
PCMI 2025 Extremal graph theory and Ramsey theory Homework #1

Exercises (recommended)

1. Prove, as claimed in class, that 2n−1
n

⩽ magic(n) < 2n−1 for all integers n.

2. What does Turán’s theorem mean in case r = 2? Is the theorem true in that case?

3. Find a general formula for tr−1(n), in terms of n, r, and s := n (mod r − 1).

4. Prove that Tr−1(n) maximizes number of edges among all complete (r − 1)-partite
graphs (that is, that any complete (r − 1)-partite graph with parts of sizes different
from ⌊n/(r − 1)⌋ or ⌈n/(r − 1)⌉ has fewer edges than Tr−1(n)).

5. Provide an alternative proof of Turán’s theorem by induction on n (with inductive
steps of size 1) by deleting a vertex of minimum degree.

6. Let G be an n-vertex graph. Recall that the independence number of G, denoted α(G),
is the size of the largest set of vertices in G containing no edge. Let ∆ be the maximum
degree of G, and let d be the average degree of G.

(a) Prove that χ(G) ⩽ ∆(G) + 1. Conclude that α(G) ⩾ n/(∆ + 1).

(b) Using Turán’s theorem, prove that α(G) ⩾ n/(d+1). Note that this is a (much!)
stronger result.

Problems (optional)

1. In this problem, you will show that magic(n) = Ω(2n/
√
n), following the argument of

Erdős and Moser. This problem assumes some familiarity with probability, specifically
Chebyshev’s inequality.

(a) Let a1, . . . , an ∈ JMK, and suppose that all subsets have distinct sums. Let
ξ1, . . . , ξn be independent random variables, each taking on the values 0 or 1 with
probability 1

2
, and let

X =
n∑

i=1

ξiai.

Prove that for every integer x, we have that Pr(X = x) ⩽ 2−n.

(b) Prove that Var(X) ⩽ M2n/4.

(c) Let λ > 1 be some parameter. Using Chebyshev’s inequality, plus the previous
two parts, prove that

1− 1

λ2
⩽ Pr

(
|X − E[X]| < λM

√
n

2

)
⩽ 2−n

(
λM

√
n+ 1

)
.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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(d) By picking λ appropriately, prove that M = Ω(2n/
√
n). Deduce that magic(n) =

Ω(2n/
√
n). What is the best constant factor you can obtain by optimizing λ?

2. (a) Let v1, . . . , vn be vectors in Rd with ∥vi∥ ⩾ 1 for all i, where ∥ · ∥ denotes the
usual Euclidean length of a vector. Prove that there are at most ⌊n2

4
⌋ pairs vi, vj

with ∥vi + vj∥ < 1.

⋆ (b) Fix a probability distribution on Rd, and let X, Y be two independent random
vectors drawn according to this distribution. Prove that

Pr(∥X + Y ∥ ⩾ 1) ⩾
1

2
Pr(∥X∥ ⩾ 1)2.

(c) Find a probability distribution on Rd for which the above bound is tight.

3. A directed graph is a graph in which every edge is assigned one of the two possible
directions. In a directed graph, we allow anti-parallel edges, i.e. x → y and y → x
may both be edges in the same directed graph. An oriented graph is a directed graph
without anti-parallel edges.

(a) A cyclic triangle is the oriented graph on 3 vertices with edges x → y, y → z, z →
x. What is the maximum number of edges in an n-vertex oriented graph without
a cyclic triangle?

(b) A transitive triangle is the oriented graph on 3 vertices with edges x → y, y →
z, x → z. What is the maximum number of edges in an n-vertex oriented graph
without a transitive triangle?

(c) What is the maximum number of edges in an n-vertex directed graph without a
cyclic triangle?

(d) What is the maximum number of edges in an n-vertex directed graph without a
transitive triangle?
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Exercises (recommended)

1. Let H be a collection of graphs. We say that G is H-free if G has no copy of any
H ∈ H, and we define

ex(n,H) = max{e(G) : G is an n-vertex H-free graph}.

Assuming the Erdős–Stone–Simonovits theorem, prove that

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
,

where χ(H) := min{χ(H) : H ∈ H}.

2. By carefully analyzing the proof we saw in class, prove that ex(n,C4) ⩽
n(

√
4n−3+1)
4

.

Hint: Start with the case that G is d-regular, where d ⩾
√
4n−3+1

2
.

3. Today we proved that for any graph H,

ex(n,H) ⩾ tχ(H)−1(n), (∗)

which in particular implies the lower bound in the Erdős–Stone–Simonovits theorem.
In this problem, you’ll see examples of graphs where inequality (∗) is not best possible,
i.e. where the Turán graph Tχ(H)−1(n) has strictly fewer edges than ex(n,H).

(a) Let H be the graph

Verify that χ(H) = 3, so that inequality (∗) implies ex(n,H) ⩾ t2(n) = ⌊n2/4⌋.
(b) Add some edges to the Turán graph T2(n) to prove that ex(n,H) ⩾ ⌊n2

4
⌋+ ⌊n

4
⌋.

⋆ (c) Let O3 be the graph corresponding to the octahedron, namely the graph

Verify that χ(O3) = 3. Add edges to T2(n) to prove that

ex(n,O3) ⩾

⌊
n2

4

⌋
+ cn3/2,

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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for some absolute constant c > 0.

Hint: You may assume the fact that I stated but didn’t prove in class, namely
that ex(n,C4) = Θ(n3/2) (i.e. that we have a matching lower bound to the upper
bound we proved).

(d) Why don’t these examples violate the Erdős–Stone–Simonovits theorem?

4. Provide an alternative proof of Turán’s theorem using a technique called Zykov sym-
metrization. Let G be a Kr-free n-vertex graph.

(a) Pick two non-adjacent vertices x, y ∈ V (G), and assume without loss of generality
that deg(x) ⩾ deg(y). Replace y with a clone of x, i.e. another vertex x′ with the
same neighborhood as x.

(b) Repeat step (a) over and over until doing so no longer changes the graph (and
prove that this must eventually happen).

(c) Prove that the resulting graph when you get stuck is complete (r − 1)-partite.

(d) Conclude that e(G) ⩽ tr−1(n), with equality if and only if G ∼= Tr−1(n).

Problems (optional)

⋆ 1. Suppose p1, . . . , pn ∈ R2 are n points in the plane. Prove that the number of unit
distances among them (i.e. pairs {pi, pj} with ∥pi − pj∥ = 1) is at most O(n3/2).

Can you prove a stronger upper bound, or find a matching lower bound?

⋆ 2. Let G be an n-vertex triangle-free graph.

