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12 Ramsey theory

Ramsey theory is the study of structure and of disorder. The main message of Ramsey
theory is that complete disorder is impossible—any sufficiently large system, no matter how
disordered, must contain within it some highly structured component. This general, highly
unintuitive, philosophy manifests itself in topics as diverse as computer science, number
theory, geometry, functional analysis, and, of course, graph theory, which is the topic we will
mostly be focused on.

However, as Ramsey theory has connections to so many other areas of mathematics and
beyond, we will also frequently pause to see how the results we have proved connect to
these other fields. This is, in fact, how we begin the course, with perhaps the first-ever
Ramsey-theoretic result, published by Issai Schur while Frank Ramsey was only fourteen
years old.

12.1 Ramsey theory before Ramsey

Like many other people, Schur was interested in Fermat’s last theorem, the statement that
the equation z? + y? = 2% has no non-trivial integer solutions z,y, z for any fixed ¢ > 3,
where a solution is trivial if 0 € {z,y, 2z} and non-trivial otherwise.

Proving Fermat’s last theorem is (very) hard, so let’s start with something simpler. There
are, of course, non-trivial integer solutions to the Pythagoras equation 22 + y? = 2z2. What
if we change the equation slightly, to, say, 22 +y? = 3227 After playing around with it for a
bit, you might be tempted to conjecture that now, there are no non-trivial integer solutions.

This conjecture is indeed true, and there is a standard technique in number theory for
proving such results. Namely, if there were some non-trivial solution z,y,z € Z to the
equation 22 +y? = 322, then there would also be a non-trivial? solution to the same equation
modulo 3, namely the equation 2?4y = 0 (mod 3). However, we know that that 12 = 22 = 1
(mod 3), and we can conclude that there do not exist non-trivial solutions modulo 3.

A similar argument can be used to prove that many other polynomial equations have
no non-trivial integer solutions, and a general phenomenon called the Hasse principle very
roughly says that in many instances, such a technique is guaranteed to work. So it is
natural to wonder whether Fermat’s last theorem can also be proved in this way. This is the
question that motivated Schur®, who proved that this technique cannot work for Fermat’s
last theorem.

Theorem 12.1 (Schur). For any integer q > 3, there exists an integer N = N(q) such that
the following holds for any prime p > N. There exist non-zero x,y,z € Z/p with

94+ y? =27 (mod p).

20ne has to be a bit careful here, as a non-trivial solution over Z may become trivial in Z/3. However,
it is not hard to get around this issue, as one can argue that a minimal non-trivial solution over Z cannot
have all three of x,y, z divisible by 3.

3In fact, the same question had motivated Dickson a few years earlier, and he was the first to prove
Theorem 12.1. However, his technique used very messy casework and does not at all connect to Ramsey
theory, so we won'’t discuss it any further.
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As Schur himself realized, despite proving an important and impressive result in number
theory, his proof used almost no number theory! He wrote “daf [Theorem 12.1] sich fast
unmittelbar aus einem sehr einfachen Hilfssatz ergibt, der mehr der Kombinatorik als der
Zahlentheorie angehort.”* This Hilfssatz is the following.

Theorem 12.2 (Schur). For any positive integer q, there exists an integer N = N(q) such
that the following holds. If [N] is colored in q colors, then there exist x,y,z € [N], all
receiwing the same color, such that r +y = z.

Recall that we use the notation [N] = {1,..., N}. We also now start to use the termi-
nology of coloring. By a coloring of [N] with ¢ colors, we just mean a partition of [/N] into ¢
sets Ay, ..., A, where we think of the elements of A; as receiving a first color, the elements
of Ay as receiving some second, distinct, color, and so on. We will also frequently use the
shorthand monochromatic for “receiving the same color”, so the conclusion of Theorem 12.2
could also be stated as the existence of a monochromatic solution to x +y = 2.

As Schur wrote, the derivation of Theorem 12.1 from Theorem 12.2 is almost immediate,
but as it requires a few ideas from number theory and group theory, we will defer it for the
moment. Let us first see how to prove Theorem 12.2. Schur proved Theorem 12.2 directly,
but the modern, Ramsey-theoretic, perspective is to reduce Theorem 12.2 to an even more
combinatorial lemma, which we now state.

Lemma 12.3. For any positive integer q, there ezists an integer N = N(q) such that the
following holds. If the edges of the complete graph Ky are q-colored, then there exists a
monochromatic triangle.

Proof. We will actually prove something stronger, namely an explicit upper bound on N (q);
we will show that N(¢) = 3¢! satisfies the desired condition. We proceed by induction on q.

