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Before moving on, let me just mention one convenient way to think about Turán’s theorem
is as follows. Note that (

n

2

)
=
n2

2
− n

2
= (1 + o(1))

n2

2
.

This shows that

tr−1(n) =

(
1− 1

r − 1
+ o(1)

)
n2

2
=

(
1− 1

r − 1
+ o(1)

)(
n

2

)
.

Note that an n-vertex graph can have anywhere between 0 and
(
n
2

)
edges. So Turán’s theorem

implies that aKr-free n-vertex graph can have at most, asymptotically, a 1−1/(r−1) fraction
of all possible edges.

4 Beyond Turán’s theorem

Turán’s theorem is great, and tells us exactly what ex(n,Kr) is for any r. But we started this
class by asking about ex(n,H) for general H; what can we say about that? In general, we’d
probably expect this problem to be really hard, and the answer should depend in complicated
ways on the fixed graph H.

But it turns out that’s not the case! Kind of amazingly, the answer depends, essentially,
on a single parameter of the graph H—its chromatic number.

Theorem 4.1 (Erdős–Stone(–Simonovits) 1946 (1966)). For any graph H,

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

Remark.

• This is sometimes called the Fundamental Theorem of Extremal Graph Theory, for
hopefully obvious reasons: it more or less completely resolves the main question that
we started with.

• The history (and naming) of this theorem is a bit confusing. Erdős and Stone proved
a special case of it in 1946. In 1966, Erdős and Simonovits realized that the special
case actually implies (with a one-line implication) the general case, which had not been
really studied before. We will soon see the special case, and how it implies the general
case.

• Notice that if H is bipartite (i.e. if χ(H) = 2), then 1 − 1/(χ(H) − 1) = 0. So the
theorem simply says that if H is bipartite, then

ex(n,H) = o(1) ·
(
n

2

)
,
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which we usually write as ex(n,H) = o(n2). In other words, if G is an n-vertex graph
containing no copy of some fixed bipartite graph H, then G must have very few edges—
its number of edges grows sub-quadratically in n. Said differently, the fraction of all
possible edges that we can put in such a graph is a vanishingly small fraction; the
fraction tends to 0 as n→ ∞.

Already this statement is far from obvious, and we’ll soon prove it. In fact, as we’ll
see, proving the statement for bipartite H implies, in a certain sense, the full Erdős–
Stone–Simonovits theorem.

The next few lectures will be spent on proving the Erdős–Stone–Simonovits theorem. To
do so, we’ll prove upper and lower bounds on ex(n,H) of the form (1−1/(χ(H)−1)+o(1))

(
n
2

)
.

In fact, we can easily dispense with the lower bound.

Proposition 4.2. For any fixed graph H and integer n,

ex(n,H) ⩾ tχ(H)−1(n) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

Proof. We claim that the Turán graph Tχ(H)−1(n) has no copy of H. Indeed, suppose we had
some vertices in Tχ(H)−1(n) that defined a copy of H. Give the parts of Tχ(H)−1(n) names,
say V1, . . . , Vχ(H)−1. Then note that any two vertices of H that lie in the same part Vi cannot
be adjacent in H, since Tχ(H)−1(n) has no edges inside any part Vi. Said differently, if we
assign to any vertex v of H the number i so that v ∈ Vi, then two adjacent vertices are
assigned different numbers. In other words, this yields a proper coloring of H with χ(H)− 1
colors. But this contradicts the definition of the chromatic number.

5 Extremal numbers of bipartite graphs

5.1 Upper bounds

Let H be a bipartite graph. Recall that the Erdős–Stone–Simonovits theorem implies that
in this case, ex(n,H) = o(n2), or equivalently that

lim
n→∞

ex(n,H)

n2
= 0.

This is pretty surprising! For example, the complete bipartite graph K⌊n/2⌋,⌈n/2⌉ has ⌊n2/4⌋
edges and no copy of any odd cycle C2ℓ+1. Thus, ex(n,C2ℓ+1) ⩾ ⌊n2/4⌋ for all ℓ. But the
four-cycle (or any other even cycle) is bipartite, so the Erdős–Stone–Simonovits theorem
implies that ex(n,C4) = o(n2). What’s up with that?

We will shortly prove that in fact, ex(n,C4) ⩽ O(n3/2). In case you haven’t seen it before,
the big-O notation means that ex(n,C4) ⩽ Cn3/2 for some absolute constant C, which we
won’t specify. In other words, we will shortly prove that if G is an n-vertex graph with at
least Cn3/2 edges, then G has a copy of C4, assuming C is an appropriately chosen constant.
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As a warm-up, we will begin with an easier special case of this result, which is the case when
G is d-regular (i.e. every vertex in G has degree d). Recall that in any graph, the sum of the
degrees of all the vertices equals twice the number of edges, so if G is d-regular then it has
dn/2 edges. Thus, if G has Cn3/2 edges and is d-regular, then d = 2C

√
n.