(a) Suppose every vertex of G has degree greater than 2n/5. Prove that G is bipartite.

(b) Show that 2/5 is the optimal constant in this theorem, that is, that for every n,
there exists a non-bipartite triangle-free graph with minimum degree ⌊2n/5⌋.

⋆⋆ (c) Can you find generalizations of parts (a) and (b) for Kr-free graphs, r > 3?

3. In this problem you will prove Jensen’s inequality in full generality.

(a) A function f : R → R is called convex if for all x, y ∈ R and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ⩽ λf(x) + (1− λ)f(y).

Prove that if f is twice-differentiable and satisfies f ′′ ⩾ 0, then f is convex.

(b) Suppose f is convex. Let x1, . . . , xn ∈ R and λ1, . . . , λn ∈ [0, 1] with λ1+· · ·+λn =
1. Prove that

n∑
i=1

λif(xi) ⩾ f

(
n∑

i=1

λixi

)
by induction on n. This is the general form of Jensen’s inequality.

(c) Prove that f(x) =
(
x
r

)
is convex on the interval [r,∞) using part (a), and conclude

the version of Jensen’s inequality that I stated in class from part (b).
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Exercises (recommended)

1. (a) Suppose that T is a tree with t + 1 vertices, and G is a graph with minimum
degree at least t. Prove that G contains a copy of T .
Hint: Induction on t.

(b) Let G be an n-vertex graph with m edges. Prove that there is a subgraph G′ ⊆ G
with minimum degree strictly greater than m/n.
Hint: Repeatedly delete vertices of degree ⩽ m/n.

(c) Using parts (a) and (b), prove that if T is a tree with t+ 1 vertices, then

ex(n, T ) < (t− 1)n.

(d) Prove that if n is divisible by t, then

ex(n, T ) ⩾
(t− 1)n

2
.

? (e) Erdős and Sós conjectured that the lower bound in part (d) is best possible, i.e.
that

ex(n, T ) =

⌊
(t− 1)n

2

⌋
for all (t+ 1)-vertex trees T . Can you prove or disprove this conjecture?

2. Let K1,r denote the star with r leaves. Determine ex(n,K1,r) for all n and r. Is your
answer consistent with the Erdős–Sós conjecture from exercise 1? Is it consistent with
the Kővári–Sós–Turán theorem we proved in class?

3. Recall that we defined

m2(H) = max
F⊆H

e(F )− 1

v(F )− 2
,

and stated in class that ex(n,H) ⩾ Ω(n2−1/m2(H)) for all bipartite H.

(a) Compute m2(C2ℓ) for each ℓ ⩾ 2. What lower bound on ex(n,C2ℓ) do you get?

(b) Compute m2(Ks,t) for all t ⩾ s ⩾ 2. How does the resulting lower bound compare
to the others we’ve discussed?

(c) Compute m2(T ) for any tree T . How does the resulting lower bound relate to
exercise 1?

⋆ (d) Pick your favorite bipartite graph, and compute the lower and upper bounds
coming from m2(H) and from finding H as a subgraph of Ks,t, respectively. Can
you improve either of these bounds?

4. Using previous homework problems, prove the following fact. A graph H is a forest if
and only if ex(n,H) ⩽ O(n).

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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Problems (optional)

⋆ 1. In this problem, you’ll prove that ex(n,H) ⩾ Ω(n2−1/m2(H)). This problem requires
some background in probability, specifically linearity of expectation.

(a) Let p ∈ [0, 1], and let G be a random n-vertex graph obtained by making every
pair of vertices adjacent with probability p, independently over all choices. Prove
that the expected number of edges in G is p

(
n
2

)
.

(b) Prove that for any fixed graph H, the expected number of copies of H in G is at
most pe(H)nv(H).

(c) Suppose that H is 2-balanced, meaning that in the definition of m2(H), the max-
imizing subgraph F is H itself. Let X denote the random variable defined as
the number of edges of G minus the number of copies of H in G. Prove that if
p = cn−1/m2(H), for some appropriate constant c > 0, then E[X] ⩾ Ω(n2−1/m2(H)).

(d) Prove that if H is 2-balanced, then ex(n,H) ⩾ Ω(n2−1/m2(H)).

(e) Prove that the same conclusion holds even if H is not 2-balanced.

⋆ 2. In this problem you’ll prove the Erdős–Sós conjecture in the special case that T is a
path. By the length of a path, we mean the number of vertices it has.

⋆⋆ (a) Let G be an n-vertex connected graph with minimum degree δ(G). Prove that G
contains a path of length at least min{n, 2δ(G) + 1}.
Hint: Consider a longest path in G, and try to extend it.

(b) Let Pt+1 denote the path of length t+ 1. Prove that

ex(n, Pt+1) ⩽

⌈
(t− 1)n

2

⌉
.

Hint: Induction on n.

⋆ (c) Can you characterize the extremal graphs, i.e. the Pt+1-free graphs with the max-
imum number of edges?

3. Provide an alternative proof of Turán’s theorem using induction on r. Let G be a
Kr-free n-vertex graph.

(a) Let v be a vertex of maximum degree in G. Let A be the set of neighbors of v,
and let B = V (G) \ A.

(b) Form a new graph H by deleting all edges inside B, and adding in all missing
edges between A and B. Prove that e(H) ⩾ e(G).

(c) Apply the inductive hypothesis (Turán’s theorem for r − 1) to the induced sub-
graph on A. Conclude that Turán’s theorem holds for r.
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Exercises (recommended)

1. Recall that we stated a hypergraph version of the Kővári–Sós–Turán theorem, and
proved it (at least in the case k = 3) by induction on k. Try proving the k = 2 case
(i.e. the original Kővári–Sós–Turán theorem) via a similar inductive approach. What
does the k = 1 case even mean?

2. In class, we only proved the hypergraph Kővári–Sós–Turán theorem in only one special
case, namely for k = 3 and s1 = s2 = s3. Prove the general result, namely that

ex(n,K(k)
s1,...,sk

) ⩽ O
(
n
k− 1

s1s2···sk−1

)
.

3. For a k-graph H and an integer n, let πn(H) := ex(n,H)/
(
n
k

)
.

⋆ (a) Prove that πn(H) ⩾ πn+1(H) for all n. Conclude that π(H) := limn→∞ πn(H) is
well-defined. π(H) is called the Turán density of H.

(b) Let H be a graph (i.e. k = 2). Find a formula for π(H).

