Exercises (recommended)

- 1. (a) Prove that every 2-coloring of $E(K_N)$ contains a monochromatic N-vertex tree.
 - (b) Prove that for every $q \ge 2$, there exists some $\delta > 0$ such that the following holds. In any q-coloring of $E(K_N)$, one of the color classes contains all of the trees on δN vertices.
- 2. (a) Let G, H be graphs such that H is connected. Prove that

$$r(G, H) \ge (\chi(G) - 1)(|H| - 1) + 1,$$

where |H| denotes the number of vertices of H.

(b) Let $\sigma(G)$ denote the minimum number of vertices that can appear in a color class among all proper $\chi(G)$ -colorings of G. Strengthen the result above to

$$r(G, H) \ge (\chi(G) - 1)(|H| - 1) + \sigma(G).$$

- 3. Let ℓK_2 denote the matching graph, consisting of 2ℓ vertices and ℓ disjoint edges. Prove that $r(\ell K_2, K_k) = 2\ell + k 2$ for all integers $\ell \geqslant 1, k \geqslant 2$.
- 4. (a) Let $k, \ell \ge 2$. Prove that in any sequence of $(k-1)(\ell-1)+1$ distinct real numbers, there is an increasing subsequence of length k or a decreasing subsequence of length ℓ .
 - (b) Prove that the result in (a) is best possible, by finding a sequence of $(k-1)(\ell-1)$ distinct real numbers with no increasing subsequence of length k and no decreasing subsequence of length ℓ .
- 5. Prove that any sequence of (not necessarily distinct) real numbers of length $(k-1)^3+1$ contains a subsequence of length k that is strictly increasing, strictly decreasing, or constant. Prove that this bound is best possible.

Problems (optional)

- ♦ 1. (a) Prove that any infinite sequence of distinct real numbers contains an infinite
 subsequence that is (non-strictly) increasing or (non-strictly) decreasing.
 - (b) Prove the Bolzano–Weierstrass theorem: every bounded sequence of real numbers has a convergent subsequence.

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

- 2. Let $v_1, \ldots, v_N \in \mathbb{R}^d$ be vectors, and let $(v_i)_j$ denote the jth coordinate of v_i , for any $j \in [\![d]\!]$. Prove that if $N \geqslant (k-1)^{2^d} + 1$, then there is a *totally monotone* subsequence of length k; that is, there are $i_1 < \cdots < i_k$ such that for all $j \in [\![d]\!]$, we have $(v_{i_1})_j \geqslant \cdots \geqslant (v_{i_k})_j$ or $(v_{i_1})_j \leqslant \cdots \leqslant (v_{i_k})_j$.
- *3. Prove¹ that for every $\Delta \geq 2$, there exists $C_{\Delta} > 0$ such that the following holds for every n. If $N \geq C_{\Delta}n$, then in any two-coloring of $E(K_N)$, one of the color classes contains all n-vertex graphs of maximum degree at most Δ .
- \div 4. Prove that a graph has degeneracy at most d if and only if its vertices can be ordered as v_1, \ldots, v_n such that v_i has at most d neighbors preceding it in the order.

Remark: This alternative definition is very useful when trying to prove things like the Burr–Erdős conjecture, as it suggests a good order in which to try to embed the vertices one by one.

**5. (a) Formalize the proof sketch we saw in class, and prove that if H is an n-vertex graph with maximum degree Δ , then

$$r(H) \leqslant 2^{C\Delta(\log \Delta)^2} n$$
,

where C is an absolute constant.

 $\star\star$ (b) Improve this bound to

$$r(H) \leqslant 2^{C\Delta \log \Delta} n$$
.

?(c) Improve this bound to

$$r(H) \leqslant 2^{C\Delta} n$$
.

- \star 6. Let kK_3 denote the graph that is the disjoint union of k triangles. Prove² that for all $k \geq 2$, we have $r(kK_3) = 5k$.
 - 7. Prove that $r(C_4; q) \leq q^2 + q + 2$ for all $q \geq 2$.
 - 8. Erdős conjectured that if $\chi(H) = k$, then $r(H) \ge r(K_k)$.
 - (a) Prove this conjecture for $k \leq 3$.
 - **(b) Find a counterexample to this conjecture for k = 4.
- \div 9. Prove that if N is sufficiently large, then the following holds. Among any N points in the plane, there are three of them that determine an angle greater than 179°.
- ** 10. Construct³, for every $k \ge 4$, a collection of 2^{k-2} points in \mathbb{R}^2 , no three collinear, with no k of them in convex position. Deduce that $\mathrm{Kl}(k) \ge 2^{k-2} + 1$.

¹Hint: There is a black-box reduction to the statement of Theorem 15.12.

² Hint: Induct on k. The base case is super annoying, but the inductive step is nice.

³ Hint: A solution for k=5 is given on the next page; try to generalize it.