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1 What is extremal combinatorics?

We begin with a magic trick. I ask the audience to give me ten integers between 1 and 100,
and then I find two disjoint subsets of this set of integers which have the same sum. The
following theorem guarantees that I can always do this. Here, and throughout the course,
we’ll denote by JnK the range {1, 2, . . . , n}.

Theorem 1.1. Let a1, . . . , a10 be integers in J100K. Then there exist two disjoint, non-empty
sets S, T ⊆ J10K such that ∑

i∈S

ai =
∑
j∈T

aj.

Proof. For every non-empty set S ⊆ J10K, let us denote by aS the number aS :=
∑

i∈S ai.
Note that there are 210 − 1 = 1023 non-empty subsets of J10K, so we have defined 1023
numbers. Moreover, for every set S, we have that

aS =
∑
i∈S

ai ⩽ |S| ·max{a1, . . . , a10} ⩽ 10 · 100 = 1000.

That is, each of the numbers aS lies in the interval [1, 1000]. As we have defined 1023
numbers, by the pigeonhole principle, two of them must be equal. That is, there must exist
S ̸= T such that aS = aT .

We are almost done, except that S and T need not be disjoint, but this can be easily
remedied: we define S ′ := S \ T = S \ (S ∩ T ), and similarly T ′ := T \ S. Then S and T are
disjoint. Moreover, we have that

aS′ =
∑
i∈S′

ai =
∑
i∈S

ai −
∑

i∈S∩T

ai = aS − aS∩T ,

and similarly aT ′ = aT − aS∩T , so aS′ = aT ′ . Finally, these two sets are non-empty: this is
because each of S, T was non-empty, and we cannot have S ⊆ T or T ⊆ S, as this would
contradict that they have the same sum. Therefore even when we remove S ∩ T from each
of them, they remain non-empty.

Note that the proof above shows that in fact, I could have allowed the audience to pick
ten numbers in the range J102K: in that case, each sum aS would be at most 1020, and
I could still apply the pigeonhole principle. This leads to a natural generalization of this
question. Suppose I want to let my audience pick n numbers from some range JMK, while
still ensuring that no matter what they pick, I can find two disjoint subsets with equal sum.
How large can I take M while ensuring that this is possible? Formally, we can define

magic(n) := max

{
M ∈ N | for all a1, . . . , an ∈ JMK,

there are disjoint S, T ⊆ JnK with
∑
i∈S

ai =
∑
j∈T

aj

}
.
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Note that proving a lower bound on magic(n) boils down to proving a variant of Theorem 1.1.
Indeed, to prove a lower bound on magic(n), it suffices to exhibit some M that works, which
implies that magic(n) ⩾ M . Thus, for example, Theorem 1.1 states that magic(10) ⩾ 100,
and as pointed out above, the proof actually gives magic(10) ⩾ 102. By following the proof
of Theorem 1.1, one can more generally show that

magic(n) ⩾
2n − 1

n
.

What about proving upper bounds on magic(n)? This, in turn, boils down to finding a clever
set of integers a1, . . . , an such that all their subset sums are distinct. If we can find such
integers a1, . . . , an ∈ JMK, we have proved that M does not work for the magic trick, i.e.
that magic(n) < M . A natural idea for how to pick such numbers a1, . . . , an is to let them
be the powers of 2, i.e. to set ai = 2i−1. Then it is not hard to check that all subset sums
are distinct, which implies that

magic(n) < 2n−1.

Our lower and upper bounds are not too far apart, but they differ by roughly a factor of n.
And although obtaining these nearly-matching bounds was quite easy, closing this gap is a
major open problem! Erdős offered $500 for a proof or disproof of the following conjecture.

Conjecture 1.2 (Erdős’s distinct sums conjecture). We have that magic(n) ⩾ Ω(2n). That
is, the upper bound is best possible up to a constant factor.

Here, we recall the asymptotic notation that we’ll use a lot throughout the course: the
statement f(n) ⩾ Ω(g(n)) means that for all sufficiently large n, we have that f(n) ⩾ c·g(n),
where c > 0 is some constant independent of n.