4. In this problem, you will prove a supersaturation result for complete bipartite graphs.

(a) Given two graphs H,G, a graph homomorphism from H to G is a function f :
V (H) → V (G) with the property that if uv is an edge of H, then f(u)f(v) is an
edge of G. Note that if f is injective, then this yields a copy of H in G. If f is
not injective, we say this is a pseudocopy.

Prove that if v(G) = n, then there are at most nv(H) homomorphisms from H to
G, and at most

(
v(H)
2

)
nv(H)−1 pseudocopies of H in G.

(b) Suppose G has n vertices and pn2/2 edges (we say that G has edge density p).
Prove1 that there are at least ptn1+t homomorphisms from K1,t to G.

⋆ (c) Suppose G has n vertices and pn2/2 edges (we say that G has edge density p).
Prove2 that there are at least pstns+t homomorphisms from Ks,t to G.

(d) Deduce from parts (a) and (b) the following supersaturation result. For every
ε > 0 and integers s, t, there exists a δ > 0 so that the following holds for
sufficiently large n. If G has n vertices and ε

(
n
2

)
edges, then G has at least δ

(
n

s+t

)
copies of Ks,t.

⋆ (e) Can you prove analogous results for k-uniform hypergraphs?

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
1Hint: Jensen’s inequality.
2Hint: Use Jensen’s inequality again!
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Problems (optional)

⋆ 1. Recall that K
(k)
r denotes the complete k-uniform hypergraph with r vertices.

(a) Prove3 that ex(n,K
(3)
4 ) ⩾ (5

9
+ o(1))

(
n
3

)
.

⋆ (b) Prove that ex(n,K
(3)
r ) ⩾ (1−

(
2

r−1

)2
+ o(1))

(
n
3

)
for all r ⩾ 4.

(c) Prove that

ex(n,K(k)
r ) ⩽

(
1− 1(

r
k

) + o(1)

)(
n

k

)
.

⋆⋆ (d) Prove the best known upper bound on ex(n,K
(k)
r ), namely

ex(n,K(k)
r ) ⩽

(
1− 1(

r−1
k−1

) + o(1)

)(
n

k

)
.

? (e) Improve any of the bounds above.

2. In this problem, you will study the extremal number of the graph of the 3-dimensional
cube, denoted Q3.

(a) Using Exercise 4, prove that if G is an n-vertex graph with e(G) ⩾ Ω(n3/2), then
G has at least Ω(p4n4) copies of C4, where p = 2e(G)/n2 is the edge density of G.

(b) Define the C4-graph C4(G) of G to be the following graph. Its vertices are the
edges of G, and two such are adjacent in C4(G) if they are the opposite sides of
a C4 in G. Relate copies of C4 in C4(G) to copies of Q3 in G.
Be careful! Not every C4 in C4(G) corresponds to a Q3 in G; figure out why not.

(c) Prove that ex(n,Q3) ⩽ O(n8/5).

? (d) Prove a matching lower bound, ex(n,Q3) ⩾ Ω(n8/5).

3. In this problem, you will prove a slightly weaker version of Turán’s theorem using a
technique called Lagrangians (or the Motzkin–Straus inequality).

(a) Let G be a graph with vertex set {v1, . . . , vn}. Define the graph polynomial

pG(x1, . . . , xn) =
∑

vivj∈E(G)

xixj

and define the Lagrangian λ(G) of G to be the maximum of pG(x1, . . . , xn) over
all vectors (x1, . . . , xn) satisfying xi ⩾ 0 for all i, and

∑n
i=1 xi = 1. Prove that

this maximum is well-defined.

3Hint: Split the vertex set into three equal-sized parts.
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(b) Prove that λ(G) ⩾ e(G)/n2.

⋆ (c) Let x = (x1, . . . , xn) be a point achieving the maximum in λ(G), i.e. a vector with
pG(x1, . . . , xn) = λ(G). Moreover, assume that the number of non-zero entries
in x is minimized among all such maximizers. Prove that the set of non-zero
coordinates in x forms a clique in G.

(d) Deduce from the previous part that if G is Kr-free, then λ(G) ⩽ 1
2
(1− 1

r−1
).

(e) Conclude that if G is an n-vertex Kr-free graph, then e(G) ⩽ (1− 1
r−1

)n
2

2
. Note

that this is slightly weaker than the bound in Turán’s theorem, but matches it if
r − 1 divides n.

⋆⋆ 4. In class we proved the following sampling lemma: If G is an n-vertex graph with
e(G) ⩾ β

(
n
2

)
, then the number of m-sets of vertices M with e(M) ⩾ α

(
m
2

)
is at

least (β − α)
(
n
m

)
. In fact, the proof showed that we could replace β − α above with

(β − α)/(1− α).

Is this result best possible, or close to best possible? That is, is it true that for
arbitrarily large n, there exists some n-vertex graph with e(G) ≈ β

(
n
2

)
and roughly

β−α
1−α

(
n
m

)
m-sets M with e(M) ⩾ α

(
n
m

)
?

For concreteness, feel free to fix your favorite values of α, β, e.g. α = 1/3 and β = 2/3.
So can you find a sequence of graphs with around 2

3

(
n
2

)
edges so that roughly 1

2

(
n
m

)
of

the m-sets M satisfy e(M) ⩾ 1
3

(
m
2

)
?



PCMI 2025 Extremal graph theory and Ramsey theory Homework #5

Exercises (recommended)

⋆ 1. Recall that the Turán density of a k-graph H is π(H) := limn→∞ ex(n,H)/
(
n
k

)
. Prove

the following general form of the supersaturation theorem.

For every k-graph H and every ε > 0, there exists some δ > 0 so that the following
holds for all sufficiently large n. If G is an n-vertex k-graph with

e(G) ⩾ (π(H) + ε)

(
n

k

)
then G has at least δ

(
n

v(H)

)
copies of H.

2. For a graph H and an integer s, we denote by H[s] the s-blowup of H. This is the
graph obtained by replacing every vertex of H by an independent set of size s, and
replacing every edge of s by a copy of Ks,s. Similarly, if H is a k-graph, then H[s] is
the k-graph obtained by replacing every vertex by s vertices, and replacing every edge
by a copy of K

(k)
s,...,s.

(a) Check that if H = Kk, our two definitions of Kk[s] coincide.

(b) Deduce from the previous problem the following general form of the Erdős–Stone
theorem.

For every k-graph H and every positive integer s, we have π(H[s]) = π(H).

3. (a) Let H,G be k-graphs. A homomorphism H → G is a function V (H) → V (G)
which maps hyperedges to hyperedges. We say that G is H-hom-free if there is
no homomorphism H → G.

Let exhom(n,H) denote the maximum number of hyperedges in an H-hom-free
n-vertex k-graph. Prove that exhom(n,H) ⩽ ex(n,H).

