Exercises (recommended)

*1. Recall that the *Turán density* of a k-graph \mathcal{H} is $\pi(\mathcal{H}) := \lim_{n \to \infty} \exp(n, \mathcal{H}) / \binom{n}{k}$. Prove the following general form of the supersaturation theorem.

For every k-graph \mathcal{H} and every $\varepsilon > 0$, there exists some $\delta > 0$ so that the following holds for all sufficiently large n. If \mathcal{G} is an n-vertex k-graph with

$$e(\mathfrak{G}) \geqslant (\pi(\mathfrak{H}) + \varepsilon) \binom{n}{k}$$

then \mathcal{G} has at least $\delta\binom{n}{v(\mathcal{H})}$ copies of \mathcal{H} .

- 2. For a graph H and an integer s, we denote by H[s] the s-blowup of H. This is the graph obtained by replacing every vertex of H by an independent set of size s, and replacing every edge of s by a copy of $K_{s,s}$. Similarly, if \mathcal{H} is a k-graph, then $\mathcal{H}[s]$ is the k-graph obtained by replacing every vertex by s vertices, and replacing every edge by a copy of $K_{s,\ldots,s}^{(k)}$.
 - (a) Check that if $H = K_k$, our two definitions of $K_k[s]$ coincide.
 - (b) Deduce from the previous problem the following general form of the Erdős–Stone theorem.

For every k-graph \mathcal{H} and every positive integer s, we have $\pi(\mathcal{H}[s]) = \pi(\mathcal{H})$.

- 3. (a) Let \mathcal{H}, \mathcal{G} be k-graphs. A homomorphism $\mathcal{H} \to \mathcal{G}$ is a function $V(\mathcal{H}) \to V(\mathcal{G})$ which maps hyperedges to hyperedges. We say that \mathcal{G} is \mathcal{H} -hom-free if there is no homomorphism $\mathcal{H} \to \mathcal{G}$.
 - Let $\exp_{\text{hom}}(n, \mathcal{H})$ denote the maximum number of hyperedges in an \mathcal{H} -hom-free n-vertex k-graph. Prove that $\exp_{\text{hom}}(n, \mathcal{H}) \leq \exp(n, \mathcal{H})$.
 - (b) Now let H be a graph (i.e. let k=2). Determine $\exp(n,H)$.
 - (c) Prove that the limit $\pi_{\text{hom}}(\mathcal{H}) := \lim_{n \to \infty} \exp(n, \mathcal{H}) / \binom{n}{k}$ exists.
 - (d) Prove that $\pi_{\text{hom}}(\mathcal{H}) = \pi(\mathcal{H})$.
- 4. Prove that if \mathcal{H} is a k-graph, then either $\pi(\mathcal{H}) = 0$ or $\pi(\mathcal{H}) \ge k!/k^k$.

Problems (optional)

1. Let G be a graph, and recall that $\alpha(G)$ denotes its independence number.

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

[→] means that a problem is on a topic beyond the scope of the course.

(a) By picking a random permutation of V(G), prove that

$$\alpha(G) \geqslant \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}.$$

(b) Apply Jensen's inequality to conclude that

$$\alpha(G) \geqslant \frac{n}{d+1},$$

where d is the average degree of G. Recall that you already proved this result, as a consequence of Turán's theorem.

- \star (c) By more carefully analyzing the proof above, give an alternative proof of Turán's theorem.
- \star 2. (a) By more carefully analyzing the proof we saw in class, prove the following strengthening of the Erdős–Stone–Simonovits theorem. For every graph H, there exists some $\delta > 0$ such that

$$\operatorname{ex}(n,H) \leqslant t_{\chi(H)-1}(n) + O(n^{2-\delta}).$$

(b) Prove the following converse: for every $\delta > 0$ and every $r \ge 2$, there exists a graph H with $\chi(H) = r$ and

$$\operatorname{ex}(n,H) \geqslant t_{r-1}(n) + \Omega(n^{2-\delta}).$$

- ** 3. In this problem, you will prove the following amazing strengthening of the Kővári–Sós–Turán theorem: if H is a bipartite graph and every vertex on one side has degree at most s, then $ex(n, H) = O(n^{2-1/s})$.
 - **(a) Prove¹ the following lemma. For all positive integers a, b, there exists some constant C > 0 such that the following holds. Let G be an n-vertex graph with average degree $d \ge C n^{1-1/s}$. Then there exists $U \subseteq V(G)$ with $|U| \ge a$ so that every s-tuple of vertices in U has at least a + b common neighbors.
 - (b) Using the lemma, prove that $ex(n, H) \leq O(n^{2-1/s})$ if every vertex on one side of H has degree at most s.

¹Hint: Pick x_1, \ldots, x_s to be uniformly random vertices of G, chosen with repetition, and let X be the common neighborhood of x_1, \ldots, x_s . The desired U can be obtained by deleting some vertices from X, with positive probability.