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There are a number of important consequences of the Kővári–Sós–Turán theorem. The
first is that it immediately gives us a bound on ex(n,H) for all bipartite H. Indeed, note
that if H1 is a subgraph of H2, then

ex(n,H1) ⩽ ex(n,H2)

for all n, as any H1-free graph is also H2-free. Now, if H is a bipartite graph, then H is a
subgraph of Ks,t for some s ⩽ t. So

ex(n,H) ⩽ ex(n,Ks,t) ⩽ O(n2−1/s).

In particular, this proves that ex(n,H) = o(n2) = o(1) ·
(
n
2

)
for bipartite H. Indeed,

lim
n→∞

ex(n,H)

n2
⩽ lim

n→∞

O(n2−1/s)

n2
= lim

n→∞
O(n−1/s) = 0.

Recall that this was a consequence of the Erdős–Stone–Simonovits theorem.

5.2 Lower bounds

How good are the upper bounds we proved? Let’s begin with the one we started with,
ex(n,C4) ⩽ O(n3/2). Can we construct an n-vertex C4-free graph with roughly that many
edges?

As it turns out, we can! The following construction was originally due to Eszter Klein in
1938 (as reported in a paper of Erdős). Note that this is before Turán’s theorem, so before
the birth of extremal graph theory! As such, no one really appreciated what this construction
was or meant, and it was later rediscovered by Erdős, Rényi, and Sós (and independently
Brown). These days, it is often called the “Erdős–Rényi” construction, which I find a little
odd, both because they weren’t the first to discover it, and because there are many other
things named after Erdős and Rényi.

Theorem 5.4 (Klein 1938). For every n ⩾ 1, there is an n-vertex C4-free graph with at
least n3/2/64 edges.

Proof. First, suppose that n = 2p2 for some prime p; we will later get rid of this assumption.
Consider the integers mod p, which form a field that we denote Fp. (If you don’t know what
the word “field” means, just believe me that among the integers mod p, we can use addition,
multiplication, and division and have them work basically the same way they do in R.)

Let F2
p denote the two-dimensional plane over Fp, i.e. the set of points (x, y) with x, y ∈ Fp.

For m, b ∈ Fp, let ℓm,b denote the line y = mx + b in F2
p. In other words, ℓm,b is the set of

points (x, y) ∈ F2
p satisfying y = mx+ b.

We define a bipartite graph G with parts P,L, where P = F2
p and L = {ℓm,b : m, b ∈ Fp}.

The edges of G are given by incidence: we connect (x, y) ∈ P to ℓm,b ∈ L if and only if (x, y)
lies on the line ℓm,b, i.e. if and only if y = mx+ b.
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Note that |P | = |L| = p2, so G has n = 2p2 vertices. Moreover, every line ℓm,b ∈ L has
exactly p points on it, so every vertex in L has degree p in G. Therefore, e(G) = p|L| =
p3 = (n/2)3/2.

Finally, we claim that G is C4-free. To see this, note that G is bipartite, so the only way
we could have a copy of C4 in G is to have distinct p1, p2 ∈ P and distinct ℓ1ℓ2 ∈ L so that
p1ℓ1p2ℓ2 forms a 4-cycle. But this means that p1 lies on the lines ℓ1, ℓ2, and that p2 also lies
on both these lines. So we have two lines which intersect at two distinct points!

Using our intuition from R, we expect this to be impossible, and it’s impossible over Fp

as well. Formally, let p1 = (x1, y1) and p2 = (x2, y2), and ℓ1 = ℓm1,b1 , ℓ2 = ℓm2,b2 . Then we
have the equations

y1 = m1x1 + b1 y2 = m1x2 + b1

y1 = m2x1 + b2 y2 = m2x2 + b2

Rearranging the first column, we see that m1x1 + b1 = m2x1 + b2, or equivalently that
(m2 −m1)x1 = b1 − b2. If m1 = m2 then this implies that b1 = b2, contradicting that ℓ1, ℓ2
are distinct. So we have that m1 ̸= m2, so x1 = (b1 − b2)/(m2 −m1). But from the second
column of equations, we conclude that x2 = (b1 − b2)/(m2 −m1) as well, so x1 = x2. But if
we plug this into any of the equations, we conclude that y1 = y2, and thus that p1 = p2, a
contradiction. So G is C4-free.