(b) Now let H be a graph (i.e. let k = 2). Determine exhom(n,H).

(c) Prove that the limit πhom(H) := limn→∞ exhom(n,H)/
(
n
k

)
exists.

(d) Prove that πhom(H) = π(H).

4. Prove that if H is a k-graph, then either π(H) = 0 or π(H) ⩾ k!/kk.

Problems (optional)

1. Let G be a graph, and recall that α(G) denotes its independence number.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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(a) By picking a random permutation of V (G), prove that

α(G) ⩾
∑

v∈V (G)

1

deg(v) + 1
.

(b) Apply Jensen’s inequality to conclude that

α(G) ⩾
n

d+ 1
,

where d is the average degree of G. Recall that you already proved this result, as
a consequence of Turán’s theorem.

⋆ (c) By more carefully analyzing the proof above, give an alternative proof of Turán’s
theorem.

⋆ 2. (a) By more carefully analyzing the proof we saw in class, prove the following strength-
ening of the Erdős–Stone–Simonovits theorem. For every graph H, there exists
some δ > 0 such that

ex(n,H) ⩽ tχ(H)−1(n) +O(n2−δ).

(b) Prove the following converse: for every δ > 0 and every r ⩾ 2, there exists a
graph H with χ(H) = r and

ex(n,H) ⩾ tr−1(n) + Ω(n2−δ).

⋆⋆ 3. In this problem, you will prove the following amazing strengthening of the Kővári–
Sós–Turán theorem: if H is a bipartite graph and every vertex on one side has degree
at most s, then ex(n,H) = O(n2−1/s).

⋆⋆ (a) Prove1 the following lemma. For all positive integers a, b, there exists some con-
stant C > 0 such that the following holds. Let G be an n-vertex graph with
average degree d ⩾ Cn1−1/s. Then there exists U ⊆ V (G) with |U | ⩾ a so that
every s-tuple of vertices in U has at least a+ b common neighbors.

(b) Using the lemma, prove that ex(n,H) ⩽ O(n2−1/s) if every vertex on one side of
H has degree at most s.

1Hint: Pick x1, . . . , xs to be uniformly random vertices of G, chosen with repetition, and let X be the
common neighborhood of x1, . . . , xs. The desired U can be obtained by deleting some vertices from X, with
positive probability.
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Exercises (recommended)

1. (a) Prove that if G is an n-vertex Kr-free graph with at least tr−1(n)− s edges, then
G can be made (r − 1)-partite by deleting at most s edges.

(b) Prove that if G is an n-vertex Kr-free graph with at least tr−1(n)− s edges, then
G can be made complete (r − 1)-partite by adding or deleting at most 3s edges.

⋆ (c) Prove that for every ε > 0, there exists δ > 0 such that the following holds for all
sufficiently large n. If G is an n-vertex Kr-free graph with at least tr−1(n)− δn2

edges, then G can be turned into Tr−1(n) by adding or deleting at most εn2 edges.

2. On a previous homework, you might have proved the following statement: if an n-vertex
directed graph has no copy of a cyclic triangle, then it has at most ⌊n2/2⌋ edges. The
extremal example is the complete bipartite graph K⌊n/2⌋,⌈n/2⌉, with all edges oriented
in both directions.

Prove that this extremal problem does not exhibit stability. Namely, find another
directed graph with ⌊n2/2⌋ − o(n2) edges and no cyclic triangle, which cannot be
turned into the extremal example above by adding/deleting o(n2) edges.

3. In this problem you’ll prove lower bounds for the extremal numbers of cycles.

(a) Let p be a prime, 2 ⩽ ℓ ⩽ p a positive integer, and let a1, . . . , aℓ be ℓ distinct
elements of Fp. Prove that the vectors

(1, a1, a
2
1, . . . , a

ℓ−1
1 ), (1, a2, a

2
2, . . . , a

ℓ−1
2 ), . . . (1, aℓ, a

2
ℓ , . . . , a

ℓ−1
ℓ )

are linearly independent in Fℓ
p.

(b) Let p and ℓ be as above, and consider the following bipartite graph G. Its two
parts are X and Y , where X = Fℓ

p and Y consists of all lines in Fℓ
p of the form

{(b1, . . . , bℓ) + t · (1, a, a2, . . . , aℓ−1) : t ∈ Fp}.

Make x ∈ X and y ∈ Y adjacent in G if and only if the point x lies on the line y.
Prove that G has n = 2pℓ vertices and pℓ+1 = Θ(n1+1/ℓ) edges.

⋆ (c) Prove that if ℓ ∈ {2, 3, 5}, then G is C2ℓ-free. Conclude that ex(n,C2ℓ) =
Θ(n1+1/ℓ).

(d) What goes wrong if ℓ /∈ {2, 3, 5}?
? (e) Modify this construction to work for ℓ = 7.

4. Recall that the distance between two vertices u, v in a graph G, denoted dG(u, v), is
the number of edges in the shortest path connecting them.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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(a) Prove that if H is a spanning subgraph of G (i.e. V (H) = V (G) and E(H) ⊆
E(G)), then dG(u, v) ⩽ dH(u, v) for all u, v.

(b) Given an integer k, a k-spanner of G is a subgraph H ⊆ G for which

dG(u, v) ⩽ dH(u, v) ⩽ k · dG(u, v)

for all u, v. Prove1 that every n-vertex graph G, regardless of how many edges it
has, contains a (2ℓ− 1)-spanner H with e(H) ⩽ O(n1+1/ℓ), for any ℓ ⩾ 1.

Remark: Spanners are very important in computer science, as they allow us to
approximate distances in G while using much less storage than it would take to
store all of G. For example, even if G has Θ(n2) edges, the result above shows
that we can approximate distances in G up to a factor of 100 by storing only
O(n1.02) edges.

(c) Prove that this result is tight if ℓ ∈ {2, 3, 5}. That is, there exists an n-vertex
graph G containing no (2ℓ − 1)-spanner with fewer than cn1+1/ℓ edges, for some
constant c > 0.

Problems (optional)

1. In this problem you’ll see some variants of the supersaturation theorem for triangles.

(a) Prove that if an n-vertex graph has ⌊n2/4⌋ + 1 edges, then it contains at least
⌊n/2⌋ triangles.

(b) Prove that this bound is tight.

⋆⋆ (c) Prove that if an n-vertex graph has ⌊n2/4⌋ + 1 edges, then it contains at least
⌊n/6⌋ triangles all sharing a single edge.

⋆ (d) Prove that this bound is tight.

