Exercises (recommended)

- 1. (a) Prove that r(3,3) = 6.
 - (b) Prove that r(3, 4) = 9.
 - (c) Prove that $r(4,4) \leq 18$.
 - \star (d) Prove that r(4,4) = 18.
 - ? (e) The best known bounds on r(5,5) are $43 \le r(5,5) \le 46$. Can you improve either of these bounds?
 - \star (f) Prove that r(3;3) = 17 (recall that r(3;3) is the 3-color Ramsey number).
- 2. (a) Prove that

$$r(3;q) \le 1 + q! \left(1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{q!}\right).$$

- (b) Conclude that $r(3;q) \leq [e \cdot q]$, where e is Euler's constant.
- 3. (a) Using the fact that $r(k) < 4^k$, prove that $r(k;q) < 4^{4^{4^{*}}}$, where the number of 4s is $\lceil \log_2 q \rceil$.
 - (b) Prove Theorem 13.5 in the notes. In particular, derive the bound $r(k;q) < q^{qk}$, which is much stronger than that in part (a).
- 4. Prove the following supersaturation version of Ramsey's theorem, which is usually called a *Ramsey multiplicity* result.

For all positive integers k, q, there exists some $\delta > 0$ so that the following holds for every sufficiently large N. No matter how we q-color the edges of K_N , there are at least $\delta\binom{N}{k}$ monochromatic copies of K_k .

Problems (optional)

- \div 1. (a) Prove that for any positive integer q, there exists a positive integer N=N(q) such that the following holds. For any q-coloring of $[\![N]\!]$, there exist $x,y,z\in [\![N]\!]$ such that x,y,z,x+y,y+z,x+y+z all receive the same color. (Note that x+z is omitted!)
 - (b) Generalize the previous part as follows. Prove that for all positive integers q, t, there exists a positive integer N = N(q, t) such that the following holds. For any q-coloring of $[\![N]\!]$, there exist $x_1, \ldots, x_t \in [\![N]\!]$ such that the sums $\sum_{i=a}^b x_i$ all receive the same color, for all non-empty $1 \leq a \leq b \leq t$.

 $[\]star$ means that a problem is hard.

[?] means that a problem is open.

 $[\]Leftrightarrow$ means that a problem is on a topic beyond the scope of the course.

- \star (c) Prove that in part (b), one can moreover ensure that the numbers x_1, \ldots, x_t are all distinct.
- 2. Let H be a graph. The 2-colored extremal number of H, denoted $\exp(n, H)$, is defined to be the maximum number of edges in an n-vertex graph G for which there exists a 2-coloring of E(G) containing no monochromatic copy of H.

Find an exact formula for $ex_2(n, K_k)$.

*3. Let $f, g_1, \ldots, g_q : \mathbb{R} \to \mathbb{R}$ be functions. Suppose that there exist $\varepsilon, \delta > 0$ such that whenever $x, y \in \mathbb{R}$ satisfy $f(x) - f(y) \ge \varepsilon$, then

$$\max_{i \in \llbracket q \rrbracket} (g_i(x) - g_i(y)) \geqslant \delta.$$

Prove that if g_1, \ldots, g_q are all bounded, then f is bounded as well.

 $\div \star 4$. In class, we proved that $r(k) < 4^k$ using the Erdős–Szekeres argument. Ramsey's original proof used a *different* argument, which yielded the worse bound $r(k) \leq k!$. Find a natural argument yielding this bound. (That is, don't simply quote or rederive the Erdős–Szekeres argument!)