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16.2 The canonical Ramsey theorem

We now turn to the canonical Ramsey theorem for edge-colorings of the complete graph. Of
course, as discussed above, Ramsey’s theorem itself is such a statement—any coloring of a
complete graph with a fixed number of colors must contain an arbitrarily large monochro-
matic clique, and monochromatic cliques are clearly canonical, as any subset of a monochro-
matic clique is another monochromatic clique. However, what if we remove the restriction
that the number of colors is fixed?

That is, the question we are asking is the following: we color E(KN), for a large N , with
an arbitrary number of colors. What kinds of subcolorings are canonical, in the sense that
all of their induced subgraphs yield colorings of the same type? Certainly, monochromatic
cliques are still canonical. On the other hand, once the number of colors is unbounded, we
get a new type of canonical coloring: a rainbow coloring of KN , in which each of the edges
receives a different color (so

(
N
2

)
colors are used in total).

It is tempting to conjecture that these are the only ones, but this turns out to not be
the case. There is a third type of coloring, which we will call starry. A coloring of E(KN)
is called starry if there are distinct colors c1, . . . , cN−1 and if one can sort the vertices as
v1, . . . , vN , such that the color of the edge vivj, where i < j, is ci. In other words, each
color class is a star, with the first star centered at v1, the second centered at v2 (and not
containing v1), and so on. Note that this is a canonical coloring, as any subset of vertices
induces another starry coloring.

monochromatic rainbow starry

As it turns out, these really are the only canonical colorings, in the sense that a canonical
Ramsey theorem holds: every sufficiently large edge-colored clique contains an arbitrarily
large clique which is monochromatic, rainbow, or starry. This was proved by Erdős and
Rado, in a result that is now usually called the canonical Ramsey theorem.

Theorem 16.2 (Erdős–Rado). For every k ⩾ 2, there exists some N such that if E(KN) is
colored (with an arbitrary number of colors), there is a Kk which is monochromatic, rainbow,
or starry.

The original proof of Erdős and Rado used a clever reduction to the hypergraph Ramsey
theorem in uniformity 4. Namely, for every 4-tuple of vertices, they considered the equiva-
lence relation of colors on the

(
4
2

)
= 6 edges. That is, rather than remembering the actual

colors on each of these 6 edges, they only record which pairs of edges receive the same color.
As it turns out, there are 203 equivalence relations10 on a set of size 6, so they obtain a

10The number of equivalence relations on a set of size n is given by the Bell number Bn, and B6 = 203.
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203-coloring of E(K
(4)
N ). By Theorem 14.1, there is a monochromatic K

(4)
k in this coloring

(assuming N is sufficiently large), and an elementary argument (involving some casework)

shows that in each of the 203 cases11, this monochromatic K
(4)
k yields a monochromatic,

rainbow, or starry Kk in the original coloring.
However, from a quantitative perspective, the proof of Erdős and Rado is not very good.

Letting ER(k) denote the least N such that Theorem 16.2 holds, the proof of Erdős–Rado

only shows that ER(k) ⩽ r4(k; 203) ⩽ 22
2O(k)

, thanks to the bounds on hypergraph Ramsey
numbers. A much better bound, with an alternative proof that is also extremely elegant,
was found by Lefmann and Rödl.

Theorem 16.3 (Lefmann–Rödl). We have ER(k) ⩽ k4k
2
for all k ⩾ 2.

In particular, Theorem 16.3 gives a finite bound on ER(k), thus proving Theorem 16.2. In
the course of the proof of Theorem 16.3, we will need the following extremely useful lemma,
which allows us to find rainbow cliques in edge-colored graphs where every color class is a
graph with bounded maximum degree.

Lemma 16.4. Let k,M ⩾ 2 be integers, and suppose that E(KM) is colored so that every
vertex is incident to at most M/k4 edges in every color. Then there is a rainbow Kk in this
coloring.

Proof. Every vertex must be incident to at least one edge of some color, hence no such
coloring can exist if M < k4. Thus the statement is vacuously true in these cases, and we
may assume henceforth that M ⩾ k4. Also, since every coloring of E(K2) is rainbow, we
may assume henceforth that k ⩾ 3. Let χ be the coloring of E(KM).

Let v1, . . . , vk be a uniformly random sequence of k distinct vertices from KM . That
is, we pick a set of k distinct vertices uniformly at random among the

(
M
k

)
options, and

then pick a random ordering of that set and label it v1, . . . , vk. Equivalently, we let v1 be a
uniformly random vertex, v2 a uniformly random vertex among the remaining vertices, and
so on. The key property that we need about this distribution is that if we condition on the
outcome of any subset of these vertices, the marginal distribution of any remaining vertex is
that of a uniformly random vertex of KM , apart the ones already picked. Thus, for example,
if x, y are two distinct vertices of KM , and we condition on v3 = x, v7 = y, the marginal
distribution of v4 is uniformly random on the set V (KM) \ {x, y}.