⋆ 2. Remove the minimum degree assumption from from the proof of Proposition 11.3, thus
proving that ex(n,C5) = ⌊n2/4⌋ for all sufficiently large n.

⋆⋆ 3. Prove the following general stability theorem: for every H and every ε > 0, there exists
δ > 0 so that the following holds for all sufficiently large n. If G is an n-vertex Kr-free
graph with at least tχ(H)−1(n)− δn2 edges, then G can be made (χ(H)− 1)-partite by
deleting at most εn2 edges.

⋆⋆ 4. Prove the following combination of the supersaturation and stability theorems. For
every r ⩾ 3 and every ε > 0, there exist δ, γ > 0 such that the following holds for
all sufficiently large n. If G is an n-vertex graph with at most γnr copies of Kr and
minimum degree at least (1− 1

r−1
−δ)n, then G can be made (r−1)-partite by deleting

at most εn2 edges.

1Hint: Greedily add edges to H while not creating a short cycle.
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5. Let F be a finite collection of bipartite graphs, none of which is a forest. A famous
conjecture of Erdős and Simonovits, called the compactness conjecture, asserts that
there exists some H ∈ F such that

ex(n,F) ⩽ ex(n,H) ⩽ C · ex(n,F),

where C > 0 is an absolute constant, depending only on F.

(a) Prove that the first inequality above holds for any H ∈ F.

⋆ (b) Prove that the compactness conjecture can be false if we allow F to be infinite.

⋆ (c) Prove that the compactness conjecture can be false if we allow F to contain forests.

? (d) Prove or disprove the compactness conjecture.

⋆⋆ (e) The compactness conjecture is known to be false for hypergraphs! You’ll see this
in this part and the next.

Consider the following two 3-partite 3-graphs:

K
(3)
1,1,2 = T =

Prove that ex(n,K
(3)
1,1,2) = Θ(n2) and ex(n, T ) = Θ(n2).

⋆⋆⋆⋆⋆ (f) Prove that ex(n, {K(3)
1,1,2, T}) = o(n2), thus disproving the compactness conjecture

for hypergraphs.
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Exercises (recommended)

1. (a) Prove that r(3, 3) = 6.

(b) Prove that r(3, 4) = 9.

(c) Prove that r(4, 4) ⩽ 18.

⋆ (d) Prove that r(4, 4) = 18.

? (e) The best known bounds on r(5, 5) are 43 ⩽ r(5, 5) ⩽ 46. Can you improve either
of these bounds?

⋆ (f) Prove that r(3; 3) = 17 (recall that r(3; 3) is the 3-color Ramsey number).

2. (a) Prove that

r(3; q) ⩽ 1 + q!

(
1 +

1

2!
+

1

3!
+ · · ·+ 1

q!

)
.

(b) Conclude that r(3; q) ⩽ ⌈e · q!⌉, where e is Euler’s constant.

3. (a) Using the fact that r(k) < 4k, prove that r(k; q) < 44
4·
··
k

, where the number of 4s
is ⌈log2 q⌉.

(b) Prove Theorem 13.5 in the notes. In particular, derive the bound r(k; q) < qqk,
which is much stronger than that in part (a).

4. Prove the following supersaturation version of Ramsey’s theorem, which is usually
called a Ramsey multiplicity result.

For all positive integers k, q, there exists some δ > 0 so that the following holds for
every sufficiently large N . No matter how we q-color the edges of KN , there are at
least δ

(
N
k

)
monochromatic copies of Kk.

Problems (optional)

1. (a) Prove that for any positive integer q, there exists a positive integer N = N(q)
such that the following holds. For any q-coloring of JNK, there exist x, y, z ∈ JNK
such that x, y, z, x+ y, y+ z, x+ y+ z all receive the same color. (Note that x+ z
is omitted!)

(b) Generalize the previous part as follows. Prove that for all positive integers q, t,
there exists a positive integer N = N(q, t) such that the following holds. For any
q-coloring of JNK, there exist x1, . . . , xt ∈ JNK such that the sums

∑b
i=a xi all

receive the same color, for all non-empty 1 ⩽ a ⩽ b ⩽ t.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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⋆ (c) Prove that in part (b), one can moreover ensure that the numbers x1, . . . , xt are
all distinct.

2. Let H be a graph. The 2-colored extremal number of H, denoted ex2(n,H), is defined
to be the maximum number of edges in an n-vertex graph G for which there exists a
2-coloring of E(G) containing no monochromatic copy of H.

Find an exact formula for ex2(n,Kk).

⋆ 3. Let f, g1, . . . , gq : R → R be functions. Suppose that there exist ε, δ > 0 such that
whenever x, y ∈ R satisfy f(x)− f(y) ⩾ ε, then

max
i∈JqK

(gi(x)− gi(y)) ⩾ δ.

Prove that if g1, . . . , gq are all bounded, then f is bounded as well.

⋆ 4. In class, we proved that r(k) < 4k using the Erdős–Szekeres argument. Ramsey’s
original proof used a different argument, which yielded the worse bound r(k) ⩽ k!.
Find a natural argument yielding this bound. (That is, don’t simply quote or rederive
the Erdős–Szekeres argument!)
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Exercises (recommended)

1. Prove that the 3-uniform Ramsey number satisfies

r3(k) ⩾ 2ck
2

for some absolute constant c > 0.

2. In a red/blue coloring of E(KN), denote by degR(v), degB(v) the red and blue degrees,
respectively, of a vertex v.

(a) Prove that the number of monochromatic triangles in such a coloring is equal to

1

2

 ∑
v∈V (KN )

[(
degR(v)

2

)
+

(
degB(v)

2

)]
−
(
N

3

) .

(b) Prove that every 2-coloring of E(K6) contains at least two monochromatic trian-
gles, and in particular obtain a new proof that r(3) ⩽ 6.

⋆ (c) Prove that every 2-coloring of E(KN) contains at least N(N−1)(N−5)
24

monochro-
matic triangles.

3. On yesterday’s homework, you proved a supersaturation version of Ramsey’s theorem.
In the 2-color case, it states that for every k ⩾ 3, there is some δ > 0 such that for every
sufficiently large N , every 2-coloring of E(KN) contains at least δ

(
N
k

)
monochromatic

copies of Kk.

The Ramsey multiplicity constant of Kk, denoted c(Kk), is defined to be the supremum
of all δ for which this statement is true.

(a) Prove that c(Kk) ⩾
(
r(k)
k

)−1
. Conclude that c(Kk) ⩾ 4−k2 .

(b) Prove that c(Kk) ⩽ 21−(
k
2).

(c) Prove1 that c(K3) =
1
4
.

