Exercises (recommended)

- 1. Recall that we stated a hypergraph version of the Kővári–Sós–Turán theorem, and proved it (at least in the case k=3) by induction on k. Try proving the k=2 case (i.e. the original Kővári–Sós–Turán theorem) via a similar inductive approach. What does the k=1 case even mean?
- 2. In class, we only proved the hypergraph Kővári–Sós–Turán theorem in only one special case, namely for k = 3 and $s_1 = s_2 = s_3$. Prove the general result, namely that

$$ex(n, K_{s_1, \dots, s_k}^{(k)}) \le O\left(n^{k - \frac{1}{s_1 s_2 \cdots s_{k-1}}}\right).$$

- 3. For a k-graph \mathcal{H} and an integer n, let $\pi_n(\mathcal{H}) := \exp(n,\mathcal{H})/\binom{n}{k}$.
 - \star (a) Prove that $\pi_n(\mathcal{H}) \geqslant \pi_{n+1}(\mathcal{H})$ for all n. Conclude that $\pi(\mathcal{H}) := \lim_{n \to \infty} \pi_n(\mathcal{H})$ is well-defined. $\pi(\mathcal{H})$ is called the *Turán density* of \mathcal{H} .
 - (b) Let H be a graph (i.e. k = 2). Find a formula for $\pi(H)$.
- 4. In this problem, you will prove a supersaturation result for complete bipartite graphs.
 - (a) Given two graphs H, G, a graph homomorphism from H to G is a function f: $V(H) \to V(G)$ with the property that if uv is an edge of H, then f(u)f(v) is an edge of G. Note that if f is injective, then this yields a copy of H in G. If f is not injective, we say this is a pseudocopy.
 - Prove that if v(G) = n, then there are at most $n^{v(H)}$ homomorphisms from H to G, and at most $\binom{v(H)}{2}n^{v(H)-1}$ pseudocopies of H in G.
 - (b) Suppose G has n vertices and $pn^2/2$ edges (we say that G has edge density p). Prove¹ that there are at least $p^t n^{1+t}$ homomorphisms from $K_{1,t}$ to G.
 - \star (c) Suppose G has n vertices and $pn^2/2$ edges (we say that G has edge density p). Prove² that there are at least $p^{st}n^{s+t}$ homomorphisms from $K_{s,t}$ to G.
 - (d) Deduce from parts (a) and (b) the following supersaturation result. For every $\varepsilon > 0$ and integers s, t, there exists a $\delta > 0$ so that the following holds for sufficiently large n. If G has n vertices and $\varepsilon \binom{n}{2}$ edges, then G has at least $\delta \binom{n}{s+t}$ copies of $K_{s,t}$.
 - \star (e) Can you prove analogous results for k-uniform hypergraphs?

^{*} means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

¹*Hint:* Jensen's inequality.

²Hint: Use Jensen's inequality again!

Problems (optional)

- $\star 1$. Recall that $K_r^{(k)}$ denotes the complete k-uniform hypergraph with r vertices.
 - (a) Prove³ that $ex(n, K_4^{(3)}) \ge (\frac{5}{9} + o(1)) \binom{n}{3}$.
 - *(b) Prove that $ex(n, K_r^{(3)}) \ge (1 (\frac{2}{r-1})^2 + o(1)) {n \choose 3}$ for all $r \ge 4$.
 - (c) Prove that

$$\operatorname{ex}(n, K_r^{(k)}) \leqslant \left(1 - \frac{1}{\binom{r}{k}} + o(1)\right) \binom{n}{k}.$$

**(d) Prove the best known upper bound on $ex(n, K_r^{(k)})$, namely

$$ex(n, K_r^{(k)}) \le \left(1 - \frac{1}{\binom{r-1}{k-1}} + o(1)\right) \binom{n}{k}.$$

- ?(e) Improve any of the bounds above.
- 2. In this problem, you will study the extremal number of the graph of the 3-dimensional cube, denoted Q_3 .
 - (a) Using Exercise 4, prove that if G is an n-vertex graph with $e(G) \ge \Omega(n^{3/2})$, then G has at least $\Omega(p^4n^4)$ copies of C_4 , where $p = 2e(G)/n^2$ is the edge density of G.
 - (b) Define the C_4 -graph $C_4(G)$ of G to be the following graph. Its vertices are the edges of G, and two such are adjacent in $C_4(G)$ if they are the opposite sides of a C_4 in G. Relate copies of C_4 in $C_4(G)$ to copies of C_3 in G. Be careful! Not every C_4 in $C_4(G)$ corresponds to a C_3 in C_4 ; figure out why not.
 - (c) Prove that $ex(n, Q_3) \leq O(n^{8/5})$.
 - ? (d) Prove a matching lower bound, $ex(n, Q_3) \ge \Omega(n^{8/5})$.
- 3. In this problem, you will prove a slightly weaker version of Turán's theorem using a technique called *Lagrangians* (or the *Motzkin–Straus inequality*).
 - (a) Let G be a graph with vertex set $\{v_1, \ldots, v_n\}$. Define the graph polynomial

$$p_G(x_1, \dots, x_n) = \sum_{v_i v_j \in E(G)} x_i x_j$$

and define the Lagrangian $\lambda(G)$ of G to be the maximum of $p_G(x_1, \ldots, x_n)$ over all vectors (x_1, \ldots, x_n) satisfying $x_i \ge 0$ for all i, and $\sum_{i=1}^n x_i = 1$. Prove that this maximum is well-defined.

³Hint: Split the vertex set into three equal-sized parts.

- (b) Prove that $\lambda(G) \ge e(G)/n^2$.
- \star (c) Let $x = (x_1, \ldots, x_n)$ be a point achieving the maximum in $\lambda(G)$, i.e. a vector with $p_G(x_1, \ldots, x_n) = \lambda(G)$. Moreover, assume that the number of non-zero entries in x is minimized among all such maximizers. Prove that the set of non-zero coordinates in x forms a clique in G.
 - (d) Deduce from the previous part that if G is K_r -free, then $\lambda(G) \leqslant \frac{1}{2}(1 \frac{1}{r-1})$.
 - (e) Conclude that if G is an n-vertex K_r -free graph, then $e(G) \leq (1 \frac{1}{r-1})\frac{n^2}{2}$. Note that this is slightly weaker than the bound in Turán's theorem, but matches it if r-1 divides n.
- **4. In class we proved the following sampling lemma: If G is an n-vertex graph with $e(G) \ge \beta\binom{n}{2}$, then the number of m-sets of vertices M with $e(M) \ge \alpha\binom{m}{2}$ is at least $(\beta \alpha)\binom{n}{m}$. In fact, the proof showed that we could replace $\beta \alpha$ above with $(\beta \alpha)/(1 \alpha)$.

Is this result best possible, or close to best possible? That is, is it true that for arbitrarily large n, there exists some n-vertex graph with $e(G) \approx \beta\binom{n}{2}$ and roughly $\frac{\beta-\alpha}{1-\alpha}\binom{n}{m}$ m-sets M with $e(M) \geqslant \alpha\binom{n}{m}$?

For concreteness, feel free to fix your favorite values of α, β , e.g. $\alpha = 1/3$ and $\beta = 2/3$. So can you find a sequence of graphs with around $\frac{2}{3}\binom{n}{2}$ edges so that roughly $\frac{1}{2}\binom{n}{m}$ of the m-sets M satisfy $e(M) \geqslant \frac{1}{3}\binom{m}{2}$?