{q k}
\end{aligned}
$$

The theorem follows by choosing $k=\left\lfloor\frac{1}{q} \log _{q} n\right\rfloor$ and using the fact that $r\left(K_{k} ; q-1\right)>2^{c k}$ for $q \geq 3$.

Philosophy

Philosophy

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r\left(G_{k, n}\right)$ because $G_{k, n}$ is connected.

Philosophy

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r\left(G_{k, n}\right)$ because $G_{k, n}$ is connected.

Deleting a vertex splits $G_{k, n}$ into many small connected components, leading to a good upper bound on $r\left(H_{k, n}\right)$.

Philosophy

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r\left(G_{k, n}\right)$ because $G_{k, n}$ is connected.
Deleting a vertex splits $G_{k, n}$ into many small connected components, leading to a good upper bound on $r\left(H_{k, n}\right)$.
The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...

Philosophy

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r\left(G_{k, n}\right)$ because $G_{k, n}$ is connected.

Deleting a vertex splits $G_{k, n}$ into many small connected components, leading to a good upper bound on $r\left(H_{k, n}\right)$.
The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...

In general, the Turán coloring is one of very few general-purpose constructions in Ramsey theory. Finding new constructions could lead to progress on many questions.

Philosophy

The heart of the proof is connectivity. The Turán coloring gives a good lower bound on $r\left(G_{k, n}\right)$ because $G_{k, n}$ is connected.

Deleting a vertex splits $G_{k, n}$ into many small connected components, leading to a good upper bound on $r\left(H_{k, n}\right)$.

The same principle shows up in many Ramsey-theoretic problems: Ramsey goodness, Ramsey multiplicity, book Ramsey numbers...
In general, the Turán coloring is one of very few general-purpose constructions in Ramsey theory. Finding new constructions could lead to progress on many questions.
Plausibly, the "right" notion here is expansion. However, I don't know an analogue of the Turán coloring that "detects" expansion.

Open problems I

Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then $r(G) / r(H)=O(\sqrt{n \log n})$. There exists G with $r(G) / r(H)=\Omega(\log n)$.

Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then $r(G) / r(H)=O(\sqrt{n \log n})$. There exists G with $r(G) / r(H)=\Omega(\log n)$.

Problem: Close this gap.

Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then $r(G) / r(H)=O(\sqrt{n \log n})$. There exists G with $r(G) / r(H)=\Omega(\log n)$.

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.

Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then $r(G) / r(H)=O(\sqrt{n \log n})$. There exists G with $r(G) / r(H)=\Omega(\log n)$.

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.
For $q \geq 3$ colors, the gap is worse.
Theorem (W. 2022)
For $q \geq 3$, we have $r(G ; q) / r(H ; q)<2^{O(n)}$. There exists G with $r(G ; q) / r(H ; q)>n^{\theta}$ for some $\theta=\theta(q)>0$.

Open problems I

Theorem (W. 2022)
Delete a vertex of G to obtain H. Then $r(G) / r(H)=O(\sqrt{n \log n})$. There exists G with $r(G) / r(H)=\Omega(\log n)$.

Problem: Close this gap.
Potentially, new colorings could improve the lower bound.
For $q \geq 3$ colors, the gap is worse.
Theorem (W. 2022)
For $q \geq 3$, we have $r(G ; q) / r(H ; q)<2^{O(n)}$. There exists G with $r(G ; q) / r(H ; q)>n^{\theta}$ for some $\theta=\theta(q)>0$.

The upper bound is proved in the same way, but it's uninteresting because $r(G ; q)$ is already typically exponential in n.

Open problems II

Open problems II

Rather than asking for worst case, we could ask about average case.

Open problems II

Rather than asking for worst case, we could ask about average case.
Conjecture
For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \backslash v)$.

Open problems II

Rather than asking for worst case, we could ask about average case.
Conjecture
For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \backslash v)$.
This could have applications to concentration of $\log r(G(n, p))$.

Open problems II

Rather than asking for worst case, we could ask about average case.
Conjecture
For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \backslash v)$.
This could have applications to concentration of $\log r(G(n, p))$.
What about edge deletion?

Open problems II

Rather than asking for worst case, we could ask about average case.

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \backslash v)$.
This could have applications to concentration of $\log r(G(n, p))$.
What about edge deletion?
Conjecture
Delete an edge of G to obtain H. Then $r(G) \leq C \cdot r(H)$.

Open problems II

Rather than asking for worst case, we could ask about average case.

Conjecture

For most choices of $v \in V(G)$, we have $r(G) \leq C \cdot r(G \backslash v)$.
This could have applications to concentration of $\log r(G(n, p))$.
What about edge deletion?

Conjecture

Delete an edge of G to obtain H. Then $r(G) \leq C \cdot r(H)$.
Intuition: Deleting an edge can't split G into many components.

Thank you!