The base case ¢ = 1 is immediate. We are claiming that any 1-coloring of the edges of
Ky, where N = 3-1! = 3, contains a monochromatic triangle. But as there is only one color,
and the complete graph we are “coloring” is itself a triangle, this is certainly true.

For the inductive step, suppose the result is true for ¢ — 1, i.e. that any (¢ — 1)-coloring of
E(K3(4-1)) contains a monochromatic triangle. Fix a g-coloring of E(Ky), where N = 3¢!,
and let v be any vertex of K. v is incident to N — 1 edges, each of which receives one of
q colors. Therefore, by the pigeonhole principle, there is some color, say red, which appears

on at least {N_lw ) qu_ﬂ _ [3@_1)!_1} —3(g—1)!
q q !

edges incident to v. Let R denote the set of endpoints of these red edges, and consider the
coloring restricted to R. If there is any red edge appearing in R, then it forms a red triangle
together with v, and we are done. If not, then R is a set of at least 3(¢ — 1)! vertices that
are colored by at most ¢ — 1 colors, and we can find a monochromatic triangle in R by the
inductive hypothesis. In either case we are done. O]

4“that [Theorem 12.1] follows almost immediately from a very simple lemma, which belongs more to
combinatorics than to number theory.”
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With Lemma 12.3 in hand, the proof of Theorem 12.2 is almost immediate. All we need
to do is to translate the number-theoretic coloring into a graph-theoretic coloring.

Proof of Theorem 12.2. Let N(q) = 3¢! be chosen so that Lemma 12.3 holds. We are given
a g-coloring x of [N], which we convert to a g-coloring x of E(Ky) as follows. Identify the
vertices of K with [/V], and then color an edge ab, where 1 < a < b < N, according to the
color of b —a € [N] in x.

As x is a g-coloring of F(Ky), by Lemma 12.3, there is a monochromatic triangle in x.
Let the vertices of this triangle be a,b,c, where a < b < ¢. Let © =b—a,y = ¢ — b, and
z = ¢ — a, and note that these satisfy x +y = z. Finally, note that they all receive the same
color under Yy, since x(x) = x(ab), x(y) = x(bc), and x(z) = x(ac), and we assumed that
a,b, c is a monochromatic triangle under x. O

This completes the combinatorial part of Schur’s work. For completeness, let’s see how
to derive Theorem 12.1 from Theorem 12.2. As this topic is somewhat outside the main
narrative of the class, it will not be covered in lecture.

( )

Deduction of Theorem 12.1 from Theorem 12.2

Proof of Theorem 12.1. Let N = N(q) be as in Theorem 12.2, and fix a prime p > N. We
recall the well-known fact that the set I' := {27 : 0 # = € Z/p} forms a subgroup of the
multiplicative group (Z/p)*, and the index of this subgroup is at most! ¢. Therefore, there
are at most g cosets of I' which partition the non-zero elements of Z/p. By identifying the
non-zero elements of Z/p with [p — 1] 2 [IN], we obtain a g-coloring of [N] according to these
cosets.

Now, by Theorem 12.2, there must exist monochromatic a, b, c € [N] such that a + b = c.
As these three numbers receive the same color, they must lie in some single coset al’ of T, for
some « € (Z/p)*. By the definition of I', this means that we can write

a=az! (mod p), b=ay? (mod p), c=az? (mod p),

for some non-zero z,y, z € Z/p. The equation a + b = ¢ remains true when we reduce it mod
p, so we conclude that
az? + ay?! = az? (mod p).

As « is invertible in Z/p, and as z,y,z # 0, we obtained the desired non-trivial solution
z?+y? =29 (mod p). O

fMore precisely, the index is exactly ged(q,p — 1).

13 Classical Ramsey numbers

13.1 Ramsey’s theorem and upper bounds on Ramsey numbers

While Schur’s theorem can be seen as an early example of Ramsey theory, the theory did
not really get going until Frank Ramsey’s pioneering work in 1929. Ramsey’s theorem, as it
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is now called, is a generalization of Lemma 12.3 from triangles to arbitrary cliques.

Theorem 13.1 (Ramsey). For all positive integers k,q, there exists an integer N = N(k,q)
such that the following holds. If the edges of the complete graph Ky are q-colored, then
there exists a monochromatic Ky, that is, k vertices such that all the (g) edges between them
recete the same color.

Given this theorem, which we will shortly prove, we can make a definition that will be
central for much of the rest of the course.

Definition 13.2. Given positive integers k, q, the g-color Ramsey number of K}, denoted
r(k;q), is the least N such that the conclusion of Theorem 13.1 is true. That is, r(k;q) is
the minimum integer N such that every g-coloring of E(K y) contains a monochromatic K.