The only remaining thing is to deal with the fact that n need not equal twice the square
of a prime. So let n be arbitrary. There is an important result in number theory, called
Bertrand’s postulate, which says that there is always a prime between m and 2m for all
positive integers m. Let m = ⌊

√
n/4⌋, and let p be a prime between m and 2m, so that

n/8 ⩽ 2p2 ⩽ n. Using the construction above, we obtain a C4-free graph G on 2p2 vertices
with p3 edges. We add to this graph n− 2p2 isolated vertices, and we obtain a new C4-free
n-vertex graph with p3 ⩾ (n/16)3/2 = n3/2/64 edges.

Using these finite fields and finite geometries might seem like a neat trick, but it turns
out that it’s essentially the only thing one can do. Indeed, all constructions we know of
for C4-free graphs with many edges use such techniques. Moreover, there is a powerful
result of Füredi, which says that for those n for which such a construction (appropriately
defined) exists, the unique C4-free n-vertex graph with the most edges comes from such a
construction.

So we conclude that ex(n,C4) = Θ(n3/2), where the big-Θ means that we have upper and
lower bounds that agree up to a constant factor. Since ex(n,K2,t) ⩾ ex(n,C4) for all t ⩾ 2,
we conclude that ex(n,K2,t) = Θ(n3/2) for all t ⩾ 2.

What about ex(n,K3,3)? We proved in Theorem 5.3 that ex(n,K3,3) ⩽ O(n5/3). As it
turns out, this is also tight.

Theorem 5.5 (Brown 1966). For every n, there exists an n-vertex K3,3-free graph G with
n5/3/100 edges.

Proof sketch. I won’t present the proof in detail, but will explain the big idea. Suppose that
n = p3. Construct a graph G with vertex set F3

p, where we connect two vertices (x, y, z) and
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(x′, y′, z′) by an edge if and only if

(x− x′)2 + (y − y′)2 + (z − z′)2 = 1.

In other words, the neighborhood of any vertex looks like a “unit sphere” centered at that
vertex, except that “spheres” don’t really exist over Fp.

Nonetheless, if we were working in R3, then we’d expect that any three unit spheres can
intersect in at most two points: two unit spheres can intersect in a circle, and that circle can
intersect a thid unit sphere in only two points. So we’d expect that G is K3,3-free, since any
three vertices have at most two common neighbors.

Since we expect a sphere to be “two-dimensional”, we should expect every unit sphere
to have roughly p2 points on it, and this turns out to be true. So G has n = p3 vertices, and
every vertex has degree around p2, so we expect e(G) ≈ p5 = n5/3.

All of this intuition can be made precise, some of it with some annoyance. For example, it
turns out that this only really works if p ≡ 3 (mod 4). But the high-level idea is correct.

So we see that the Kővári–Sós–Turán theorem is best possible (up to the constant factor)
for s = 2 and s = 3. The case of s = 1 is much easier, but it’s also best possible there,
as you’ll see on the homework. So it is natural to conjecture, as many have done, that the
Kővári–Sós–Turán theorem is tight in general.

Conjecture 5.6 (Many people). For all s ⩽ t,

ex(n,Ks,t) = Θ(n2−1/s).

Moreover, based on what I’ve told you so far, it is natural to expect that not only is this
conjecture proved, but that the constructions look kind of the same as above. You work with
the s-dimensional space Fs

p over the field Fp, and use some kind of cleverly chosen polynomial
or set of polynomial equations to define the adjacency condition. However, despite many
people having this same idea, Conjecture 5.6 remains unproved. Moreover, many experts in
the field now even question whether it is true.

Nonetheless, some other things are known about ex(n,Ks,t). Namely, it is known that
ex(n,Ks,t) = Θ(n2−1/s) if t is sufficiently large compared to s. The first result of this type is
due to Kollár, Rónyai, and Szabó in 1996, who proved that

ex(n,Ks,t) = Θ(n2−1/s) if t > s!.

To do this, they constructed a Ks,t-free graph, again using the space Fs
p, called the norm

graph. Their construction was later modified by Alon, Rónyai, and Szabó in 1999, who
defined a similar graph called the projective norm graph (again over Fs

p), which implies that

ex(n,Ks,t) = Θ(n2−1/s) if t > (s− 1)!.

So, for example, we know that ex(n,K4,7) = Θ(n7/4), but have no such lower bound for
ex(n,K4,4).

For about 20 years, the Alon–Rónayi–Szabó result was the best known. But very recently,
Bukh proved the following theorem.
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Theorem 5.7 (Bukh 2021). Suppose s ⩾ 2 and t ⩾ 9s · s4s2/3 are integers. Then

ex(n,Ks,t) = Θ(n2−1/s).

