
PCMI 2025 Extremal graph theory and Ramsey theory Homework #5

Exercises (recommended)

⋆ 1. Recall that the Turán density of a k-graph H is π(H) := limn→∞ ex(n,H)/
(
n
k

)
. Prove

the following general form of the supersaturation theorem.

For every k-graph H and every ε > 0, there exists some δ > 0 so that the following
holds for all sufficiently large n. If G is an n-vertex k-graph with

e(G) ⩾ (π(H) + ε)

(
n

k

)
then G has at least δ

(
n

v(H)

)
copies of H.

2. For a graph H and an integer s, we denote by H[s] the s-blowup of H. This is the
graph obtained by replacing every vertex of H by an independent set of size s, and
replacing every edge of s by a copy of Ks,s. Similarly, if H is a k-graph, then H[s] is
the k-graph obtained by replacing every vertex by s vertices, and replacing every edge
by a copy of K

(k)
s,...,s.

(a) Check that if H = Kk, our two definitions of Kk[s] coincide.

(b) Deduce from the previous problem the following general form of the Erdős–Stone
theorem.

For every k-graph H and every positive integer s, we have π(H[s]) = π(H).

3. (a) Let H,G be k-graphs. A homomorphism H → G is a function V (H) → V (G)
which maps hyperedges to hyperedges. We say that G is H-hom-free if there is
no homomorphism H → G.

Let exhom(n,H) denote the maximum number of hyperedges in an H-hom-free
n-vertex k-graph. Prove that exhom(n,H) ⩽ ex(n,H).

(b) Now let H be a graph (i.e. let k = 2). Determine exhom(n,H).

(c) Prove that the limit πhom(H) := limn→∞ exhom(n,H)/
(
n
k

)
exists.

(d) Prove that πhom(H) = π(H).

4. Prove that if H is a k-graph, then either π(H) = 0 or π(H) ⩾ k!/kk.

Problems (optional)

1. Let G be a graph, and recall that α(G) denotes its independence number.

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.
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(a) By picking a random permutation of V (G), prove that

α(G) ⩾
∑

v∈V (G)

1

deg(v) + 1
.

(b) Apply Jensen’s inequality to conclude that

α(G) ⩾
n

d+ 1
,

where d is the average degree of G. Recall that you already proved this result, as
a consequence of Turán’s theorem.

⋆ (c) By more carefully analyzing the proof above, give an alternative proof of Turán’s
theorem.

⋆ 2. (a) By more carefully analyzing the proof we saw in class, prove the following strength-
ening of the Erdős–Stone–Simonovits theorem. For every graph H, there exists
some δ > 0 such that

ex(n,H) ⩽ tχ(H)−1(n) +O(n2−δ).

(b) Prove the following converse: for every δ > 0 and every r ⩾ 2, there exists a
graph H with χ(H) = r and

ex(n,H) ⩾ tr−1(n) + Ω(n2−δ).

⋆⋆ 3. In this problem, you will prove the following amazing strengthening of the Kővári–
Sós–Turán theorem: if H is a bipartite graph and every vertex on one side has degree
at most s, then ex(n,H) = O(n2−1/s).

⋆⋆ (a) Prove1 the following lemma. For all positive integers a, b, there exists some con-
stant C > 0 such that the following holds. Let G be an n-vertex graph with
average degree d ⩾ Cn1−1/s. Then there exists U ⊆ V (G) with |U | ⩾ a so that
every s-tuple of vertices in U has at least a+ b common neighbors.

(b) Using the lemma, prove that ex(n,H) ⩽ O(n2−1/s) if every vertex on one side of
H has degree at most s.

1Hint: Pick x1, . . . , xs to be uniformly random vertices of G, chosen with repetition, and let X be the
common neighborhood of x1, . . . , xs. The desired U can be obtained by deleting some vertices from X, with
positive probability.