The best known bounds on this problem are as follows. First, for the upper bound,
Bohman found a construction of a set of integers beating the powers of two, which implies
that

magic(n) ⩽ 0.22002 · 2n

for all sufficiently large n. In the other direction, a beautiful probabilistic1 argument of
Erdős and Moser proves that

magic(n) ⩾ Ω

(
2n√
n

)
,

which improves the argument of Theorem 1.1 by roughly a factor of
√
n. The best known

constant factor was obtained only recently by Dubroff, Fox, and Xu, who proved that

magic(n) ⩾

(√
2

π
− o(1)

)
2n√
n
,

1You may wonder what probability has to do with any of this. Somewhat amazingly, even for problems
like this that have nothing do with probability, many of our most powerful techniques are probabilistic. This
introduction of random tools into non-random problems is called the probabilistic method, and we will see
several examples of it throughout the course.
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where o(1) represents a quantity that tends to 0 as n tends to infinity.
This simple problem is an instance of extremal combinatorics, which is the topic of this

course. In this context, “extremal” means “maximum or minimum”: extremal questions are
questions of the form “how large or small can an object be, subject to certain constraints?”
For example, magic(n) is an extremal function: it asks how large M can be so long as
JMK contains no set of n integers with distinct subset sums. Equivalently, we can view this
function in the “opposite” perspective, and ask how many elements we can fit into JMK
without creating two equal subset sums. The “combinatorics” in “extremal combinatorics”
means that we are working with discrete structures, such as, in this case, finite sets of
integers. For most of this course we will be focusing on extremal graph theory, where the
objects of study are graphs (and their variants).

As in this example, whenever we are confronted with an extremal function, we would like
to prove upper and lower bounds on it that are as close as possible. Generally speaking, one
bound is proved by constructions of large or small objects satisfying the requisite property
(like the powers of 2 above), and the other bound is proved by showing that any object of
appropriate size must not have the requisite property (like the proof of Theorem 1.1). One
of the things that I love about extremal combinatorics is that there are many natural and
easy-to-state questions (such as the one discussed above), for which we can easily prove some
upper and lower bounds, but for which it currently seems extremely difficult (or downright
hopeless) to pin down the answer. That said, there keep being remarkable breakthroughs on
some previously intractable problems, usually via the introduction of remarkable new ideas.
In this course, I will try to give you a flavor of what extremal combinatorics is all about,
some of the beautiful ideas that are used in the field, what some of the major open problems
are, and hint at some of the recent breakthroughs on these and other questions.

2 What is extremal graph theory?

A simple and well-known fact in graph theory is that every n-vertex tree has n − 1 edges.
This immediately implies that if an n-vertex graph G has no cycles, then G has at most n−1
edges. Another well-known result in graph theory, following quickly from Euler’s formula, is
that an n-vertex planar graph G with n ⩾ 3 has at most 3n− 6 edges.

This class is about extremal graph theory, the study of results of this type. How many
edges can an n-vertex graph have, given that it satisfies some natural constraint? Our major
goal, for the next few lectures, is to prove the Erdős–Stone–Simonovits theorem, sometimes
called the Fundamental Theorem of Extremal Graph Theory, which answers this question
more or less completely for a very wide range of constraints.

The question that will occupy us for some time is what happens when the constraint is
excluding a single “forbidden subgraph”.

Definition 2.1. Let H and G be graphs. We say that G is H-free if H is not a subgraph
of G (or, more formally, if G has no subgraph isomorphic to H). We will often also say that
G has no copy of H.
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The basic question we will be attempting to answer is “how many edges can an n-vertex
H-free graph have?”. Because we will be using this notion over and over again, it’s best to
just give it a name. We use e(G) to denote the number of edges of a graph G.

Definition 2.2. The extremal number of H is defined as

ex(n,H) = max{e(G) | G is an n-vertex H-free graph}.

