Exercises (recommended)

- 1. Prove, as claimed in class, that $\frac{2^n-1}{n} \leqslant \text{magic}(n) < 2^{n-1}$ for all integers n.
- 2. What does Turán's theorem mean in case r = 2? Is the theorem true in that case?
- 3. Find a general formula for $t_{r-1}(n)$, in terms of n, r, and $s := n \pmod{r-1}$.
- 4. Prove that $T_{r-1}(n)$ maximizes number of edges among all complete (r-1)-partite graphs (that is, that any complete (r-1)-partite graph with parts of sizes different from $\lfloor n/(r-1) \rfloor$ or $\lceil n/(r-1) \rceil$ has fewer edges than $T_{r-1}(n)$).
- 5. Provide an alternative proof of Turán's theorem by induction on n (with inductive steps of size 1) by deleting a vertex of minimum degree.
- 6. Let G be an n-vertex graph. Recall that the *independence number* of G, denoted $\alpha(G)$, is the size of the largest set of vertices in G containing no edge. Let Δ be the maximum degree of G, and let d be the average degree of G.
 - (a) Prove that $\chi(G) \leq \Delta(G) + 1$. Conclude that $\alpha(G) \geq n/(\Delta + 1)$.
 - (b) Using Turán's theorem, prove that $\alpha(G) \ge n/(d+1)$. Note that this is a (much!) stronger result.

Problems (optional)

- 1. In this problem, you will show that $\operatorname{magic}(n) = \Omega(2^n/\sqrt{n})$, following the argument of Erdős and Moser. This problem assumes some familiarity with probability, specifically Chebyshev's inequality.
 - (a) Let $a_1, \ldots, a_n \in [\![M]\!]$, and suppose that all subsets have distinct sums. Let ξ_1, \ldots, ξ_n be independent random variables, each taking on the values 0 or 1 with probability $\frac{1}{2}$, and let

$$X = \sum_{i=1}^{n} \xi_i a_i.$$

Prove that for every integer x, we have that $Pr(X = x) \leq 2^{-n}$.

- (b) Prove that $Var(X) \leq M^2 n/4$.
- (c) Let $\lambda > 1$ be some parameter. Using Chebyshev's inequality, plus the previous two parts, prove that

$$1 - \frac{1}{\lambda^2} \leqslant \Pr\left(|X - \mathbb{E}[X]| < \frac{\lambda M \sqrt{n}}{2}\right) \leqslant 2^{-n} \left(\lambda M \sqrt{n} + 1\right).$$

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

- (d) By picking λ appropriately, prove that $M = \Omega(2^n/\sqrt{n})$. Deduce that magic $(n) = \Omega(2^n/\sqrt{n})$. What is the best constant factor you can obtain by optimizing λ ?
- \div 2. (a) Let v_1, \ldots, v_n be vectors in \mathbb{R}^d with $||v_i|| \ge 1$ for all i, where $||\cdot||$ denotes the usual Euclidean length of a vector. Prove that there are at most $\lfloor \frac{n^2}{4} \rfloor$ pairs v_i, v_j with $||v_i + v_j|| < 1$.
 - \star (b) Fix a probability distribution on \mathbb{R}^d , and let X,Y be two independent random vectors drawn according to this distribution. Prove that

$$\Pr(\|X + Y\| \ge 1) \ge \frac{1}{2} \Pr(\|X\| \ge 1)^2.$$

- (c) Find a probability distribution on \mathbb{R}^d for which the above bound is tight.
- 3. A directed graph is a graph in which every edge is assigned one of the two possible directions. In a directed graph, we allow anti-parallel edges, i.e. $x \to y$ and $y \to x$ may both be edges in the same directed graph. An oriented graph is a directed graph without anti-parallel edges.
 - (a) A cyclic triangle is the oriented graph on 3 vertices with edges $x \to y, y \to z, z \to x$. What is the maximum number of edges in an *n*-vertex oriented graph without a cyclic triangle?
 - (b) A transitive triangle is the oriented graph on 3 vertices with edges $x \to y, y \to z, x \to z$. What is the maximum number of edges in an n-vertex oriented graph without a transitive triangle?
 - (c) What is the maximum number of edges in an *n*-vertex *directed* graph without a cyclic triangle?
 - (d) What is the maximum number of edges in an *n*-vertex *directed* graph without a transitive triangle?