The key point is that for large s, the previous bound on t, namely (s− 1)!, grew super-
exponentially in s. But Bukh’s bound, for large s, grows merely exponentially in s. The key
to Bukh’s construction is again to work over Fs

p, but not to pick a clever polynomial. Instead,
he picks a random polynomial, and then uses arguments from probability, combinatorics, and
algebraic geometry to prove that the resulting graph is Ks,t-free with positive probability.

While similar algebraic constructions exist for certain specific bipartite H, there is essen-
tially only one general-purpose lower bound that is known. In general, algebraic techniques
like the ones described above are the best techniques we have for constructing lower bounds,
but they often rely on specific structures that we can exploit. The following bound holds for
any bipartite graph.

Given a graph H, we define its 2-density to be

m2(H) := max
F⊆H

e(F )− 1

v(F )− 2
.

Theorem 5.8. For any bipartite H, we have

ex(n,H) ⩾ Ω(n2−1/m2(H)).

The proof of Theorem 5.8 uses the probabilistic method, and I won’t cover it in class. But
at a high level, the idea is to pick a random graph G with n vertices and roughly n2−1/m2(H)

edges. One can then show that with positive probability, the number of copies of H in G is
less than half the number of edges of G. By deleting a single edge from each copy of H, we
obtain a graph with half as many edges—so still Ω(n2−1/m2(H))—and no copy of H.

6 Extremal numbers of hypergraphs

It’s time for everything to get more hyper.
If we go back to bare basics, a graph is a collection V of vertices, plus a collection E of

edges, which are simply unordered pairs of vertices. Why restrict ourselves to pairs?

Definition 6.1. A k-uniform hypergraph (sometimes called an k-graph for short) consists
of a finite collection V of vertices, as well as a collection E of k-uniform hyperedges, which
are simply subsets of V of size k.

As with graphs, we say that one k-graph H is a subhypergraph (or simply subgraph) of
another k-graph G if we can obtain H from G by deleting some vertices and edges. We say
that G is H-free if G does not contain H as a subgraph (and we also say that G has no copy
of H).

As with graphs, we define the extremal number of H as

ex(n,H) = max{e(G) : G is an n-vertex H-free k-graph}.
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In contrast to graphs (the case k = 2), we know extraordinarily little about ex(n,H) for
k-graphs H with k ⩾ 3. For example, even the hypergraph analogue of Mantel’s theorem is
a famous open problem. To explain this formally, we make the following definition.

Definition 6.2. The complete k-graph on r vertices, denoted K
(k)
r , is the k-graph with r

vertices whose edge set consists of all subsets of size k.

Then the amazing fact is that for any k > r ⩾ 3, we do not know the value of ex(n,K
(k)
r ).

For literally no pair of (r, k)! This problem was proposed by Turán already in 1941, and he
made the following conjecture, which is a natural analogue of Mantel’s theorem.

Conjecture 6.3 (Turán 1941).

ex(n,K
(3)
4 ) =

(
5

9
+ o(1)

)(
n

3

)
.

The reason for 5/9 is a specific construction of an n-vertex K
(3)
4 -free 3-graph, which

Turán came up with, and which was the best he could come up with. You’ll see Turán’s
construction on the homework.

Erdős offered $500 for the resolution of Conjecture 6.3, and $1000 for a general formula
for ex(n,K

(k)
r ). So far, very little progress has been made on these questions. The best

known bound for ex(n,K
(3)
4 ) is due to Razborov, who proved that

ex(n,K
(3)
4 ) ⩽ (0.561666 + o(1))

(
n

3

)
.

Note that 5/9 = 0.555 . . . , so this is pretty close to Turán’s conjecture. Unfortunately,
Razborov’s technique is unlikely to yield the full resolution of Conjecture 6.3, because his
technique uses a computer to do complicated computations to what is essentially a “finite
approximation” to the problem.

In general, the best known lower bound is due to de Caen, who proved that

ex(n,K(k)
r ) ⩽

(
1− 1(

r−1
k−1

) + o(1)

)(
n

k

)
.

The best known general lower bound, due to Sidorenko, is

ex(n,K(k)
r ) ⩾

(
1−

(
k − 1

r − 1

)k−1

+ o(1)

)(
n

k

)
.

In the case of k = 3, this says that

ex(n,K(3)
r ) ⩾

(
1−

(
2

r − 1

)2

+ o(1)

)(
n

3

)
,

and this was conjectured to be optimal by Turán. You’ll see the construction in the home-
work.
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