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Despite not knowing the hypergraph analogues of Mantel’s or Turán’s theorems, the
hypergraph analogue of the Kővári–Sós–Turán theorem is known, and is due to Erdős (1965).
To state this, we need to define the hypergraph analogue of a bipartite graph.

Definition 6.4. A k-graph H is called k-partite if its vertex set can be split into k parts,
so that every hyperedge of H contains exactly one vertex from each part.

The complete k-partite k-graph with parts of sizes s1, . . . , sk, denoted K
(k)
s1,...,sk , is the k-

graph with parts of sizes s1, . . . , sk, containing every edge with exactly one vertex from each
part.

Note that in case k = 2, this simply recovers the definition of a bipartite graph and a
complete bipartite graph. Because of this, the following result generalizes the Kővári–Sós–
Turán theorem.

Theorem 6.5 (Erdős 1965). Let s1 ⩽ · · · ⩽ sk be positive integers. Then

ex(n,K(k)
s1,...,sk

) ⩽ O
(
n
k− 1

s1s2···sk−1

)
.

The most important thing here is that any n-vertex k-graph has at most
(
n
k

)
= Θ(nk)

hyperedges. So this upper bound has a smaller exponent on n. This implies that if H is any
k-partite k-graph, then

ex(n,H) = o(1) ·
(
n

k

)
.

The upper bound in Theorem 5.3 is still the best upper bound we have on extremal
numbers of k-partite k-graphs. Moreover, as in the case of graphs, it is known that the
bound in Theorem 6.5 is best possible if sk is sufficiently large with respect to s1, . . . , sk−1.

The proof of Theorem 6.5 very similar to that of Theorem 5.3, except that we combine
it with an induction on k. To keep the notation from getting too crazy, we will only prove
it in the case k = 3, which we will derive from the case k = 2, i.e. the Kővári–Sós–Turán
theorem. Also, we will only prove it in the case s1 = s2 = s3 = s, i.e. we will prove that

ex(n,K(3)
s,s,s) ⩽ O(n3−1/s2). (2)

Hopefully you’ll believe me (or convince yourself that it’s true if you don’t!) that the general
result follows from the same technique, just with more bookkeeping.

Proof of (2). Let G be an n-vertex 3-graph with at least Cn3−1/s2 hyperedges, for some

constant C > 0 we will pick later. Suppose for contradiction that G is K
(3)
s,s,s-free. Let X be

the number of copies of K
(3)
1,1,s in G. We bound X in two ways.

First, for a pair of distinct vertices v, w, let codeg(v, w) denote the number of hyperedges
containing both v and w. Then we first claim that∑

v,w∈V (G)
distinct

codeg(v, w) = 3e(G).
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This is true for the same reason that the sum of the degrees in a graph equals twice the
number of edges. Namely, every hyperedge of G appears exactly three times in the sum on
the left-hand side.

Using this, we see that by Jensen’s inequality,

X =
∑

v,w∈V (G)
distinct

(
codeg(v, w)

s

)
⩾

(
n

2

)( 1

(n2)

∑
v,w codeg(v, w)

s

)
=

(
n

2

)(
3e(G)/

(
n
2

)
s

)
.

Note too that since e(G) ⩾ Cn3−1/s2 , we have that 3e(G)/
(
n
2

)
⩾ Ω(n1−1/s2). This implies

that

X ⩾

(
n

2

)(
3e(G)/

(
n
2

)
s

)
⩾ cn2 · (Cn1−1/s2)s = cCsn2+s−1/s

for some absolute constant c > 0, depending only on s.
On the other hand, we may upper-bound X by counting over s-sets of vertices which

can be the “outer” vertices of the K
(3)
1,1,s. Namely, fix distinct u1, . . . , us ∈ V (G). We define

a new graph (note: not a hypergraph, a graph) G(u1, . . . , us) as follows. The vertex set of
G(u1, . . . , us) is V (G) \ {u1, . . . , us}. Moreover, given v, w ∈ V (G) \ {u1, . . . , us}, we make

vw an edge of G(u1, . . . , us) if and only if {v, w, u1, . . . , us} form a copy of K
(3)
1,1,s.

Now, for every choice of u1, . . . , us, we claim that G(u1, . . . , us) is a Ks,s-free graph.

Indeed, if we had a copy of Ks,s in G(u1, . . . , us), then we would find a copy of K
(3)
s,s,s in G,

which is a contradiction. So by the Kővári–Sós–Turán theorem, we know that

e(G(u1, . . . , us)) ⩽ O(n2−1/s)

for every choice of distinct u1, . . . , us ∈ V (G).
We can use this to upper-bound X, as follows. Note that e(G(u1, . . . , us)) is precisely

the number of copies of K
(3)
1,1,s that have u1, . . . , us as the outer vertices. This implies that

X =
∑

u1,...,us∈V (G)
distinct

e(G(u1, . . . , us)) ⩽
∑

u1,...,us∈V (G)
distinct

O(n2−1/s) =

(
n

s

)
·O(n2−1/s) = O(n2+s−1/s).

