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17 Folkman’s theorem and beyond

We started this topic with Ramsey’s theorem: for every k, there exists an N such that if
the edges of KN are two-colored, then there exists a monochromatic Kk. In Section 15, we
generalized the conclusion: rather than finding a monochromatic Kk, we found a monochro-
matic copy of H, for some not-necessarily-complete graph H. We will now generalize the
first part of the statement.

Definition 17.1. Given two graphs G,H, we say that G is Ramsey for H in q colors (or G
is q-color Ramsey for H) if, whenever the edges of G are q-colored, there is a monochromatic
copy of H. In case q = 2, we simply say that G is Ramsey for H.

Thus, Ramsey’s theorem simply states that KN is q-color Ramsey for Kk whenever N is
sufficiently large (as a function of q and k).

To gain some intuition for this definition, let’s think of the case when H = K3. If G is
Ramsey forK3, then certainly Gmust contain at least one triangle. But in fact, the definition
of G being Ramsey for K3 tells us that G contains triangles “very robustly”. Indeed, another
way of saying Definition 17.1 is that, no matter how we try to split G into the union of two
subgraphs, we cannot destroy all triangles in G. This idea of robustness is one of the reasons
that Definition 17.1 is interesting.

That being said, it’s not at all obvious that this definition actually gives us any new
information. Indeed, we know that r(3) = 6, or equivalently that K6 is Ramsey for K3 while
K5 is not. In particular, we find that if G is a graph containing K6 as a subgraph, then G is
Ramsey for K3. Indeed, given any 2-coloring of E(G), ignore all the edges except for those
in the K6 subgraph; among those

(
6
2

)
edges, we are guaranteed to find a monochromatic

triangle, regardless of how the other edges are colored.
If you spend some time trying to construct graphs that are Ramsey for K3, you may start

to wonder if this is the only reason a graph can be Ramsey for K3. In other words, you might
be tempted to conjecture that G is Ramsey for K3 if and only if K6 ⊆ G. The question of
whether this is true was raised by Erdős and Hajnal, and was rapidly answered in the negative
independently by Cherlin, Graham, and van Lint. The following slick construction is due
independently to Galluccio–Simonovits–Simonyi and to Szabó, and generalizes Graham’s
original argument. Given two graphs G1, G2, their join, denoted G1 ∗ G2, is the graph
obtained from their disjoint union by adding all edges with one endpoint in G1 and one in
G2.

Proposition 17.2 (Galluccio–Simonovits–Simonyi, Szabó). Let G = K3 ∗ Cℓ, where ℓ ⩾ 3
is an odd integer. Then G is Ramsey for K3. Moreover, if ℓ ⩾ 5, then K6 ⊈ G.

Proof. Let the vertices of G be x, y, z, v1, . . . , vℓ, where x, y, z form a triangle, v1, . . . , vℓ form
a cycle Cℓ, and all edges between {x, y, z} and {v1, . . . , vℓ} are present. Note that if K6 ⊆ G,
then at least three of the vertices of this K6 must come from v1, . . . , vℓ (and they must form
a triangle), so the second statement of the proposition is immediate since Cℓ is triangle-free
whenever ℓ ⩾ 5.
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It remains to show that G is Ramsey for K3, so fix a two-coloring of E(G). If {x, y, z}
form a monochromatic triangle then we are done, so two of the edges xy, xz, yz receive one
color and the third edge receives the other color. Without loss of generality, we may assume
that xy, yz are red and xz is blue.

Now consider the edges between {x, y, z} and v1. First suppose yv1 is red.

y

x

z

v1

If xv1 or zv1 is red, then we close a red triangle xyv1 or zyv1, so we may assume that both
these edges are blue. But that also creates a blue triangle, xzv1.

y

x

z

v1
y

x

z

v1

So we may assume that yv1 is blue. By the same logic, yvi is blue for all i ∈ JℓK. Note that
if any of the edges vivi+1 in the cycle is blue, then we create a blue triangle yvivi+1.
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v2
v3

v4
v5

Therefore, we may assume that all the edges in the cycle are red.

y
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z

v1
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v3

v4
v5

Recall that xvi and zvi cannot both be blue, as this would create a blue triangle xzvi. Let
us label vi by either the label x or z, depending on whether xvi or zvi is red (picking a label
arbitrarily if both are red). By the above, every vi receives a label.
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Since ℓ is odd, the cycle Cℓ is not bipartite. Hence, two adjacent vertices vi, vi+1 must receive
the same label (like v2 and v3 in the picture above). But then they create a red triangle
together with their label.

Note that K3∗K3 = K6, so this result also gives a new (and more complicated) proof that
K6 is Ramsey for K3. But it also shows that the set of graphs Ramsey for K3 is surprisingly
rich.