For distinct indices i, j, ℓ ∈ JkK, let Ei,j,ℓ be the event that the edges vivj and vivℓ receive
the same color. We wish to estimate Pr(Ei,j,ℓ). Given two distinct vertices x, y ∈ V (KM), we
begin by estimating Pr(Ei,j,ℓ | vi = x, vj = y). Given vi = x, vj = y, the event Ei,j,ℓ is simply
the event that χ(xvℓ) = χ(xy), where the only randomness remaining is in the choice of vℓ.
By assumption, x is incident to at most M/k4 edges in color χ(xy), and vℓ is a uniformly
random vertex in the set V (KM) \ {x, y}, hence

Pr(Ei,j,ℓ | vi = x, vj = y) ⩽
1

M − 2
· M
k4

⩽
2

k4
.

11In fact, it is not hard to show that most of the 203 cases are actually impossible, so the true number of
cases is much smaller.
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Since the same upper bound holds for Pr(Ei,j,ℓ | vi = x, vj = y) for all x, y, the same bound
holds for Pr(Ei,j,ℓ). More formally, by the law of total probability, we have

Pr(Ei,j,ℓ) =
∑
x,y

Pr(Ei,j,ℓ | vi = x, vj = y) Pr(vi = x, vj = y) ⩽
2

k4

∑
x,y

Pr(vi = x, vj = y) =
2

k4
.

Since the events Ei,j,ℓ and Ei,ℓ,j are the same, there are at most k3/2 such events we need to
consider. Hence, by the union bound, the probability that Ei,j,ℓ occurs for some triple i, j, ℓ

is at most k3

2
· 2
k4

= 1
k
⩽ 1

3
.

Similarly, for four distinct indices i, j, ℓ,m, let Ei,j,ℓ,m be the event that the edges vivj
and vℓvm receive the same color. For fixed vertices x, y, z, we now condition on the outcome
vi = x, vj = y, vℓ = z. By assumption, z has at most M/k4 neighbors in color χ(xy).
Once we condition, the event Ei,j,ℓ,m is just the event that χ(zvm) = χ(xy), where the only
randomness is in the choice of vm, which is uniform on a set of size M − 3. So we have

Pr(Ei,j,ℓ,m | vi = x, vj = y, vℓ = z) ⩽
1

M − 3
· M
k4

⩽
2

k4
.

Again applying the law of total probability, we conclude that Pr(Ei,j,ℓ,m) ⩽ 2
k4
. The total

number of such events is at most k4/4, since we obtain the same event if we swap i, j or ℓ,m.
So by the union bound, the probability that Ei,j,ℓ,m happens for some 4-tuple (i, j, ℓ,m) is at

most k4

4
· 2
k4

= 1
2
.

In total, we find that the probability that v1, . . . , vk span a rainbow Kk is at least 1 −
1
3
− 1

2
> 0, hence there is a rainbow Kk in the coloring.

Now that we have Lemma 16.4, we can proceed with the proof of Theorem 16.3. Before
doing so, it’s worth thinking of an alternative way of presenting the proof of Theorem 13.4.
To show that r(k) ⩽ 4k, let us fix a 2-coloring of E(KN), where N = 4k = 22k. We pick an
arbitrary vertex v1. At least half of its incident edges are of the same color, which we call c1.
We now restrict to the c1-colored neighborhood S1 of v1, and pick from there an arbitrary
vertex v2. At least half of its incident edges in S1 are of the same color, say c2. We let S2 be
this neighborhood, and proceed in this fashion. Since

|Si+1| ⩾
⌈
|Si| − 1

2

⌉
for all i, we conclude that |Si| ⩾ 22k−i for all i. Hence we can continue this process for at
least 2k steps, to produce vertices v1, . . . , v2k and colors c1, . . . , c2k. Again by the pigeonhole
principle, at least k of these colors must be the same, say ci1 , . . . , cik are all red. But by the
way we constructed this sequence, this shows that vi1 , . . . , vik form a red Kk.

The proof of Theorem 16.3 uses a very similar argument, which we will now see.

Proof of Theorem 16.3. Let N = k4k
2
, and fix an arbitrary coloring of E(KN). We let

S0 = V (KN). We now run the following process, for all i ⩾ 1.

61



PCMI 2025 Extremal graph theory and Ramsey theory Yuval Wigderson

1. If |Si−1| < 2, stop the process.

2. If every vertex in Si−1 is incident to at most |Si−1|/k4 edges in each color, we apply
Lemma 16.4 to Si−1 with M = |Si−1| ⩾ 2. We conclude that Si−1 contains a rainbow
Kk, completing the proof.

3. If not, there is some vertex vi ∈ Si−1 and some color ci such that vi is incident to at
least |Si−1|/k4 edges of color ci in Si−1. We let Si be the ci-colored neighborhood of vi
in Si−1.

4. Increment i by 1 and return to step 1.

If we ever find a rainbow Kk in this process, we are done, so we may assume that that never
happens. Note that as long as the process continues, we have that |Si| ⩾ |Si−1|/k4, so by
induction we have that |Si| ⩾ k4(k

2−i). Hence we can continue this process at least until step
i − 1 = k2 − 1. In other words, this process produces a sequence v1, . . . , vk2 of vertices and
c1, . . . , ck2−1 of colors, with the property that each vi is adjacent in color ci to all vj with
j > i.

