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With this lemma, we are ready to prove the supersaturation theorem, Theorem 7.1.

Proof of Theorem 7.1. Fix ε > 0. Recall that tk−1(m) = (1− 1
k−1

+ o(1))
(
m
2

)
, where the o(1)

term tends to 0 as m → ∞. This implies that there is some fixed m, depending only on ε,
so that

tk−1(m) <

(
1− 1

k − 1
+
ε

2

)(
m

2

)
.

Let this m be fixed, and let n ⩾ m. Suppose that G is an n-vertex graph with at least
(1 − 1

k−1
+ ε)

(
n
2

)
edges. We apply Lemma 7.2 with β = 1 − 1

k−1
+ ε and α = 1 − 1

k−1
+ ε

2
.

Then Lemma 7.2 tells us that the number of m-sets M ⊆ V (G) with e(M) ⩾ (1− 1
k−1

+ ε
2
)

is at least ε
2

(
n
m

)
.

Every such m-set M has strictly more than tk−1(m) edges, so Turán’s theorem implies
that such an M contains a copy of Kk. In other words, we’ve found at least ε

2

(
n
m

)
copies of

Kk, except that we might have over-counted: each copy of Kk can be counted up to
(
n−k
m−k

)
times, since the k vertices of the Kk can appear in

(
n−k
m−k

)
different m-sets M .

So in total, the number of Kk in G is at least

ε
2

(
n
m

)(
n−k
m−k

) =
ε

2
·
(
n
m

)(
n−k
m−k

) =
ε

2
·
(
n
k

)(
m
k

) =
ε

2
(
m
k

)(n
k

)
,

where the middle equality uses the same magic identity as in the proof of Lemma 7.2, namely
that

(
n
m

)(
m
k

)
=
(
n
k

)(
n−k
m−k

)
.

To conclude, we recall that m depends solely on ε and k. Therefore, if we define δ =
ε/(2

(
m
k

)
), then this will only depend on ε and k, and that yields the desired result.

8 Proof of the Erdős–Stone–Simonovits theorem

We are finally ready to prove the Erdős–Stone–Simonovits theorem. We begin by observing
a simple reduction, due to Erdős and Simonovits, which says that to prove the bound on
ex(n,H) for all H, it suffices to prove it for a very special class of H. Let Kk[s] denote the
complete k-partite graph with parts of size s. (Note that this is the same graph as the Turán
graph Tk(ks).)

Proposition 8.1. Suppose that for all positive integers k, s, we have that

ex(n,Kk[s]) =

(
1− 1

k − 1
+ o(1)

)(
n

2

)
.

Then

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
for every graph H.
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Proof. We already proved the lower bound in the Erdős–Stone–Simonovits theorem, namely
that

ex(n,H) ⩾ tχ(H)−1(n) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

So it only suffices to prove the upper bound. Now, the key claim is that if H has chromatic
number k, then H is a subgraph of Kk[s] for some positive integer s. Indeed, if H has
chromatic number k, then we may split the vertices of H into k color classes, with the
property that no edge of H goes between two vertices in the same color class. If s is the
maximum size of one of the color classes, this precisely means that H is a subgraph of Kk[s].
But in that case, we see that

ex(n,H) ⩽ ex(n,Kk[s]) =

(
1− 1

k − 1
+ o(1)

)(
n

2

)
,

by assumption.

So it suffices to prove what is often called the Erdős–Stone theorem, namely the statement
that ex(n,Kk[s]) ⩽ (1− 1

k−1
+ o(1))

(
n
2

)
for every k, s. This is what we now do.

Proof of the Erdős–Stone theorem. Fix some ε > 0. Our goal is to prove that if n is suffi-
ciently large in terms of ε, k, and s, and if G is an n-vertex graph with

e(G) ⩾

(
1− 1

k − 1
+ ε

)(
n

2

)
edges, then G contains a copy of Kk[s].

By the supersaturation theorem, Theorem 7.1, we know that G has at least δ
(
n
k

)
copies

of Kk, where δ > 0 depends only on ε and k. We define a k-uniform hypergraph G whose
vertex set is V (G), and we make a k-tuple of vertices a hyperedge of G if and only if the
k-tuple defines a copy of Kk in G. Then we have that

e(G) = #(copies of Kk in G) ⩾ δ

(
n

k

)
.