Note that each of the graphs K3 ∗ Cℓ considered above does contain K5 as a subgraph.
So there is a natural weakening of our previous question: does every graph which is Ramsey
for K3 contain K5 as a subgraph? The answer to this question also turns out to be negative,
as proved by Pósa. So we may weaken our question further: does every graph Ramsey for
K3 contain a K4? The answer to this also turns out to be no, as shown by the following
remarkable theorem of Folkman.

Theorem 17.3 (Folkman). For every k ⩾ 2, there exists a graph G such that G is Ramsey
for Kk, but Kk+1 ⊈ G.

This is pretty astonishing, even in the case k = 3. As discussed above, a graph that is
Ramsey for K3 must contain triangles “very robustly”, in the sense that we cannot destroy
all the triangles by splitting the graph into two subgraphs. Yet Folkman’s theorem shows
that such a graph can exist even though, locally, the triangles have almost no overlap.

Folkman’s proof only worked for the case of two-colors, but the general case was shortly
thereafter established by Nešetřil and Rödl, who proved the following generalization. We
denote by ω(H) the clique number of H, that is, the maximum k such that Kk ⊆ H.

Theorem 17.4 (Nešetřil–Rödl). For every graph H and every q ⩾ 2, there exists a graph
G which is q-color Ramsey for H with ω(G) = ω(H).

In their proof, Nešetřil and Rödl introduced a very powerful technique, called the partite
construction, which is a very general-purpose way of producing graphs G that are Ramsey for
a given graph H, while satisfying certain local sparsity conditions. The partite construction
(as well as the earlier construction of Folkman) is completely explicit, so we can get a
complete description of what the graph G in Theorem 17.4 looks like. Unfortunately, these
constructions are iterative in nature, and each step of the iteration is complicated, so the
size of the graph G constructed is unbelievably huge.

There is now an alternative approach to constructing such restricted Ramsey graphs,
which uses randomness. It has a number of advantages over the partite construction, in-
cluding giving much better bounds on how large G has to be in results like Theorem 17.4.
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However, as we will discuss shortly, it also seems to be less flexible than the partite con-
struction, and there are results that the random approach seems incapable of proving.

The main result in this direction is the random Ramsey theorem of Rödl and Ruciński.
To state it, we recall that the maximal 2-density of a graph H is

m2(H) := max
J⊆H
v(J)⩾3

e(J)− 1

v(J)− 2
.

Theorem 17.5 (Rödl–Ruciński). Let H be a graph which is not a forest, and let q ⩾ 2.
There exist constants C > c > 0 such that the following holds. Form an N-vertex graph G
by including each edge independently with probability p. Then

lim
N→∞

Pr(G is Ramsey for H in q colors) =

{
1 if p ⩾ CN−1/m2(H),

0 if p ⩽ cN−1/m2(H).

In other words, p ≍ N−1/m2(H) is a threshold for the property of G being Ramsey for H.
If p is substantially smaller than this value, then G is extremely unlikely to be Ramsey for H,
whereas if p is substantially larger than this value, then G is extremely likely to be Ramsey
for H. The heuristic reason why this value of p controls the threshold is the following. One
can check that at this value, a typical edge of G lies in a constant number of copies of H12.
Thus, if p ⩽ cN−1/m2(H) for a small constant c, then the majority of edges of G lie in zero
copies of H, and thus it is not surprising that G does not “robustly” contain H; we should
be able to color E(G) and destroy all copies of H. On the other hand, if p ⩾ CN−1/m2(H) for
a large constant C, then most edges of G lie in very many copies of H, and we expect a great
deal of interaction between the copies, such that destroying all of them becomes impossible
no matter how we color the edges. While this is a good heuristic explanation, turning it into
a proof is substantially harder, and we will not do so in this course.

However, Theorem 17.5 does allow us to easily prove results along the lines of Theo-
rem 17.3. One can actually prove Theorem 17.3 as a consequence of (a more precise version
of) Theorem 17.5, but we will content ourselves with proving the following weakening of The-
orem 17.3, which generalizes Proposition 17.2 (which corresponds to the case k = 3, q = 2).

Proposition 17.6. For every k ⩾ 3 and q ⩾ 2, there exists a graph G which is q-color
Ramsey for Kk, but Kk+3 ⊈ G.

Proof. We begin by observing that

e(Kk)− 1

v(Kk)− 2
=

(
k
2

)
− 1

k − 2
=
k2 − k − 2

2(k − 2)
=
k + 1

2
.