In case ¢ = 2, we usually abbreviate r(k; 2) as simply r(k), and usually refer to the 2-color
Ramsey number as simply the Ramsey number.

In this language, Theorem 13.1 can equivalently be stated as saying that r(k; ¢) < oo for
all k,q. In fact, for much of this course, we will be interested not just in the fact that such
Ramsey numbers are finite, but in quantitative estimates on how large they are.

For now, let’s focus on the case ¢ = 2. Ramsey’s original proof of Theorem 13.1 showed
that (k) < k! for all k. But a few years later, a different proof was found by Erdés and
Szekeres, in another foundational paper of the field. In order to present their proof, we need
to define a slightly more general notion of Ramsey number.

Definition 13.3. Given positive integers k, ¢, we denote by r(k, ¢) the off-diagonal Ramsey
number, defined to be the least N such that every 2-coloring of F(Ky) with colors red and
blue contains a red K}, or a blue K.

Note that r(k, ) = r(, k) as the colors play symmetric roles, and that r(k) = r(k, k).
Theorem 13.4 (Erdés—Szekeres). For all positive integers k,{, we have

k‘+€—2)

r(k, 0) < ( L

2k — 2
k) < < 4",
< ()
Proof. We proceed by induction on k + ¢, with the base case® k = 1 or £ = 1 being trivial.
For the inductive step, the key claim is that the following inequality holds:

In particular, we have

r(k, ) <r(k—1,0)+r(k(—1). (4)

5If you don’t like starting the induction with k¥ = 1—what does a monochromatic K; mean, exactly?—you
should convince yourself that the base case k = 2 or ¢ = 2 also works.
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To prove (4), fix a red/blue coloring of E(Ky), where N = r(k—1,¢)+r(k,{—1), and fix some
vertex v € V(K ). Suppose for the moment that v is incident to at least r(k—1, £) red edges,
and let R denote the set of endpoints of these red edges. By definition, as |R| > r(k — 1,¢),
we know that R contains a red Kj;_; or a blue K,. In the latter case we have found a blue
K, (so we are done), and in the former case we can add v to this red Kj;_; to obtain a red
K}, (and we are again done).

So we may assume that v is incident to fewer than r(k — 1, /) red edges. By the exact
same argument, just interchanging the roles of the colors, we may assume that v is incident
to fewer than r(k,¢ — 1) blue edges. But then the total number of edges incident to v is at
most

(r(k—1,0) = 1)+ (r(k, 0 —1) — 1) = N — 2,

which is impossible, as v is adjacent to all N — 1 other vertices. This is a contradiction,
proving (4).
We can now complete the induction. By (4) and the inductive hypothesis, we find that

(k—1)+¢-2 E+(—1)—2 k+0¢—2
< - 17 ) v 1 g = )
r(k,0) < r(k 0)+r(k,0—1) ( (h—1)—1 + b1 E_ 1
where the final equality is Pascal’s identity for binomial coefficients. n

A similar argument works when the number of colors is more than 2. If we denote by
r(ki,..., k) the off-diagonal multicolor Ramsey number (defined in the natural way), we
obtain the following generalization of Theorem 13.4, which you will prove on the homework.

Theorem 13.5. For all positive integers q and ki, ..., k,, we have

b4+ kg —g
ki, ... ky) < I
riky- k) (kl—l,...,k‘q—l)’

where the right-hand side denotes the multinomial coefficient. In particular,
r(k; q) < ¢
13.2 Lower bounds on Ramsey numbers

The Erdés—Szekeres bound, Theorem 13.4, gives us the upper bound r(k) < 4%, which
improves on Ramsey’s earlier bound of (k) < k!. To understand how good this bound is,
we would like to obtain some lower bounds on r(k).

Thinking about the definition of Ramsey numbers, we see that proving a lower bound
of r(k) > N boils down to exhibiting a 2-coloring of F(Ky) with no monochromatic Kj.
Perhaps the simplest such coloring is the Turdn coloring, which proves the following result.

Proposition 13.6. For any positive integer k, we have r(k) > (k — 1)2.
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Proof. Let N = (k — 1)%. We split the vertex set of Ky into k — 1 parts, each of size k — 1.
We color all edges within a part red, and all edges between parts blue. The red graph is a
disjoint union of k — 1 copies of Kj_1, so there is certainly no red K. On the other hand,
as there are only k — 1 parts, the pigeonhole principle implies that any set of k vertices must
include two vertices in one part; these two vertices span a red edge, and thus there is no blue
K, either. ]
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