Recall that by Theorem 6.5, we have that

ex(n,K(k)
s,s,...,s) ⩽ Cnk−1/sk−1

for some fixed constant C > 0. Now, if δ is fixed (which it is, since it only depends on ε and
k), and if n is sufficiently large, then

δ

(
n

k

)
> Cnk−1/sk−1

. (3)

This is because, as we’ve discussed previously,
(
n
k

)
grows as Θ(nk), and on the right-hand

side we have a smaller power of n. So as long as n is sufficiently large in terms of the other
parameters, we have that (3) holds.
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Thus, for sufficiently large n, we have that e(G) > ex(n,K
(k)
s,s,...,s), which implies that G

contains a copy of K
(k)
s,s,...,s. In other words, inside V (G), we can find k sets of s vertices each,

with the property that whenever we pick one vertex from each part, they yield a copy of Kk

in G. But that precisely means we have found a copy of Kk[s] in G, as claimed.

9 Beyond the Erdős–Stone–Simonovits theorem

The Erdős–Stone–Simonovits theorem gives a very satisfactory asymptotic answer to the
question of how large ex(n,H) is for any non-bipartite H. However, we could still ask about
more precise information. For example, when H is a complete graph, Turán’s theorem gives
us the exact value of ex(n,H) for all n, as well as a description of the unique extremal graph.
Can we get something like this for more general graphs H?

Unfortunately, the answer is “no” in general. And the reason, somewhat surprisingly, is
again that we don’t understand bipartite graphs that well! In fact, the extremal theory of
bipartite graphs is crucial to understanding the extremal theory of general graphs.

To understand this connection, let’s begin with a simple example that you already saw
on the homework. Let H0 be the following graph:

It is not hard to verify that χ(H0) = 3, so the Erdős–Stone–Simonovits theorem implies
that ex(n,H0) ⩽ t2(n) + o(n2). However, unlike the case of triangles, where we know that
ex(n,K3) = t2(n) exactly, for this graph H0 we do not have an equality. Indeed, let us begin
with the Turán graph T2(n), and call its two parts A and B. We now add a perfect matching
inside A, and let G be the resulting graph. Then e(G) = t2(n)+ ⌊n/4⌋, and we claim that G
is H0-free. This essentially boils down to a case check: we need to show that no matter how
we try to embed the five vertices of H0 into the two parts of G, we will fail. More precisely,
no matter how we assign the letters A and B to the vertices of H0, either we will label two
adjacent vertices by B, or we will label three vertices in a path by the letter A. In either
case, we see that this would not be a valid embedding of H0 into G, as B has no edges in G,
and A has no two-edge paths.

How can we generalize this simple example? One first natural thing to try is to more
generally understand for which graphs H, we do not have the equality ex(n,H) = tχ(H)−1(n),
that is, for which graphs H is the Turán graph not extremal. Thinking about the example
above, one can come up with the following definition.

Definition 9.1. A graph H is called color-critical if there is an edge e ∈ E(H) for which

χ(H \ e) < χ(H).

That is, H is color-critical if we can decrease its chromatic number by deleting a single edge.
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The example of H0 discussed above readily extends to the following simple fact.

Proposition 9.2. Let H be a graph with χ(H) ⩾ 3. If H is not color-critical, then

ex(n,H) > tχ(H)−1(n)

for all n.

Proof. Let G be obtained from the Turán graph Tχ(H)−1(n) by adding a single edge in one
of the parts (say the first part, for concreteness). We claim that G is H-free. Note that this
suffices to prove the proposition, as it implies that

ex(n,H) ⩾ e(G) = tχ(H)−1(n) + 1 > tχ(H)−1(n).

So suppose for contradiction that there were some copy of H in G. We use this to define
a function f : V (H) → Jχ(H)− 1K by mapping each vertex of H to the label of the part
of G containing that vertex. Note that f cannot be a proper coloring of H, as this would
contradict the definition of the chromatic number. Nonetheless, f is “almost” a proper
coloring: at most one pair of adjacent vertices receive the same value under f , and this value
must be 1. Indeed, since G contains no edges inside any part except the first one, the only
way we can get an edge both of whose endpoints have the same value is if f(u) = f(v) = 1,
and the copy of H in G uses the edge we inserted as the edge between u and v.

