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Lee’s proof of the Burr–Erdős is far too complicated to cover in this course, but we will try
to see a few ideas in its direction. The Burr–Erdős conjecture has a long history, with many
important partial results. The first major breakthrough in this direction was a theorem of
Chvatál, Rödl, Szemerédi, and Trotter, which established the Burr–Erdős conjecture under
the stronger assumption that H has bounded maximum degree.

Theorem 15.12 (Chvatál–Rödl–Szemerédi–Trotter). Graphs of bounded maximum degree
have linear Ramsey numbers.

More precisely, for every ∆ ⩾ 1, there exists C ⩾ 1 such that the following holds. If an
n-vertex graph H has maximum degree at most ∆, then r(H) ⩽ Cn.

This result was extremely important, and so was the proof technique they introduced; this
theorem is the first result in Ramsey theory to be proved via the so-called regularity method,
whose basis is the fundamental regularity lemma of Szemerédi. This method has become
one of the most important techniques in Ramsey theory and in extremal graph theory more
broadly. However, let us remark that this proof technique gives truly enormous bounds on
how large C has to be as a function of ∆; namely their proof showed that Theorem 15.12 is
true for

C = 22
··
·2
}

2100∆

.

This enormous bound is one of several reasons why many researchers attempted to find
alternative proofs of Theorem 15.12.

There are now (at least) two other techniques known for proving Theorem 15.12, both of
which are very important in their own right. One is the dependent random choice technique,
which you’ve seen a glimpse of on the homework, and which is also the main technique
underlying Lee’s proof of Conjecture 15.9. The other is the greedy embedding technique,
which was developed in this context by Graham, Rödl, and Ruciński, although it goes back
in some form at least to much earlier work of Erdős and Hajnal. We will unfortunately
not have time to discuss this technique in detail in this course, but let us see a high-level
overview of how it works.

Proof sketch of Theorem 15.12 using greedy embedding. Let H be an n-vertex graph of max-
imum degree at most ∆, and let N = Cn for a large constant C = C(∆) that we choose
appropriately. Fix a red/blue coloring of E(KN). Our goal is to attempt to find a red copy
of H in a greedy manner; we’ll then show that, if we fail, we will be able to find a blue copy
of H.

Let us label the vertices of H as v1, . . . , vn. Define V1 = V2 = · · · = Vn = V (KN). We
think of Vi as the set of candidate vertices for vi, and will attempt to embed the vertices
of H one at a time, at each step updating the set of candidate vertices. We fix some small
parameter ε > 0.

Note that if we pick where to embed vi into Vi, we need to update our candidate sets.
Indeed, since our goal is to build a red copy of H, if we choose where to place vi, we need
to shrink each Vj, for all j such that vivj ∈ E(H), to only include the red neighbors of the
chosen embedding of vi. Let us call a vertex w ∈ Vi prolific if it has the following property:
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if we choose to embed vi as w, then each candidate set shrinks by at most a factor of ε. In
other words, w is prolific if its red neighborhood in Vj has size at least ε|Vj|, for every j such
that vivj ∈ E(H).

Our embedding rule is now as follows. If there is a prolific vertex in V1, we embed v1
there and update all the candidate sets appropriately. If there is now a prolific vertex in V2,
we embed v2 there and update all the candidate sets. We continue in this way as long as we
can.

If this process gets to the end, that is, if we embed vn into Vn, then we have found a
red copy of H. So we may assume that the process gets stuck at some step i. Note that
every candidate set shrinks at most ∆ times, since H has maximum degree at most ∆, and
moreover every time it shrinks it does so by at most a factor of ε. Thus, when we get stuck,
we still have that |Vj| ⩾ ε∆N for all j. In particular, |Vi| ⩾ ε∆N . Moreover, since we got
stuck, there is no prolific vertex in Vi. That is, for every vertex w ∈ Vi, there is some j such
that the red neighborhood of w in Vj has size less than ε|Vj|. There are at most ∆ options
for this choice of j, so by the pigeonhole principle, there is some fixed j ∈ JnK and some set
Wi ⊆ Vi with |Wi| ⩾ 1