Combining our upper and lower bounds on X, we see that

cCsn2+s−1/s ⩽ O(n2+s−1/s),

where both c and the implicit constant in the big-O depend only on s. Thus, if we pick C
sufficiently large, this is a contradiction, and we conclude that G has a copy of K

(3)
s,s,s.

7 Supersaturation

In this section, we discuss a special case of a very important phenomenon in extremal combi-
natorics, known as supersaturation. Roughly speaking, extremal combinatorics proves results
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of the type “if some discrete structure is sufficiently ‘large’, then it contains at least one copy
of some other structure”. The example we’ve seen of this is Turán’s theorem: if a graph
(discrete structure) has sufficiently many edges (is large) then it contains a Kk subgraph (a
copy of some other structure). Supersaturation, in general, boosts this to a statement of the
type “if the discrete structure is just a bit larger, then it contains very many copies of the
other structure”. Specifically, we’ll prove the following supersaturation version of Turán’s
theorem. It was first explicitly stated by Erdős and Simonovits in 1983, but it can implicitly
be found in earlier works, e.g. of Erdős from 1971.

Theorem 7.1. For every integer k ⩾ 3 and every real number ε > 0, there exists some δ > 0
so that the following holds for all sufficiently large n. If G is an n-vertex graph with

e(G) ⩾

(
1− 1

k − 1
+ ε

)(
n

2

)
,

then G contains at least δ
(
n
k

)
copies of Kk.

Note that G has at most
(
n
k

)
copies of Kk, so this theorem is pretty remarkable: it says

that once we have just barely more edges than the Turán graph, we have not only one copy
of Kk, but a constant proportion of all possible copies of Kk. To prove this theorem, we need
the following useful lemma, which is stated in greater generality than we need.

For a graph G and a subset M ⊆ V (G), we denote by e(M) the number of edges entirely
contained in M , or equivalently the number of edges in the induced subgraph G[M ].

Lemma 7.2. Let 0 < α < β < 1 be real numbers, let m ⩾ 2 be an integer, and let G be an
n-vertex graph with n ⩾ m. Assume that e(G) ⩾ β

(
n
2

)
. Then the number of sets M ⊆ V (G)

with |M | = m and e(M) ⩾ α
(
m
2

)
is at least (β − α)

(
n
m

)
.

Proof. The key identity which underlies this proof is(
n− 2

m− 2

)
e(G) =

∑
M⊆V (G)
|M |=m

e(M).

This has a simple bijective proof. On the right-hand side, every edge uv is counted a number
of times, and that number of times is simply the number of m-sets M which contain both u
and v. But the number of such m-sets is exactly

(
n−2
m−2

)
, yielding the formula.

Now, let M0 denote the set of M with e(M) < α
(
m
2

)
, and let M1 denote the set of M

with e(M) ⩾ α
(
m
2

)
. So our goal is to prove a lower bound on |M1|. Continuing the identity

above, we can write (
n− 2

m− 2

)
e(G) =

∑
M∈M0

e(M) +
∑

M∈M1

e(M)

⩽
∑

M∈M0

α

(
m

2

)
+
∑

M∈M1

(
m

2

)
=

(
m

2

)
(α|M0|+ |M1|)
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since every m-set in M0 has at most α
(
m
2

)
edges, and every m-set in M1 has at most

(
m
2

)
edges.

Note that |M0|+ |M1| =
(
n
m

)
. Let x = |M1|/

(
n
m

)
, so that 1− x = |M0|/

(
n
m

)
. Dividing by(

n
m

)(
m
2

)
, the above inequality yields(

n−2
m−2

)(
n
m

)(
m
2

)e(G) ⩽ α(1− x) + x = α + (1− α)x.

Now, we recall that e(G) ⩾ β
(
n
2

)
, so(

n−2
m−2

)(
n
m

)(
m
2

)e(G) ⩾ (
n−2
m−2

)(
n
2

)(
n
m

)(
m
2

) β.
The final step is another magic identity, which is that

(
n−2
m−2

)(
n
2

)
=
(
n
m

)(
m
2

)
; in other words,

the complicated fraction above is simply equal to 1. Indeed, both sides of this identity count
the same object, which is the number of ways of picking an m-set out of n objects, and then
picking 2 objects from the m-set.

Combining all these inequalities, we find that

β ⩽ α + (1− α)x ⇐⇒ x ⩾
β − α

1− α
,

which implies that

|M1| = x

(
n

m

)
⩾
β − α

1− α

(
n

m

)
⩾ (β − α)

(
n

m

)
,

as claimed.
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