Exercises (recommended)

1. Let \mathcal{H} be a collection of graphs. We say that G is \mathcal{H} -free if G has no copy of any $H \in \mathcal{H}$, and we define

$$ex(n, \mathcal{H}) = max\{e(G) : G \text{ is an } n\text{-vertex } \mathcal{H}\text{-free graph}\}.$$

Assuming the Erdős–Stone–Simonovits theorem, prove that

$$\operatorname{ex}(n,\mathcal{H}) = \left(1 - \frac{1}{\chi(\mathcal{H}) - 1} + o(1)\right) \binom{n}{2},$$

where $\chi(\mathcal{H}) := \min\{\chi(H) : H \in \mathcal{H}\}.$

- 2. By carefully analyzing the proof we saw in class, prove that $ex(n, C_4) \leq \frac{n(\sqrt{4n-3}+1)}{4}$. Hint: Start with the case that G is d-regular, where $d \geq \frac{\sqrt{4n-3}+1}{2}$.
- 3. Today we proved that for any graph H,

$$\operatorname{ex}(n,H) \geqslant t_{\chi(H)-1}(n),\tag{*}$$

which in particular implies the lower bound in the Erdős–Stone–Simonovits theorem. In this problem, you'll see examples of graphs where inequality (*) is not best possible, i.e. where the Turán graph $T_{\chi(H)-1}(n)$ has strictly fewer edges than $\mathrm{ex}(n,H)$.

(a) Let H be the graph

Verify that $\chi(H) = 3$, so that inequality (*) implies $ex(n, H) \ge t_2(n) = \lfloor n^2/4 \rfloor$.

- (b) Add some edges to the Turán graph $T_2(n)$ to prove that $ex(n, H) \ge \lfloor \frac{n^2}{4} \rfloor + \lfloor \frac{n}{4} \rfloor$.
- \star (c) Let O_3 be the graph corresponding to the octahedron, namely the graph

Verify that $\chi(O_3) = 3$. Add edges to $T_2(n)$ to prove that

$$ex(n, O_3) \geqslant \left| \frac{n^2}{4} \right| + cn^{3/2},$$

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

for some absolute constant c > 0.

Hint: You may assume the fact that I stated but didn't prove in class, namely that $ex(n, C_4) = \Theta(n^{3/2})$ (i.e. that we have a matching lower bound to the upper bound we proved).

- (d) Why don't these examples violate the Erdős–Stone–Simonovits theorem?
- 4. Provide an alternative proof of Turán's theorem using a technique called $Zykov\ sym-$ metrization. Let G be a K_r -free n-vertex graph.
 - (a) Pick two non-adjacent vertices $x, y \in V(G)$, and assume without loss of generality that $\deg(x) \geqslant \deg(y)$. Replace y with a *clone* of x, i.e. another vertex x' with the same neighborhood as x.
 - (b) Repeat step (a) over and over until doing so no longer changes the graph (and prove that this must eventually happen).
 - (c) Prove that the resulting graph when you get stuck is complete (r-1)-partite.
 - (d) Conclude that $e(G) \leq t_{r-1}(n)$, with equality if and only if $G \cong T_{r-1}(n)$.

Problems (optional)

 $+\star 1$. Suppose $p_1, \ldots, p_n \in \mathbb{R}^2$ are n points in the plane. Prove that the number of unit distances among them (i.e. pairs $\{p_i, p_j\}$ with $||p_i - p_j|| = 1$) is at most $O(n^{3/2})$.

Can you prove a stronger upper bound, or find a matching lower bound?

- $\star 2$. Let G be an n-vertex triangle-free graph.
 - (a) Suppose every vertex of G has degree greater than 2n/5. Prove that G is bipartite.
 - (b) Show that 2/5 is the optimal constant in this theorem, that is, that for every n, there exists a non-bipartite triangle-free graph with minimum degree $\lfloor 2n/5 \rfloor$.
 - $\star\star$ (c) Can you find generalizations of parts (a) and (b) for K_r -free graphs, r>3?
- - (a) A function $f: \mathbb{R} \to \mathbb{R}$ is called *convex* if for all $x, y \in \mathbb{R}$ and $\lambda \in [0, 1]$, we have $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$.

Prove that if f is twice-differentiable and satisfies $f'' \ge 0$, then f is convex.

(b) Suppose f is convex. Let $x_1, \ldots, x_n \in \mathbb{R}$ and $\lambda_1, \ldots, \lambda_n \in [0, 1]$ with $\lambda_1 + \cdots + \lambda_n = 1$. Prove that

$$\sum_{i=1}^{n} \lambda_i f(x_i) \geqslant f\left(\sum_{i=1}^{n} \lambda_i x_i\right)$$

by induction on n. This is the general form of Jensen's inequality.

(c) Prove that $f(x) = {x \choose r}$ is convex on the interval $[r, \infty)$ using part (a), and conclude the version of Jensen's inequality that I stated in class from part (b).