∆
|Vi| such that every w ∈ Wi has a red neighborhood in Vj of size less

than ε|Vj|.
We have thus proved the following lemma. If this greedy embedding procedure ever gets

stuck, we find two sets Wi, Vj with |Wi| ⩾ 1
∆
ε∆N and |Vj| ⩾ ε∆N , and with the property

that the density of red edges betweenWi and Vj is less than ε. In other words, we have found
two sets A1, A2 with |A1|, |A2| ⩾ 1

∆
ε∆N , and such that the density of blue edges between A1

and A2 is at least 1− ε.
We now iterate this lemma, as follows. Inside A1, we run the same procedure to attempt

to greedily embed H in red. If we succeed, we are done. If we fail, we find two sets
A11, A12 ⊆ A1 with blue density between them at least 1− ε, where |A11|, |A12| ⩾ ( 1

∆
ε∆)2N .

We also run the same procedure inside A2 to find two such sets A21, A22. Moreover, since
the blue density between A1 and A2 was at least 1− ε, we can ensure9 that the blue density
between A1i and A2j is at least 1− ε, for all i, j ∈ J2K.

In other words, we’ve now found four sets, each of size at least ( 1
∆
ε∆)2N , such that the

blue density between every pair is at least 1− ε. Continuing in this manner k times, we can
find 2k such sets, each with size at least ( 1

∆
ε∆)kN , and with all pairwise blue densities at

least 1− ε. We now do this until 2k ⩾ ∆+1 (i.e. pick k = ⌈log(∆+1)⌉), and we thus obtain
at least ∆ + 1 sets, which we rename B1, . . . , B∆+1.

Since H has maximum degree at most ∆, it is (∆+1)-colorable, i.e. it can be partitioned
into ∆ + 1 independent sets C1, . . . , C∆+1. Note that

|Bi| ⩾
(
1

∆
ε∆
)k

N ⩾ n,

9There is some subtlety in doing this step correctly; since A1i and A2j are rather small subsets of A1, A2,
one needs an extra argument to ensure that the blue density remains high when we restrict to them. The
trick to do this is to apply, essentially, Lemma 10.3 to always ensure that the minimum blue degree is high
before shrinking.
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where we can ensure the final inequality by picking C sufficiently large as a function of ∆
and ε (and thus k, which is itself a function of ∆). Thus, each set Bi is large enough to
accommodate embedding Ci. Moreover, one can check that if ε is sufficiently small (e.g.
ε = ∆−2 suffices), then the greedy embedding strategy we tried for red is now guaranteed
to work in blue. Namely, we greedily embed H in blue, ensuring that all vertices of Ci

get embedded into Bi, and updating all candidate sets at every step. The strong density
conditions we know about blue imply that we will never get stuck.

Examining the proof sketch above, we see that it gives a bound of the form C ⩽
2O(∆(log∆)2). Moreover, in case H is bipartite, the iteration step is unnecessary, and we
can simply take k = 1 in the proof above, and thus obtain a bound of C ⩽ 2O(∆ log∆). In
other words, the greedy embedding technique allowed Graham, Rödl, and Ruciński to prove
the following more refined version of Theorem 15.12.

Theorem 15.13 (Graham–Rödl–Ruciński). There exists an absolute constant M > 0 such
that the following holds. If H is an n-vertex graph with maximum degree at most ∆, then

r(H) ⩽ 2M∆(log∆)2n.

Moreover, if H is bipartite, we have the stronger bound

r(H) ⩽ 2M∆log∆n.

Remarkably, Graham, Rödl, and Ruciński also proved that their upper bound is nearly
tight, even for bipartite graphs.

Theorem 15.14 (Graham–Rödl–Ruciński). There exists an absolute constant c > 0 such
that the following holds. For every n > ∆ > 1, there is an n-vertex bipartite graph H with
maximum degree ∆ which satisfies

r(H) ⩾ 2c∆n.

Looking back at the greedy embedding proof sketch above, one might be struck by the
fact that the colors play such asymmetrical roles; we keep trying, insistently, to embed H
in red, and only when we have failed many times do we relent and succeed in embedding it
in blue. This asymmetry is in fact a weakness of the proof technique, and Conlon, Fox, and
Sudakov were able to improve the bound of Theorem 15.13 to r(H) ⩽ 2O(∆ log∆)n for every
n-vertex graph H with maximum degree ∆, by modifying the greedy embedding technique
so that both colors play roughly the same role. Unfortunately, it is still not known if this
technique can be used to remove the final logarithmic factor, and thus match the lower bound
of Theorem 15.14.