Suppose first that k of the colors c1, . . . , ck2−1 are equal, say ci1 , . . . , cik are all red. Then
vi1 , . . . , vik form a monochromatic red Kk, and we are done. But if this does not happen,
then at least k different colors must appear in the list c1, . . . , ck2−1, say cj1 , . . . , cjk are all
distinct. Then vj1 , . . . , vjk form a starry Kk, and we are again done.

Theorem 16.3 states that ER(k) ⩽ k4k
2
= 24k

2 log k. How good is this bound? The best
known lower bound is given by the following simple proposition.

Proposition 16.5. We have
ER(k) ⩾ r(k; k − 2).

Proof. Let N = r(k; k−2)−1, and consider a (k−2)-coloring χ of E(KN) with no monochro-
maticKk. Note that a starry coloring ofKk must use k−1 colors, so there is also no starryKk

in χ, since χ only uses k− 2 colors. Similarly, a rainbow coloring of Kk must use
(
k
2

)
> k− 2

colors, hence there is no rainbow Kk in χ either. This shows that ER(k) > N , proving the
proposition.

Note that this construction rules out the existence of starry or rainbow Kk in a pretty
silly fashion, by simply using too few colors to allow these structures to appear. However,
as far as I know, this is the only technique that anyone has ever found for lower-bounding
ER(k); in particular, no one knows of a “smarter” way of excluding rainbow or starry Kk.

It now remains to find a good lower bound for the multicolor Ramsey number r(k; k−2),
or, more generally, for r(k; q). By using a random q-coloring, one can adapt the proof of
Theorem 13.7 and prove that for any k, q ⩾ 3, we have

r(k; q) > qk/2. (7)
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However, this is not very good, as we recall that our upper bound on multicolor Ramsey
numbers, from Theorem 13.5, is r(k; q) ⩽ qqk; in particular, the dependence on q is super-
exponential in the upper bound, whereas the lower bound in (7) is only polynomial in q.
However, there is a simple construction that does substantially better.

Proposition 16.6 (Abbott). For all positive integers k, q1, q2, we have

r(k; q1 + q2)− 1 ⩾ (r(k; q1)− 1)(r(k; q2)− 1). (8)

As a consequence, we have

r(k; q) > 2
k
2
⌊ q
2
⌋.

Proof. Let N1 = r(k; q1) − 1 and N2 = r(k; q2) − 1. By assumption, we have colorings
χi : V (KNi

) → JqiK, for i = 1, 2, both of which avoid monochromatic Kk. Let N = N1N2,
and identify the vertex set of KN with V (KN1) × V (KN2). We can now define a coloring
χ : E(KN) → Jq1 + q2K as follows. It is easiest to understand with the following picture,
which shows how to convert two 2-colorings of E(K5) into a 4-coloring of E(K25), maintaining
the property of having no monochromatic triangle.

Formally, given a pair of vertices (a1, b1), (a2, b2) ∈ V (KN1)× V (KN2)
∼= V (KN), we define

χ((a1, b1), (a2, b2)) =

{
χ1(a1, a2) if a1 ̸= a2,

q1 + χ2(b1, b2) otherwise.

This is a (q1 + q2)-coloring of E(KN), and one can readily verify that there is no monochro-
matic Kk, as such a monochromatic clique could be used to obtain a monochromatic Kk in
either χ1 or χ2. Thus proves the claimed inequality (8).

To use it, we recall that we proved in Theorem 13.7 that r(k; 2) ⩾ 2k/2+1. Applying (8)
⌊q/2⌋ times, we conclude that r(k; q) > (2k/2)⌊q/2⌋, as claimed.

Plugging this result into Proposition 16.5, we find that ER(k) ⩾ r(k; k − 2) ⩾ 2ck
2
for

a constant c > 0. That is, we match the upper bound from Theorem 16.3, apart from a
logarithmic gap in the exponent. In fact, we have the same logarithmic gap for multicolor
Ramsey numbers, since we now know that 2ckq ⩽ r(k; q) ⩽ 2kq log q. It is a very major open
problem to close this logarithmic gap in either problem.

Let me remark that in recent years, there have been a number of improvements to the
constant factor in Proposition 16.6. Roughly speaking, it says that r(k; q) ⩾ 2

1
4
kq. In
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2020, Conlon and Ferber found a new construction that showed, roughly, r(k; q) ⩾ 2
7
24

kq,
which is better since 7

24
> 1

4
. Shortly thereafter, I optimized their technique and improved

the lower bound to, roughly, r(k; q) ⩾ 2
3
8
kq, which is again better since 3

8
> 7

24
. The

current record is due to Sawin, who further optimized the technique and proved, roughly,
that r(k; q) ⩾ 20.383796kq, which is better since 0.383796 > 3

8
. Note that although these

improvements are nice and interesting, they do not give any insight into the most important
question of whether the logarithmic factor in the exponent is necessary, since they only affect
the constant factor in the exponent.
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