In other words, ex(n,H) is simply the most number of edges that an H-free graph on n
vertices can have. Note that this quantity is well-defined, since there are only finitely many
n-vertex graphs.

In this class, we will attempt to understand how the function ex(n,H) behaves when H is
some fixed graph, and when n tends to infinity. Additionally, we will often try to understand
which graphs G are the maximizers in the definition of ex(n,H); that is, which graphs G
have the most edges among all n-vertex H-free graphs.

Before getting into specific examples, let’s briefly think about what it means to prove
upper and lower bounds on ex(n,H). Since ex(n,H) is defined as the maximum of something,
to prove a lower bound on ex(n,H), it suffices to exhibit an n-vertex graph G with no copy
of H; such a G gives us the lower bound ex(n,H) ⩾ e(G). On the other hand, to prove an
upper bound on ex(n,H), we need to prove that every n-vertex graph G with m edges has
a copy of H; this yields the upper bound ex(n,H) < m.

3 Forbidden cliques: Mantel’s and Turán’s theorems

The earliest result in extremal graph theory is due to Mantel, from more than 100 years ago.
Mantel studied (though not in this language) the extremal number of the triangle graph,
K3. Let’s begin by coming up with a lower bound on ex(n,K3).

After playing around with it a bit, it’s pretty natural to come up with the following
construction. Let G = Ka,b be a complete bipartite graph, where a + b = n. Then G is
certainly triangle-free, since K3 is not bipartite. Moreover, the number of edges in G is
simply ab. So we find that

ex(n,K3) ⩾ ab for all integers a, b with a+ b = n.

Since we want as good a lower bound as possible, we want to pick a, b so that ab is maximized,
subject to the constraint that a+ b = n. Using the AM-GM inequality, we see that

ab ⩽

(
a+ b

2

)2

=
n2

4
.

Moreover, equality holds if and only if a = b = n/2. If n is odd, then we can’t have a = b =
n/2 if a and b are both integers; the product ab is maximized when a = ⌊n/2⌋, b = ⌈n/2⌉.
But in any case, we find that

ex(n,K3) ⩾

⌊
n2

4

⌋
,
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with the example of a K3-free n-vertex graph with ⌊n2/4⌋ edges given by the complete
bipartite graph K⌊n/2⌋,⌈n/2⌉.

Mantel’s theorem says that this is the best we can do.

Theorem 3.1 (Mantel 1907). ex(n,K3) = ⌊n2/4⌋. Moreover, the unique n-vertex triangle-
free graph with ⌊n2/4⌋ edges is K⌊n/2⌋,⌈n/2⌉.

We won’t prove this right now. Instead, we’ll first generalize Mantel’s theorem, and then
prove the generalization.

Almost 40 years after Mantel, Turán started thinking about similar questions, and it is
thanks to his work that the field of extremal graph theory exists at all. Turán was studying
what happens when, rather than excluding a triangle, we exclude some larger complete graph
(also known as a clique). Namely, he was studying ex(n,Kr) for r ⩾ 3.

Again, there is a natural type of example we can come up with to lower-bound ex(n,Kr).
Namely, let G be a complete (r − 1)-partite graph on n vertices, namely a graph obtained
by splitting the n vertices into r − 1 parts, then putting all edges between pairs of vertices
in different parts and no edges within a part. Then G certainly will not have a copy of Kr:
by the pigeonhole principle, if we take any r vertices in G, two of them must lie in the same
part, and thus there cannot be an edge between them. Moreover, another simple application
of the AM-GM inequality (or Jensen’s inequality) shows that the way to do this in order to
maximize the number of edges of G is to make all the parts have as equal sizes as possible,
namely to make each part have size either ⌊n/(r − 1)⌋ or ⌈n/(r − 1)⌉. This motivates the
following definition.

Definition 3.2. The Turán graph Tr−1(n) is the n-vertex complete (r − 1)-partite graph
with all parts of size either ⌊n/(r − 1)⌋ or ⌈n/(r − 1)⌉. We denote its number of edges by

tr−1(n) := e(Tr−1(n)).