4. For every N ⩾ 3, give N points in R2 with no three in convex position. This shows
that the assumption in Theorem 14.5 that no three points are collinear is necessary.

5. Prove that for every k ⩾ 3, there exists some N so that the following holds. Among
any N points in the plane, there are either k points lying on a line, or k points in
convex position.

1Hint: Use the previous exercise.
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6. Let N = r3(k), and let p1, . . . , pN be points in R2 with no three collinear. Define

χ : E(K
(3)
N ) → {even, odd} by

χ({i, j, ℓ}) :=

{
even if there are an even number of points pm in the triangle pipjpℓ,

odd otherwise.

Prove that a monochromatic K
(3)
k under χ corresponds to k points in convex position.

Conclude that Kl(k) ⩽ r3(k), and in particular obtain a new proof of Theorem 14.5.

Problems (optional)

1. (a) By more carefully analyzing the proof of Theorem 13.7 in the notes, prove that

r(k) >

(
1

e
√
2
− o(1)

)
k2k/2.

⋆ (b) Improve this bound by a constant factor.

? (c) Improve this bound by a super-constant factor.

⋆ 2. Prove that Kl(5) = 9.

3. Given two graphs G,H, their lexicographic product G · H is defined as follows. Its
vertex set is V (G · H) = V (G) × V (H), and two vertices (a, b), (c, d) are adjacent if
either ac ∈ E(G) or a = c and bd ∈ E(H).

(a) Compute the size of the largest clique and the largest independent set in G ·H.

(b) Prove that the Ramsey number r(k) satisfies r(k + 1) > klog2(5) for all k that are
powers of 2.

[Note that this already disproves Turán’s belief that r(k) may grow only quadrat-
ically as a function of k.]

⋆⋆ (c) Using the same approach, find an explicit construction of a coloring witnessing
that r(k) grows super-polynomially in k. In other words, for any C > 0 and any
sufficiently large k, find an explicit 2-coloring of E(KN), where N = kC , with no
monochromatic clique of order k.

? (d) Can you use such an approach to resolve Open problem 13.8?

4. A collection of points in Rd is said to be in general position if no d+ 1 of them lie on
a (d − 1)-dimensional hyperplane. (So in two dimensions, this says that no three are
collinear, in three dimensions it says that no four are coplanar, etc.)

(a) Prove that among any d+ 3 points in Rd which are in general position, there are
d+ 2 in convex position.
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(b) Given k ⩾ d+2, let N = rd+2(d+3, k). Prove that among any N points in Rd in
general position, there are k in convex position.

(c) Prove that among any Kl(k) points in Rd, no three collinear, there are k in convex
position.

[This is stronger than the result in (b) in two ways: the bound is independent of
d, and the assumption is weakened from general position to no three collinear.]

5. A subdivision of a graph H is obtained from H by replacing every edge of H by a path
of some length (not necessarily the same length for all edges, and paths of length 1
are allowed, so that H is a subdivision of itself). A famous conjecture of Hajós asserts
that if χ(G) ⩾ k, then G contains a subdivision of Kk as a subgraph.

(a) Prove that Hajós’ conjecture is true for k ⩽ 3.

⋆ (b) Prove that Hajós’ conjecture is true for k = 4.

(c) Prove that Hajós’ conjecture for k = 5 implies the four-color theorem. Conclude
that it is probably pretty hard to prove the k = 5 case.

(d) Prove that if Hajós’ conjecture is true, then r(k) ⩽ 3k3. Conclude that Hajós’
conjecture is false.

6. A classical fact in graph theory is that there exist triangle-free graphs of arbitrarily
high chromatic number. In this exercise, you will see a non-standard Ramsey-theoretic
proof.

For an integer N , let SN be a graph with vertex set
(JNK

2

)
, where we think of the vertices

of SN as ordered pairs (a, b) with 1 ⩽ a < b ⩽ N . The edges of SN consist of all pairs
of the form ((a, b), (b, c)) for a < b < c.

(a) Prove that SN is triangle-free.

(b) Prove that χ(SN) → ∞ as N → ∞.

7. (a) Let KN denote the complete graph whose vertex set is N. Prove the “infinite
Ramsey theorem”: for any positive integer q, and any q-coloring of KN, there is
an infinite monochromatic clique.

(b) State and prove the infinite hypergraph Ramsey theorem.

8. Prove that there is an infinite set S ⊆ N such that for every a, b ∈ S, the number a+ b
has an even number of prime factors (counted without multiplicity).
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Exercises (recommended)

1. Prove that r(K1,k) = 2k if k is odd, and r(K1,k) = 2k − 1 if k is even.

2. Let kK2 denote a matching with k edges, that is, a disjoint union of k copies of the
single-edge graph K2. Prove that r(kK2) = 3k − 1 for all k ⩾ 1.

3. (a) Prove that r(T ; q) ⩽ O(qn) for every q ⩾ 2 and every n-vertex tree T .

⋆ (b) Prove that r(T ; q) = Θ(qn) for every q ⩾ 2 and every n-vertex tree T .

4. Prove that every non-empty forest has degeneracy 1.

5. Prove1 that there exist absolute constants C, c > 0 such that the following holds for
all n. There exists an n-vertex graph H with degeneracy d ⩾ c log2 n and r(H) ⩽ Cn.

Note that this result is close to optimal; by Theorem 15.8, such an upper bound on
r(H) cannot hold if c > 2.

Problems (optional)

1. Prove that for every integer k and for every n-vertex tree T , we have

r(Kk, T ) = (k − 1)(n− 1) + 1.

⋆⋆ 2. Let Pk denote a k-vertex path. Prove that for all k ⩾ ℓ ⩾ 2,

r(Pk, Pℓ) = k +

⌊
ℓ

2

⌋
− 1.

3. (a) Prove that
r(C2k+1; q) > 2qk

for all k ⩾ 1, q ⩾ 2.

⋆ (b) Prove that
r(C2k+1; q) ⩽ C(q + 2)!k,

for some absolute constant C.

? (c) The previous two parts show that r(C2k+1; q) grows linearly in k and between
exponentially and super-exponentially in q. Determine whether the true behavior
is exponential or super-exponential.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
1Hint: Use a lot of isolated vertices.
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⋆⋆ 4. Prove that r(Kk,k) ⩽ O(2k log k).

5. For a bipartite graph H and a number δ > 0, let rd(H; δ) denote the minimum integer
N such that every N -vertex graph with at least δ

(
N
2

)
edges has a copy of H.

(a) Using what you know about extremal numbers of bipartite graphs, prove that
rd(H; δ) is well-defined, i.e. that this number is finite for all bipartite H and all
δ > 0.

