
PCMI 2025 Extremal graph theory and Ramsey theory Homework #2

Exercises (recommended)

1. Let H be a collection of graphs. We say that G is H-free if G has no copy of any
H ∈ H, and we define

ex(n,H) = max{e(G) : G is an n-vertex H-free graph}.

Assuming the Erdős–Stone–Simonovits theorem, prove that

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
,

where χ(H) := min{χ(H) : H ∈ H}.

2. By carefully analyzing the proof we saw in class, prove that ex(n,C4) ⩽
n(

√
4n−3+1)
4

.

Hint: Start with the case that G is d-regular, where d ⩾
√
4n−3+1

2
.

3. Today we proved that for any graph H,

ex(n,H) ⩾ tχ(H)−1(n), (∗)

which in particular implies the lower bound in the Erdős–Stone–Simonovits theorem.
In this problem, you’ll see examples of graphs where inequality (∗) is not best possible,
i.e. where the Turán graph Tχ(H)−1(n) has strictly fewer edges than ex(n,H).

(a) Let H be the graph

Verify that χ(H) = 3, so that inequality (∗) implies ex(n,H) ⩾ t2(n) = ⌊n2/4⌋.
(b) Add some edges to the Turán graph T2(n) to prove that ex(n,H) ⩾ ⌊n2

4
⌋+ ⌊n

4
⌋.

⋆ (c) Let O3 be the graph corresponding to the octahedron, namely the graph

Verify that χ(O3) = 3. Add edges to T2(n) to prove that

ex(n,O3) ⩾

⌊
n2

4

⌋
+ cn3/2,

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.



PCMI 2025 Extremal graph theory and Ramsey theory Homework #2

for some absolute constant c > 0.

Hint: You may assume the fact that I stated but didn’t prove in class, namely
that ex(n,C4) = Θ(n3/2) (i.e. that we have a matching lower bound to the upper
bound we proved).

(d) Why don’t these examples violate the Erdős–Stone–Simonovits theorem?

4. Provide an alternative proof of Turán’s theorem using a technique called Zykov sym-
metrization. Let G be a Kr-free n-vertex graph.

(a) Pick two non-adjacent vertices x, y ∈ V (G), and assume without loss of generality
that deg(x) ⩾ deg(y). Replace y with a clone of x, i.e. another vertex x′ with the
same neighborhood as x.

(b) Repeat step (a) over and over until doing so no longer changes the graph (and
prove that this must eventually happen).

(c) Prove that the resulting graph when you get stuck is complete (r − 1)-partite.

(d) Conclude that e(G) ⩽ tr−1(n), with equality if and only if G ∼= Tr−1(n).

Problems (optional)

⋆ 1. Suppose p1, . . . , pn ∈ R2 are n points in the plane. Prove that the number of unit
distances among them (i.e. pairs {pi, pj} with ∥pi − pj∥ = 1) is at most O(n3/2).

Can you prove a stronger upper bound, or find a matching lower bound?

⋆ 2. Let G be an n-vertex triangle-free graph.

(a) Suppose every vertex of G has degree greater than 2n/5. Prove that G is bipartite.

(b) Show that 2/5 is the optimal constant in this theorem, that is, that for every n,
there exists a non-bipartite triangle-free graph with minimum degree ⌊2n/5⌋.

⋆⋆ (c) Can you find generalizations of parts (a) and (b) for Kr-free graphs, r > 3?

3. In this problem you will prove Jensen’s inequality in full generality.

(a) A function f : R → R is called convex if for all x, y ∈ R and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ⩽ λf(x) + (1− λ)f(y).

Prove that if f is twice-differentiable and satisfies f ′′ ⩾ 0, then f is convex.

(b) Suppose f is convex. Let x1, . . . , xn ∈ R and λ1, . . . , λn ∈ [0, 1] with λ1+· · ·+λn =
1. Prove that

n∑
i=1

λif(xi) ⩾ f

(
n∑

i=1

λixi

)
by induction on n. This is the general form of Jensen’s inequality.

(c) Prove that f(x) =
(
x
r

)
is convex on the interval [r,∞) using part (a), and conclude

the version of Jensen’s inequality that I stated in class from part (b).