It is not hard to check that e(J)−1
v(J)−2

is strictly smaller for any proper subgraph J ⊊ Kk, hence

m2(Kk) =
k+1
2
. By Theorem 17.5, there is a constant C > 0 such that the following holds. If

12I am cheating a bit here; really, I should be counting copies of the subgraph J ⊆ H achieving the
maximum in the definition of m2(H).
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we pick an N -vertex graph randomly by including each edge independently with probability

p := CN− 2
k+1 , then G is q-color Ramsey for H with probability tending to 1 as N → ∞. In

particular, if N is sufficiently large, then this probability is at least 2
3
.

On the other hand, by the union bound, the probability that Kk+3 ⊆ G is at most(
N

k + 3

)
p(

k+3
2 ) < C(

k+3
2 ) ·Nk+3 ·N− 2

k+1(
k+3
2 ) = C(

k+3
2 ) ·N−( 2

k+1(
k+3
2 )−(k+3)). (9)

We have that

2

k + 1

(
k + 3

2

)
− (k + 3) =

(k + 3)(k + 2)

k + 1
− (k + 3) = (k + 3)

(
k + 2

k + 1
− 1

)
> 0.

Hence, the exponent on N is negative in (9), so the probability that Kk+3 ⊆ G tends to 0 as
N → ∞. In particular, by picking N sufficiently large, we can ensure that Kk+3 ⊈ G with
probability at least 2

3
.

Therefore, with positive probability, G satisfies both the desired properties, proving the
claimed result.

Before ending this section, let us briefly discuss one further recent breakthrough on the
structure of restricted Ramsey graphs, due to Reiher and Rödl.

Definition 17.7. Let H be a graph. We say that another graph F is Ramsey obligatory for
H if the following holds. For every sufficiently large q and every graph G which is q-color
Ramsey for H, we have F ⊆ G.

In this language, we can restate Proposition 17.6 as saying that Kk+3 is not Ramsey
obligatory for Kk, and Theorem 17.3 (or more precisely its multicolor extension, which
follows from Theorem 17.4) states that Kk+1 is not Ramsey obligatory for H. On the other
hand, we can easily show that certain graphs are Ramsey obligatory for H. For example, H
itself is Ramsey obligatory for H—if G is Ramsey for H, then certainly G contains H as a
subgraph!

To keep things concrete, let’s specialize to the case H = K3. Then we know that K3 is

Ramsey obligatory for K3, but K4 is not. On the other hand, the graph F = , obtained
by gluing two triangles along an edge, is also Ramsey obligatory. Indeed, if G is an F -free
graph, then all the triangles in G are edge-disjoint, so certainly we can color E(G) and avoid
all monochromatic triangles. More generally, we make the following definition.

Definition 17.8. Triangle trees are the class of graphs defined recursively as follows.

• K3 is a triangle tree.

• Given a triangle tree T , we can obtain a new triangle tree T ′ by picking an edge of T
and gluing a new triangle to it.

A typical triangle tree might look something like the following.
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It is not hard to show the following fact; the proof is left for the homework.

Proposition 17.9. If F is a subgraph of a triangle tree, then F is Ramsey obligatory for
K3.

The astonishing theorem of Reiher and Rödl is that this sufficient condition is also nec-
essary.

Theorem 17.10 (Reiher–Rödl). A graph F is Ramsey obligatory for K3 if and only if F is
a subgraph of a triangle tree.

Said differently, given any graph F which is not a subgraph of a triangle tree, Reiher and
Rödl are able to construct a graph G which is q-color Ramsey for K3, yet does not contain
F as a subgraph. In particular, since one can check that K4 is not a subgraph of a triangle
tree, this implies the k = 3 case of Theorem 17.3.

In fact, their theorem is vastly more general than this, and implies many strengthenings
of Theorem 17.4. Somewhat more surprisingly, it appears that even for proving a result like
Theorem 17.10, one actually has to prove these much more general results; their proof is
based on a very complicated inductive argument, and in order to make the induction work
one has to maintain a very general inductive statement.

18 Book recommendations

If you want to learn more about extremal combinatorics, Ramsey theory, or related topics,
here are a few wonderful books.

• László Lovász, Combinatorial problems and exercises

• Yufei Zhao, Graph theory and additive combinatorics

• Dhruv Mubayi and Jacques Verstraete, Extremal graph and hypergraph theory (not yet
published, but soon!)

• Ron Graham, Bruce Rothschild, and Joel Spencer, Ramsey theory

• Jǐŕı Matoušek, Thirty-three miniatures

• Noga Alon and Joel Spencer, The probabilistic method

• My lecture notes on Ramsey theory (which were the origin of much of these lecture
notes!): https://n.ethz.ch/~ywigderson/math/static/RamseyTheory2024Lectur
eNotes.pdf
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