Exercises (recommended)

1. Prove that the 3-uniform Ramsey number satisfies

$$r_3(k) \geqslant 2^{ck^2}$$

for some absolute constant c > 0.

- 2. In a red/blue coloring of $E(K_N)$, denote by $\deg_R(v)$, $\deg_B(v)$ the red and blue degrees, respectively, of a vertex v.
 - (a) Prove that the number of monochromatic triangles in such a coloring is equal to

$$\frac{1}{2} \left(\sum_{v \in V(K_N)} \left[\binom{\deg_R(v)}{2} + \binom{\deg_B(v)}{2} \right] - \binom{N}{3} \right).$$

- (b) Prove that every 2-coloring of $E(K_6)$ contains at least two monochromatic triangles, and in particular obtain a new proof that $r(3) \leq 6$.
- \star (c) Prove that every 2-coloring of $E(K_N)$ contains at least $\frac{N(N-1)(N-5)}{24}$ monochromatic triangles.
- 3. On yesterday's homework, you proved a supersaturation version of Ramsey's theorem. In the 2-color case, it states that for every $k \ge 3$, there is some $\delta > 0$ such that for every sufficiently large N, every 2-coloring of $E(K_N)$ contains at least $\delta\binom{N}{k}$ monochromatic copies of K_k .

The Ramsey multiplicity constant of K_k , denoted $c(K_k)$, is defined to be the supremum of all δ for which this statement is true.

- (a) Prove that $c(K_k) \ge {r(k) \choose k}^{-1}$. Conclude that $c(K_k) \ge 4^{-k^2}$.
- (b) Prove that $c(K_k) \leq 2^{1-\binom{k}{2}}$.
- (c) Prove¹ that $c(K_3) = \frac{1}{4}$.
- 4. For every $N \ge 3$, give N points in \mathbb{R}^2 with no three in convex position. This shows that the assumption in Theorem 14.5 that no three points are collinear is necessary.
- 5. Prove that for every $k \ge 3$, there exists some N so that the following holds. Among any N points in the plane, there are either k points lying on a line, or k points in convex position.

¹*Hint:* Use the previous exercise.

- 6. Let $N = r_3(k)$, and let p_1, \ldots, p_N be points in \mathbb{R}^2 with no three collinear. Define $\chi : E(K_N^{(3)}) \to \{\text{even}, \text{odd}\}$ by
 - $\chi(\{i,j,\ell\}) := \begin{cases} \text{even} & \text{if there are an even number of points } p_m \text{ in the triangle } p_i p_j p_\ell, \\ \text{odd} & \text{otherwise.} \end{cases}$

Prove that a monochromatic $K_k^{(3)}$ under χ corresponds to k points in convex position. Conclude that $Kl(k) \leq r_3(k)$, and in particular obtain a new proof of Theorem 14.5.

Problems (optional)

1. (a) By more carefully analyzing the proof of Theorem 13.7 in the notes, prove that

$$r(k) > \left(\frac{1}{e\sqrt{2}} - o(1)\right) k2^{k/2}.$$

- \star (b) Improve this bound by a constant factor.
- ?(c) Improve this bound by a super-constant factor.
- $\star 2$. Prove that Kl(5) = 9.
 - 3. Given two graphs G, H, their lexicographic product $G \cdot H$ is defined as follows. Its vertex set is $V(G \cdot H) = V(G) \times V(H)$, and two vertices (a, b), (c, d) are adjacent if either $ac \in E(G)$ or a = c and $bd \in E(H)$.
 - (a) Compute the size of the largest clique and the largest independent set in $G \cdot H$.
 - (b) Prove that the Ramsey number r(k) satisfies $r(k+1) > k^{\log_2(5)}$ for all k that are powers of 2.
 - [Note that this already disproves Turán's belief that r(k) may grow only quadratically as a function of k.]
 - ***(c) Using the same approach, find an explicit construction of a coloring witnessing that r(k) grows super-polynomially in k. In other words, for any C > 0 and any sufficiently large k, find an explicit 2-coloring of $E(K_N)$, where $N = k^C$, with no monochromatic clique of order k.
 - ? (d) Can you use such an approach to resolve Open problem 13.8?
 - 4. A collection of points in \mathbb{R}^d is said to be *in general position* if no d+1 of them lie on a (d-1)-dimensional hyperplane. (So in two dimensions, this says that no three are collinear, in three dimensions it says that no four are coplanar, etc.)
 - (a) Prove that among any d+3 points in \mathbb{R}^d which are in general position, there are d+2 in convex position.

- (b) Given $k \ge d+2$, let $N = r_{d+2}(d+3,k)$. Prove that among any N points in \mathbb{R}^d in general position, there are k in convex position.
- (c) Prove that among any Kl(k) points in \mathbb{R}^d , no three collinear, there are k in convex position.

[This is stronger than the result in (b) in two ways: the bound is independent of d, and the assumption is weakened from general position to no three collinear.]

- \div 5. A *subdivision* of a graph H is obtained from H by replacing every edge of H by a path of some length (not necessarily the same length for all edges, and paths of length 1 are allowed, so that H is a subdivision of itself). A famous conjecture of Hajós asserts that if $\chi(G) \ge k$, then G contains a subdivision of K_k as a subgraph.
 - (a) Prove that Hajós' conjecture is true for $k \leq 3$.
 - \star (b) Prove that Hajós' conjecture is true for k=4.
 - (c) Prove that Hajós' conjecture for k=5 implies the four-color theorem. Conclude that it is probably pretty hard to prove the k=5 case.
 - (d) Prove that if Hajós' conjecture is true, then $r(k) \leq 3k^3$. Conclude that Hajós' conjecture is false.
- → 6. A classical fact in graph theory is that there exist triangle-free graphs of arbitrarily high chromatic number. In this exercise, you will see a non-standard Ramsey-theoretic proof.

For an integer N, let S_N be a graph with vertex set $\binom{[\![N]\!]}{2}$, where we think of the vertices of S_N as ordered pairs (a,b) with $1 \le a < b \le N$. The edges of S_N consist of all pairs of the form ((a,b),(b,c)) for a < b < c.

- (a) Prove that S_N is triangle-free.
- (b) Prove that $\chi(S_N) \to \infty$ as $N \to \infty$.
- \div 7. (a) Let $K_{\mathbb{N}}$ denote the complete graph whose vertex set is \mathbb{N} . Prove the "infinite Ramsey theorem": for any positive integer q, and any q-coloring of $K_{\mathbb{N}}$, there is an infinite monochromatic clique.
 - (b) State and prove the infinite hypergraph Ramsey theorem.
- + 8. Prove that there is an infinite set $S \subseteq \mathbb{N}$ such that for every $a, b \in S$, the number a + b has an even number of prime factors (counted without multiplicity).