Remark. In case n is divisible by r − 1, then every part of the Turán graph Tr−1(n) has
exactly n/(r − 1) vertices in each part, so

tr−1(n) =

(
r − 1

2

)
·
(

n

r − 1

)2

=

(
r − 2

r − 1

)
n2

2
=

(
1− 1

r − 1

)
n2

2
.

In case n is not divisible by r− 1, the formula is a little messier, involving the remainder of
n when divided by r − 1. However, we still have that for all fixed r and n→ ∞,

tr−1 =

(
1− 1

r − 1
+ o(1)

)
n2

2
,

where o(1) represents a quantity that tends to 0 as n tends to infinity. In other words, if we
fix ε > 0, then for any sufficiently large n, we have that(

1− 1

r − 1
− ε

)
n2

2
⩽ tr−1(n) ⩽

(
1− 1

r − 1
+ ε

)
n2

2
.
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One other useful observation is that for any n, if we delete one vertex from each of the r− 1
parts of Tr−1(n), we obtain a copy of Tr−1(n− r + 1). Moreover, each non-deleted vertex is
adjacent to exactly r − 2 deleted vertices. So we delete (r − 2)(n − r + 1) +

(
r−1
2

)
edges to

obtain Tr−1(n− r + 1) from Tr−1(n). This shows that

tr−1(n) = tr−1(n− r + 1) + (r − 2)(n− r + 1) +

(
r − 1

2

)
. (1)

Note that T2(n) = K⌊n/2⌋,⌈n/2⌉, so Mantel’s theorem can be rephrased as saying that
ex(n,K3) = t2(n) and that T2(n) is the unique n-vertex K3-free graph with t2(n) edges.
Turán’s theorem generalizes this to ex(n,Kr) for all r ⩾ 3.

Theorem 3.3 (Turán 1941). For every r ⩾ 3, we have ex(n,Kr) = tr−1(n). Moreover, the
unique n-vertex Kr-free graph with tr−1(n) edges is Tr−1(n).

Proof. We proceed by induction, with steps of size r − 1. So we need r − 1 base cases,
corresponding to n = 1, 2, . . . , r − 1. But the theorem holds for such n, because for such n,
any n-vertex graph has no Kr subgraph. So ex(n,Kr) =

(
n
2

)
for 1 ⩽ n ⩽ r − 1. Moreover,

Tr−1(n) is exactly Kn in these cases. This proves the base cases of the induction.
Now let n > r − 1, and assume the theorem is true for n− r + 1. Let G be an n-vertex

graph with no copy of Kr and as many edges as possible. G must contain a copy of Kr−1,
for otherwise we could add an edge and get a Kr-free graph with strictly more edges. Let K
be some such Kr−1 subgraph, and let F ⊆ G be the subgraph obtained by deleting K. We
know that e(K) =

(
r−1
2

)
. By induction, we know that

e(F ) ⩽ tr−1(n− r + 1).

Finally, each vertex of F cannot be adjacent to every vertex of K, for otherwise we would
get a Kr. So the number of edges between F and K is at most (r − 2)(n− r + 1). So

e(G) ⩽

(
r − 1

2

)
+ tr−1(n− r + 1) + (r − 2)(n− r + 1) = tr−1(n),

by (1).
If e(G) = tr−1(n), then every inequality above must be an equality. In particular, the

induction hypothesis implies that F ∼= Tr−1(n− r+ 1). Moreover, each vertex in F must be
adjacent to exactly r − 2 vertices in K, since we assume we have equality in the number of
edges. Moreover, given two adjacent vertices in F , they cannot be non-adjacent to the same
vertex of K, for otherwise we could take the remaining r − 2 vertices and these two to get
a Kr. So this implies that each part of F is associated to exactly one missed vertex. So by
adding this missed vertex to its part, we see that G ∼= Tr−1(n).

On the homework over the next few days, you will see many different proofs of Turán’s
theorem. It is one of those amazing mathematical theorems with dozens of different, and
differently informative, proofs. It is also extremely useful, as you’ll see on the homework!
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