But this exactly shows that f is a proper (χ(H) − 1)-coloring of H \ e, where e = uv.
That is, f witnesses that

χ(H \ e) ⩽ χ(H)− 1,

contradicting our assumption that H is not color-critical.

A rather amazing theorem of Simonovits shows that this simple necessary condition is
actually sufficient!

Theorem 9.3 (Simonovits 1968). Let H be a color-critical graph with χ(H) ⩾ 3. Then for
all sufficiently large n,

ex(n,H) = tχ(H)−1(n).

Morever, Tχ(H)−1(n) is the unique extremal graph.

For example, all complete graphs are color-critical, so this recovers Turán’s theorem (at
least for sufficiently large n). But it does more; for example, one can check that every odd
cycle is color-critical, so Simonovits’ theorem implies that

ex(n,C2k+1) =

⌊
n2

4

⌋
for all sufficiently large n. Note that the requirement that n be sufficiently large is necessary,
since, for example, K4 is C5-free, hence

ex(4, C5) =

(
4

2

)
= 6 >

⌊
42

4

⌋
.
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We will shortly see a proof of Theorem 9.3 (at least in the case H = C5), but before we do,
let us try to learn a bit more about ex(n,H) when H is not color-critical. One can do better
than the argument we used in Proposition 9.2, as follows.

Definition 9.4. Let H be a graph with χ(H) ⩾ 3. A pseudo-coloring of H is a function
f : V (H) → Jχ(H)− 1K with the property that for all uv ∈ E(H), either f(u) ̸= f(v) or
f(u) = f(v) = 1. That is, adjacent vertices receive different colors, or they both receive
color 1.

Now, let B be a bipartite graph. We say that B is in the decomposition family of H if
for every pseudo-coloring f : V (H) → Jχ(H)− 1K, there is a copy of B among the vertices
colored 1 by f .

As an example, consider the octahedron graph O3:

It is not hard to see that χ(O3) = 3, and with a little casework, one can verify that C4 is in
the decomposition family of O3.

By adapting the proof of Proposition 9.2, we obtain the following.

Proposition 9.5. Let H be a graph with χ(H) ⩾ 3, and let B be a bipartite graph in the
decomposition family of H. We have that

ex(n,H) ⩾ tχ(H)−1(n) + ex

(⌈
n

χ(H)− 1

⌉
, B

)
.

Proof sketch. Let G be obtained from Tχ(H)−1 by inserting an extremal B-free graph into
the largest part. By the definition of the extremal function of B, we have that

e(G) = tχ(H)−1(n) + ex

(⌈
n

χ(H)− 1

⌉
, B

)
.

Moreover, G is H-free, for essentially the same reason as in the proof of Proposition 9.2: if
there were a copy of H in G, then we would obtain a pseudo-coloring of H in which the
vertices of color 1 are B-free, contradicting the assumption that B is in the decomposition
family of H.

Concretely, this argument demonstrates that

ex(n,O3) ⩾

⌊
n2

4

⌋
+ Ω(n3/2),

by our known lower bound for the extremal number of C4. In fact, a famous theorem of
Erdős and Simonovits shows that this is tight, in a very strong sense: every extremal O3-free

24



PCMI 2025 Extremal graph theory and Ramsey theory Yuval Wigderson

graph is obtained from a complete bipartite graph by putting an extremal C4-free graph in
one part, and a perfect matching in the other part. It is conjectured that this should happen
more generally, namely that the extremal number of H should be obtained by inserting
certain graphs into the parts of Tχ(H)−1(n), and ensuring that these inserted graphs avoid
all members of the decomposition family of H. This conjecture remains open in general
(and is probably quite difficult), but is known to hold in certain special cases. And in any
case, it demonstrates why determining the exact behavior of ex(n,H) really requires one to
understand extremal numbers of bipartite graphs, as the decomposition family of H is what
ends up mattering.
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