Exercises (recommended)

- 1. Let P_k denote the path graph with k vertices and k-1 edges.
 - (a) Prove that, for any $q \ge 2$, the star $K_{1,q+1}$ is q-color Ramsey for P_3 .
 - (b) Prove that the following graph, obtained by adding a leaf to each vertex of C_5 , is 2-color Ramsey for P_4 .

- (c) Give an example of a graph that is 2-color Ramsey for P_5 .
- 2. Prove that for every $n, q \ge 2$, there exists some N such that $K_{N,N}$ is q-color Ramsey for $K_{n,n}$.
- 3. A graph G is minimally Ramsey for H if G is Ramsey for H, but any proper subgraph $G' \subsetneq G$ is not Ramsey for H. H is called Ramsey finite if there are only a finite number of minimally Ramsey graphs for H, and Ramsey infinite otherwise.
 - (a) Let $G = K_3 * C_\ell$, where $\ell \ge 3$ is odd. Prove that G is minimally Ramsey for K_3 . Conclude that K_3 is Ramsey infinite.
 - (b) Determine the set of Ramsey minimal graphs for $K_{1,2}$.
 - \star (c) Prove that $K_{1,k}$ is Ramsey finite if and only if k is odd.
- 4. A graph G is called q-minimally Ramsey for a graph H if G is Ramsey for H in q colors, but any proper subgraph $G' \subsetneq G$ is not Ramsey for H in q colors.
 - (a) Prove that if G is q-minimally Ramsey for H, then every edge of G lies in at least q copies of H.
 - (b) Prove that if G is q-minimally Ramsey for H, then G has at least $q^{e(H)-1}$ copies of H
 - (c) Prove Proposition 17.9 from the notes.

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

[→] means that a problem is on a topic beyond the scope of the course.

Problems (optional)

- 1. (a) Prove that if G is Ramsey for K_k , then $\chi(G) \ge r(k)$.
 - (b) Prove that if G is Ramsey for K_k , then $e(G) \ge {r(k) \choose 2}$. That is, the complete graph $K_{r(k)}$ has the fewest number of edges among all graphs Ramsey for K_k .
 - (c) Find an example of a graph H for which there is a graph G which is Ramsey for it, but G has fewer edges than $\binom{r(H)}{2}$. That is, it was really important that we took $H = K_k$ above.
- ★2. Recall the definitions from exercise 3. In this problem, you'll prove that every tree which is not a star is Ramsey infinite.
 - (a) Prove that if T is an n-vertex tree, then every graph G of chromatic number at least $n^2 + 1$ is Ramsey for G.
 - (b) Prove that if T is a tree which is not a star, then for any forest F, F is not Ramsey for T.
 - \star (c) Prove¹ that for every $k, g \geq 3$, there is a graph G with chromatic number at least k and girth at least g (the *girth* of G is the length of the shortest cycle in G).
 - (d) Using the previous parts, prove that for every tree T which is not a star, and for every integer g, there is a graph G on at least g vertices which is minimally Ramsey for T. Conclude that T is Ramsey infinite.
 - 3. (a) Prove that for any $\ell \geqslant 4$, the cycle C_{ℓ} is a subgraph of a triangle tree (and hence Ramsey obligatory for K_3).
 - (b) Prove that K_4 is not a subgraph of any triangle tree.
- +4. (a) Prove that if G is Ramsey for H and H is Ramsey for F, then G is 4-color Ramsey for F.
 - (b) Find an example of G, H, F as above for which G is not 5-color Ramsey for F.
 - 5. Let G be a graph. Recall that the s-blowup of G, denoted G[s], is the graph obtained by replacing each vertex of G by s vertices, and replacing each edge of G by a complete bipartite graph $K_{s,s}$.
 - (a) Prove that for every $s \ge 2$, there exists some N = N(s) such that $K_6[N]$ is Ramsey for $K_3[s]$.
 - (b) Prove that $N(s) > 2^s$ for all $s \ge 4$.
 - \star (c) Prove the following generalization of part (a): For every graph H and every integer s, if G is Ramsey for H, then there exists N such that G[N] is Ramsey for H[s].

¹Hint: Consider a random n-vertex graph where each edge is included with probability $p = n^{-1/(2g)}$.

 $^{^{2}}Hint: H = K_{3}.$

→ ★★ 6. Prove³ Theorem 17.3 from Theorem 17.5. You should in fact assume the following strengthening of Theorem 17.5; in the same setup as in the theorem statement, we have that

$$\Pr(G \text{ is Ramsey for } H \text{ in } q \text{ colors}) \begin{cases} \geqslant 1 - e^{-cpN^2} & \text{if } p \geqslant CN^{-1/m_2(H)}, \\ \leqslant e^{-cpN^2} & \text{if } p \leqslant cN^{-1/m_2(H)}. \end{cases}$$

³Hint: Use Harris's inequality/FKG inequality (and look it up if you've never heard of it).