(b) By more carefully examining your solution to the previous part, show that for
every bipartite graph H, there exists some C > 0 such that

rd(H; δ) ⩽

(
1

δ

)C

for all 0 < δ ⩽ 1
2
.

(c) Let H be a graph, and suppose G is an N -vertex graph with δ
(
N
2

)
edges and with

no copy of H. Prove2 that if q is an integer satisfying (1− δ)q
(
N
2

)
< 1, then

r(H; q) > N.

(d) Fix a bipartite graph H, and let C be the constant from part (b). Using the
previous parts, prove that

rd

(
H;

2C ln q

q

)
⩽ r(H; q) ⩽ rd

(
H;

1

q

)
,

This shows that r(H; q) and rd(H; 1/q) are closely related for bipartite H. In par-
ticular, we see that Ramsey numbers of bipartite graphs are essentially controlled
by extremal graph theory.

2Hint: Randomly permute the vertices of G to obtain q copies G1, . . . , Gq. Show that with positive
probability, every edge of KN appears in at least one Gi.



PCMI 2025 Extremal graph theory and Ramsey theory Homework #10

Exercises (recommended)

1. (a) Prove that every 2-coloring of E(KN) contains a monochromatic N -vertex tree.

(b) Prove that for every q ⩾ 2, there exists some δ > 0 such that the following holds.
In any q-coloring of E(KN), one of the color classes contains all of the trees on
δN vertices.

2. (a) Let G,H be graphs such that H is connected. Prove that

r(G,H) ⩾ (χ(G)− 1)(|H| − 1) + 1,

where |H| denotes the number of vertices of H.

(b) Let σ(G) denote the minimum number of vertices that can appear in a color class
among all proper χ(G)-colorings of G. Strengthen the result above to

r(G,H) ⩾ (χ(G)− 1)(|H| − 1) + σ(G).

3. Let ℓK2 denote the matching graph, consisting of 2ℓ vertices and ℓ disjoint edges. Prove
that r(ℓK2, Kk) = 2ℓ+ k − 2 for all integers ℓ ⩾ 1, k ⩾ 2.

4. (a) Let k, ℓ ⩾ 2. Prove that in any sequence of (k−1)(ℓ−1)+1 distinct real numbers,
there is an increasing subsequence of length k or a decreasing subsequence of
length ℓ.

(b) Prove that the result in (a) is best possible, by finding a sequence of (k−1)(ℓ−1)
distinct real numbers with no increasing subsequence of length k and no decreasing
subsequence of length ℓ.

5. Prove that any sequence of (not necessarily distinct) real numbers of length (k−1)3+1
contains a subsequence of length k that is strictly increasing, strictly decreasing, or
constant. Prove that this bound is best possible.

Problems (optional)

1. (a) Prove that any infinite sequence of distinct real numbers contains an infinite
subsequence that is (non-strictly) increasing or (non-strictly) decreasing.

(b) Prove the Bolzano–Weierstrass theorem: every bounded sequence of real numbers
has a convergent subsequence.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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2. Let v1, . . . , vN ∈ Rd be vectors, and let (vi)j denote the jth coordinate of vi, for

any j ∈ JdK. Prove that if N ⩾ (k − 1)2
d
+ 1, then there is a totally monotone

subsequence of length k; that is, there are i1 < · · · < ik such that for all j ∈ JdK, we
have (vi1)j ⩾ · · · ⩾ (vik)j or (vi1)j ⩽ · · · ⩽ (vik)j.

⋆ 3. Prove1 that for every ∆ ⩾ 2, there exists C∆ > 0 such that the following holds for
every n. If N ⩾ C∆n, then in any two-coloring of E(KN), one of the color classes
contains all n-vertex graphs of maximum degree at most ∆.

4. Prove that a graph has degeneracy at most d if and only if its vertices can be ordered
as v1, . . . , vn such that vi has at most d neighbors preceding it in the order.

Remark: This alternative definition is very useful when trying to prove things like
the Burr–Erdős conjecture, as it suggests a good order in which to try to embed the
vertices one by one.

⋆⋆ 5. (a) Formalize the proof sketch we saw in class, and prove that if H is an n-vertex
graph with maximum degree ∆, then

r(H) ⩽ 2C∆(log∆)2n,

where C is an absolute constant.

⋆⋆ (b) Improve this bound to
r(H) ⩽ 2C∆log∆n.

? (c) Improve this bound to
r(H) ⩽ 2C∆n.

⋆ 6. Let kK3 denote the graph that is the disjoint union of k triangles. Prove2 that for all
k ⩾ 2, we have r(kK3) = 5k.

7. Prove that r(C4; q) ⩽ q2 + q + 2 for all q ⩾ 2.

8. Erdős conjectured that if χ(H) = k, then r(H) ⩾ r(Kk).

(a) Prove this conjecture for k ⩽ 3.

⋆⋆ (b) Find a counterexample to this conjecture for k = 4.

9. Prove that if N is sufficiently large, then the following holds. Among any N points in
the plane, there are three of them that determine an angle greater than 179◦.

⋆⋆ 10. Construct3, for every k ⩾ 4, a collection of 2k−2 points in R2, no three collinear, with
no k of them in convex position. Deduce that Kl(k) ⩾ 2k−2 + 1.

1Hint: There is a black-box reduction to the statement of Theorem 15.12.
2Hint : Induct on k. The base case is super annoying, but the inductive step is nice.
3Hint: A solution for k = 5 is given on the next page; try to generalize it.
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Exercises (recommended)

1. (a) Prove that for every forest F , there exists some integer N such that the following
holds. In any coloring of E(KN), with an arbitrary number of colors, there is a
monochroamtic or rainbow copy of F .

(b) Prove that the result of part (a) is false for any graph H which is not a forest.

2. Let us say that a coloring of E(Kk) is semi-starry if the vertices can be sorted as
v1, . . . , vk such that all edges vivj, where j > i, are of the same color. (The only
difference from a starry coloring is that we do not require these colors to be distinct.)

(a) Prove that if N ⩾ (k − 1)2 + 1, then any semi-starry coloring of E(KN) contains
a monochromatic or starry Kk. Such a result was implicitly used in the proof of
Theorem 16.3.

(b) Prove that if N ⩾ k4k, then any coloring of E(KN), with an arbitrary number of
colors, contains a rainbow or a semi-starry Kk.

⋆ (c) Show that, for some absolute constant c > 0, there exists a coloring of E(KN),
where N = kck, with no rainbow or semi-starry Kk. Thus, the result of part (b)
is best possible up to the constant factor in the exponent.

