
PCMI 2025 Extremal graph theory and Ramsey theory Homework #4

Exercises (recommended)

1. Recall that we stated a hypergraph version of the Kővári–Sós–Turán theorem, and
proved it (at least in the case k = 3) by induction on k. Try proving the k = 2 case
(i.e. the original Kővári–Sós–Turán theorem) via a similar inductive approach. What
does the k = 1 case even mean?

2. In class, we only proved the hypergraph Kővári–Sós–Turán theorem in only one special
case, namely for k = 3 and s1 = s2 = s3. Prove the general result, namely that

ex(n,K(k)
s1,...,sk

) ⩽ O
(
n
k− 1

s1s2···sk−1

)
.

3. For a k-graph H and an integer n, let πn(H) := ex(n,H)/
(
n
k

)
.

⋆ (a) Prove that πn(H) ⩾ πn+1(H) for all n. Conclude that π(H) := limn→∞ πn(H) is
well-defined. π(H) is called the Turán density of H.

(b) Let H be a graph (i.e. k = 2). Find a formula for π(H).

4. In this problem, you will prove a supersaturation result for complete bipartite graphs.

(a) Given two graphs H,G, a graph homomorphism from H to G is a function f :
V (H) → V (G) with the property that if uv is an edge of H, then f(u)f(v) is an
edge of G. Note that if f is injective, then this yields a copy of H in G. If f is
not injective, we say this is a pseudocopy.

Prove that if v(G) = n, then there are at most nv(H) homomorphisms from H to
G, and at most

(
v(H)
2

)
nv(H)−1 pseudocopies of H in G.

(b) Suppose G has n vertices and pn2/2 edges (we say that G has edge density p).
Prove1 that there are at least ptn1+t homomorphisms from K1,t to G.

⋆ (c) Suppose G has n vertices and pn2/2 edges (we say that G has edge density p).
Prove2 that there are at least pstns+t homomorphisms from Ks,t to G.

(d) Deduce from parts (a) and (b) the following supersaturation result. For every
ε > 0 and integers s, t, there exists a δ > 0 so that the following holds for
sufficiently large n. If G has n vertices and ε

(
n
2

)
edges, then G has at least δ

(
n

s+t

)
copies of Ks,t.

⋆ (e) Can you prove analogous results for k-uniform hypergraphs?

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
1Hint: Jensen’s inequality.
2Hint: Use Jensen’s inequality again!
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Problems (optional)

⋆ 1. Recall that K
(k)
r denotes the complete k-uniform hypergraph with r vertices.

(a) Prove3 that ex(n,K
(3)
4 ) ⩾ (5

9
+ o(1))

(
n
3

)
.

⋆ (b) Prove that ex(n,K
(3)
r ) ⩾ (1−

(
2

r−1

)2
+ o(1))

(
n
3

)
for all r ⩾ 4.

(c) Prove that

ex(n,K(k)
r ) ⩽

(
1− 1(

r
k

) + o(1)

)(
n

k

)
.

⋆⋆ (d) Prove the best known upper bound on ex(n,K
(k)
r ), namely

ex(n,K(k)
r ) ⩽

(
1− 1(

r−1
k−1

) + o(1)

)(
n

k

)
.

? (e) Improve any of the bounds above.

2. In this problem, you will study the extremal number of the graph of the 3-dimensional
cube, denoted Q3.

(a) Using Exercise 4, prove that if G is an n-vertex graph with e(G) ⩾ Ω(n3/2), then
G has at least Ω(p4n4) copies of C4, where p = 2e(G)/n2 is the edge density of G.

(b) Define the C4-graph C4(G) of G to be the following graph. Its vertices are the
edges of G, and two such are adjacent in C4(G) if they are the opposite sides of
a C4 in G. Relate copies of C4 in C4(G) to copies of Q3 in G.
Be careful! Not every C4 in C4(G) corresponds to a Q3 in G; figure out why not.

(c) Prove that ex(n,Q3) ⩽ O(n8/5).

? (d) Prove a matching lower bound, ex(n,Q3) ⩾ Ω(n8/5).

3. In this problem, you will prove a slightly weaker version of Turán’s theorem using a
technique called Lagrangians (or the Motzkin–Straus inequality).

(a) Let G be a graph with vertex set {v1, . . . , vn}. Define the graph polynomial

pG(x1, . . . , xn) =
∑

vivj∈E(G)

xixj

and define the Lagrangian λ(G) of G to be the maximum of pG(x1, . . . , xn) over
all vectors (x1, . . . , xn) satisfying xi ⩾ 0 for all i, and

∑n
i=1 xi = 1. Prove that

this maximum is well-defined.

3Hint: Split the vertex set into three equal-sized parts.



PCMI 2025 Extremal graph theory and Ramsey theory Homework #4

(b) Prove that λ(G) ⩾ e(G)/n2.

⋆ (c) Let x = (x1, . . . , xn) be a point achieving the maximum in λ(G), i.e. a vector with
pG(x1, . . . , xn) = λ(G). Moreover, assume that the number of non-zero entries
in x is minimized among all such maximizers. Prove that the set of non-zero
coordinates in x forms a clique in G.

(d) Deduce from the previous part that if G is Kr-free, then λ(G) ⩽ 1
2
(1− 1

r−1
).

(e) Conclude that if G is an n-vertex Kr-free graph, then e(G) ⩽ (1− 1
r−1

)n
2

2
. Note

that this is slightly weaker than the bound in Turán’s theorem, but matches it if
r − 1 divides n.

⋆⋆ 4. In class we proved the following sampling lemma: If G is an n-vertex graph with
e(G) ⩾ β

(
n
2

)
, then the number of m-sets of vertices M with e(M) ⩾ α

(
m
2

)
is at

least (β − α)
(
n
m

)
. In fact, the proof showed that we could replace β − α above with

(β − α)/(1− α).

Is this result best possible, or close to best possible? That is, is it true that for
arbitrarily large n, there exists some n-vertex graph with e(G) ≈ β

(
n
2

)
and roughly

β−α
1−α

(
n
m

)
m-sets M with e(M) ⩾ α

(
n
m

)
?

For concreteness, feel free to fix your favorite values of α, β, e.g. α = 1/3 and β = 2/3.
So can you find a sequence of graphs with around 2

3

(
n
2

)
edges so that roughly 1

2

(
n
m

)
of

the m-sets M satisfy e(M) ⩾ 1
3

(
m
2

)
?