Moreover, this discussion hints at another, more fundamental, weakness of the greedy
embedding technique, which is that it is tailor-made for the two-color case. Indeed, the
entire upshot of the technique is that failing to find H in red tells us something about the
blue edges. In case there are three or more colors, it is not at all clear how to obtain useful
information from the failure of the first embedding. As far as I am aware, no one has been
able to use the greedy embedding technique to prove any results on r(H; q) for any H and
any q ⩾ 3.
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16 Canonical Ramsey theorems

This section covers two somewhat disparate topics, which nonetheless share a thematic
connection. The extremely high-level idea is the following. Most mathematical objects
are endowed with a notion of sub-objects (e.g. subsets, subgraphs, subgroups, subspaces,
subschemes, subterfuges. . . ). Certain objects are canonical, in the sense that all of their
sub-objects “look like” the original object. For example, an elementary result in group
theory is that all subgroups of a cyclic group are cyclic; a more pronounced version of the
same fact is that any subgroup of Z is isomorphic to Z. A substantially deeper and more
difficult statement along the same lines is that any subgroup of a free group is again free.

One question we are interested in is a full classification of such examples: for any given
notion of mathematical object, what is a complete list of the canonical ones? Having accom-
plished this task (which requires formalizing what we mean by “looking like” the original
object), one can turn to proving a Ramsey-theoretic statement, along the lines of “any
sufficiently large object must contain an arbitrarily large canonical sub-object”.

We can view Ramsey’s theorem as an instance of this general philosophy. Indeed, con-
sider the class of graphs, endowed with the sub-object relation of induced subgraphs. Then
complete graphs and empty graphs are examples of canonical objects, since any induced sub-
graph of a complete graph is again complete, and any induced subgraph of an empty graph
is empty. Moreover, Ramsey’s theorem implies that every sufficiently large graph contains
an arbitrarily large complete or empty induced subgraph.

16.1 Monotone sequences

Consider a sequence a1, . . . , ak of distinct real numbers. A natural definition for a “canonical”
sequence is a monotone sequence (that is, a sequence which either strictly increasing or
strictly decreasing), since any subsequence of an increasing sequence is again increasing, and
the same holds for decreasing sequences.

As you might expect, there is a Ramsey-theoretic statement, asserting that every sequence
of distinct real numbers contains a long monotone subsequence; this was proved in the same
seminal paper of Erdős and Szekeres.

Theorem 16.1 (Erdős–Szekeres). Given k ⩾ 2, let N = (k − 1)2 + 1. Then any sequence
a1, . . . , aN of distinct real numbers contains a monotone subsequence of length k. That is,
there exist indices 1 ⩽ i1 < · · · < ik ⩽ N such that

ai1 < ai2 < · · · < aik or ai1 > ai2 > · · · > aik .

There are many known proofs of this theorem; we will show a particularly elegant proof
discovered by Seidenberg.

Proof of Theorem 16.1 (Seidenberg). For an index m ∈ JNK, let δ(m) denote the length of
the longest decreasing subsequence ending at am, and let ι(m) denote the length of the
longest increasing sequence ending at am. We wish to prove that δ(m) ⩾ k or ι(m) ⩾ k
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for some m ∈ JNK. So suppose for contradiction that this is not the case, that is, that
1 ⩽ δ(m), ι(m) ⩽ k − 1; note that we have a lower bound of 1 on both functions, since we
can always view am itself as both an increasing and a decreasing subsequence ending at am.

This means that there are at most (k−1)2 possible values for the pair (δ(m), ι(m)). Since
N = (k−1)2+1, the pigeonhole principle implies that there exists two indices 1 ⩽ ℓ < m ⩽ N
such that (δ(ℓ), ι(ℓ)) = (δ(m), ι(m)). Since the elements of our sequence are distinct, we have
aℓ < am or aℓ > am. Suppose first that aℓ < am. Then any increasing sequence ending in
aℓ can be extended by one to obtain an increasing sequence ending at am, implying that
ι(m) > ι(ℓ), a contradiction. Similarly, if aℓ > am, then δ(m) > δ(ℓ), another contradiction.
In either case we are done.

It is not hard to show (as you will do on the homework) that this bound is tight, in that
there exist sequences of (k − 1)2 distinct real numbers with no monotone subsequence of
length k.
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