3. Usually, the canonical Ramsey theorem is stated in an ordered version. Here, we label
V (KN) as v1, . . . , vN , and we say that indices i1 < · · · < ik form a left-starry Kk if all
edges from vij to viℓ receive the same color, for all ℓ > j, and these colors are distinct
for different j. Similarly, it’s right-starry if the same holds for all ℓ < j.

Prove that for every k, there exists some N such that any coloring of E(KN), with
an arbitrary number of colors and with the fixed vertex labeling v1, . . . , vN , there is a
monochromatic, rainbow, left-starry, or right-starry Kk.

Problems (optional)

1. Prove the bipartite canonical Ramsey theorem, which states the following. For every
k ⩾ 2, there exists some N such that in any coloring of E(KN,N), with an arbitrary
number of colors, there is a Kk,k which is monochromatic, rainbow, or starry.

(Here, a Kk,k is rainbow if all k2 edges receive different colors, and is starry if it is
colored by exactly k distinct colors, each of whose color classes is a star K1,k.)

2. Fekete’s lemma is an important result in real analysis. It says that if a function
f : N → R is supermultiplicative, meaning that f(m+n) ⩾ f(m)f(n) for all m,n, then
the limit limn→∞ f(n)1/n exists.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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⋆ (a) Prove Fekete’s lemma (or take it as a given and move on).

(b) Prove that, for any fixed k ⩾ 3, the limit

lim
q→∞

r(k; q)1/q

exists.

? (c) Prove that, for any fixed q ⩾ 2, the limit

lim
k→∞

r(k; q)1/k

exists.

⋆ 3. There is also a canonical Ramsey theorem for hypergraphs.

(a) Find a list of colorings of K
(3)
N that are canonical, in the sense that every subset

of vertices is colored in the same way. Monochromatic and rainbow are obvious
examples, but what are the correct hypergraph notions of starry?

⋆ (b) Prove the canonical Ramsey theorem for 3-uniform hypergraphs: for every k, there

exists some N such that in any coloring of E(K
(3)
N ), with an arbitrary number of

colors, there is a copy of K
(3)
k that is colored according to one of the canonical

colorings in the list you found.

⋆⋆ (c) Extend these results to t-uniform hypergraphs.
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Exercises (recommended)

1. Let Pk denote the path graph with k vertices and k − 1 edges.

(a) Prove that, for any q ⩾ 2, the star K1,q+1 is q-color Ramsey for P3.

(b) Prove that the following graph, obtained by adding a leaf to each vertex of C5, is
2-color Ramsey for P4.

(c) Give an example of a graph that is 2-color Ramsey for P5.

2. Prove that for every n, q ⩾ 2, there exists some N such that KN,N is q-color Ramsey
for Kn,n.

3. A graph G is minimally Ramsey for H if G is Ramsey for H, but any proper subgraph
G′ ⊊ G is not Ramsey for H. H is called Ramsey finite if there are only a finite number
of minimally Ramsey graphs for H, and Ramsey infinite otherwise.

(a) Let G = K3 ∗ Cℓ, where ℓ ⩾ 3 is odd. Prove that G is minimally Ramsey for K3.
Conclude that K3 is Ramsey infinite.

(b) Determine the set of Ramsey minimal graphs for K1,2.

⋆ (c) Prove that K1,k is Ramsey finite if and only if k is odd.

4. A graph G is called q-minimally Ramsey for a graph H if G is Ramsey for H in q
colors, but any proper subgraph G′ ⊊ G is not Ramsey for H in q colors.

(a) Prove that if G is q-minimally Ramsey for H, then every edge of G lies in at least
q copies of H.

(b) Prove that if G is q-minimally Ramsey for H, then G has at least qe(H)−1 copies
of H.

(c) Prove Proposition 17.9 from the notes.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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Problems (optional)

1. (a) Prove that if G is Ramsey for Kk, then χ(G) ⩾ r(k).

(b) Prove that if G is Ramsey for Kk, then e(G) ⩾
(
r(k)
2

)
. That is, the complete graph

Kr(k) has the fewest number of edges among all graphs Ramsey for Kk.

(c) Find an example of a graph H for which there is a graph G which is Ramsey for
it, but G has fewer edges than

(
r(H)
2

)
. That is, it was really important that we

took H = Kk above.

⋆ 2. Recall the definitions from exercise 3. In this problem, you’ll prove that every tree
which is not a star is Ramsey infinite.

(a) Prove that if T is an n-vertex tree, then every graph G of chromatic number at
least n2 + 1 is Ramsey for G.

(b) Prove that if T is a tree which is not a star, then for any forest F , F is not Ramsey
for T .

⋆ (c) Prove1 that for every k, g ⩾ 3, there is a graph G with chromatic number at least
k and girth at least g (the girth of G is the length of the shortest cycle in G).

(d) Using the previous parts, prove that for every tree T which is not a star, and
for every integer g, there is a graph G on at least g vertices which is minimally
Ramsey for T . Conclude that T is Ramsey infinite.

3. (a) Prove that for any ℓ ⩾ 4, the cycle Cℓ is a subgraph of a triangle tree (and hence
Ramsey obligatory for K3).

(b) Prove that K4 is not a subgraph of any triangle tree.

4. (a) Prove that if G is Ramsey for H and H is Ramsey for F , then G is 4-color Ramsey
for F .

(b) Find an example2 of G,H, F as above for which G is not 5-color Ramsey for F .

5. Let G be a graph. Recall that the s-blowup of G, denoted G[s], is the graph obtained
by replacing each vertex of G by s vertices, and replacing each edge of G by a complete
bipartite graph Ks,s.

(a) Prove that for every s ⩾ 2, there exists some N = N(s) such that K6[N ] is
Ramsey for K3[s].

(b) Prove that N(s) > 2s for all s ⩾ 4.

⋆ (c) Prove the following generalization of part (a): For every graphH and every integer
s, if G is Ramsey for H, then there exists N such that G[N ] is Ramsey for H[s].

1Hint: Consider a random n-vertex graph where each edge is included with probability p = n−1/(2g).
2Hint: H = K3.
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⋆⋆ 6. Prove3 Theorem 17.3 from Theorem 17.5. You should in fact assume the following
strengthening of Theorem 17.5; in the same setup as in the theorem statement, we
have that

Pr(G is Ramsey for H in q colors)

{
⩾ 1− e−cpN2

if p ⩾ CN−1/m2(H),

⩽ e−cpN2
if p ⩽ cN−1/m2(H).

3Hint: Use Harris’s inequality/FKG inequality (and look it up if you’ve never heard of it).