Proposition 5.1. Let G be a d-regular n-vertex graph. If d ⩾ 2
√
n, then G contains a copy

of C4.

Proof. Suppose for contradiction that G is C4-free. We count the number of copies of K1,2

in G, where K1,2 = consists of one central vertex adjacent to two outer vertices.
On the one hand, if we sum over all possibilities for the central vertex, we see that

#(K1,2 in G) =
∑

v∈V (G)

#(K1,2 with central vertex v) =
∑

v∈V (G)

(
deg(v)

2

)
= n

(
d

2

)
.

On the other hand, suppose we fix some u,w ∈ V (G). We claim that they can be the outer
vertices of at most one copy of K1,2. Indeed, if not, then we would have two K1,2s agreeing
on the outer vertices, which yields a copy of C4, a contradiction. So we conclude that

#(K1,2 in G) =
∑

u,w∈V (G)
distinct

#(K1,2 with outer vertices u,w) ⩽
∑

u,w∈V (G)
distinct

1 =

(
n

2

)
.

Rearranging, we see that

n

(
d

2

)
⩽

(
n

2

)
⇐⇒

(
d

2

)
⩽
n− 1

2
⇐⇒ d(d− 1) ⩽ n− 1.

But if d ⩾ 2
√
n and n ⩾ 0, then this is a contradiction.

To prove the real result, we will need one extraordinarily useful analytic tool, called
Jensen’s inequality. We will actually only need the following special case. For a real number
x and a positive integer r, we extend the definition of the binomial coefficient as(

x

r

)
=
x(x− 1)(x− 2) · · · (x− r + 1)

r!
.

Lemma 5.2 ((Consequence of) Jensen’s inequality). Let r ⩾ 1 be a positive integer, and let
x1, . . . , xn be non-negative integers. Suppose that 1

n

∑n
i=1 xi ⩾ r. Then

n∑
i=1

(
xi
r

)
⩾ n

(
1
n

∑n
i=1 xi
r

)
.

The point of this is that if we add up terms of the form
(
xi

r

)
, we can only decrease the

sum if we replace each xi by the average of all the xi. One says that the function x 7→
(
x
r

)
is

convex : the sum of its values is minimized when all the variables are equal (to their average).
We won’t prove Jensen’s inequality in class, but its proof is on the homework if you’re

interested. Once we have Jensen’s inequality, we can easily prove the full result that
ex(n,H) ⩽ O(n3/2). In fact, we will prove the following much more general result.

9



PCMI 2025 Extremal graph theory and Ramsey theory Yuval Wigderson

Theorem 5.3 (Kővári–Sós–Turán 1954). For positive integers s ⩽ t, we have

ex(n,Ks,t) ⩽ O(n2−1/s).

Here, the implicit constant may depend on s and t (which we think of as fixed).

Proof. We proceed much as in the proof of Proposition 5.1. Let G be an n-vertex graph
with at least Cn2−1/s edges, where C is some large constant we will pick later. Let d be the
average degree in G, so that d = 2

n
e(G) ⩾ 2Cn1−1/s. Suppose for contradiction that G is

Ks,t-free. We count the number of copies of K1,s in G in two ways. First, by summing over
the options for the central vertex, we have that

#(K1,s in G) =
∑

v∈V (G)

(
deg(v)

s

)
⩾ n

(
d

s

)
,

using Lemma 5.2, as well as the fact that d ⩾ s by picking C sufficiently large. On the other
hand, by counting over the s outer vertices of K1,s, we have that every u1, . . . , us ∈ V (G)
can be the outer vertices of at most t− 1 copies of K1,s. So

#(K1,s in G) ⩽
∑

u1,...,us∈V (G)
distinct

(t− 1) = (t− 1)

(
n

s

)
.

Combining these, we see that

(t−1)

(
n

s

)
⩾ n

(
d

s

)
⇐⇒ (t−1)(n−1)(n−2) · · · (n−s+1) ⩾ d(d−1) · · · (d−s+1).

Now, if n is very large (which is the regime we care about anyway), all this subtracting stuff
doesn’t matter. So this is roughly equivalent to

(t− 1)ns−1 ⩾ ds ⇐⇒ d ⩽ (t− 1)1/sn1−1/s.

If C is sufficiently large, then this is a contradiction. Moreover, if C is sufficiently large, then
the slightly sketchy step above where we dropped the subtractions is also OK, and we get
the desired contradiction.

Note that C4 = K2,2, so in the case s = t = 2, we indeed get the claimed bound of
ex(n,C4) ⩽ O(n3/2).
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