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Is Proposition 13.6 tight? It’s not too hard to see that the answer is no. Indeed, already
for k = 3, Proposition 13.6 implies that r(3) > 4, and it is not hard to show that in fact
r(3) > 5, as witnessed by the following coloring.

Nonetheless, it is not clear how to do much better than Proposition 13.6 in general. Indeed,
in the 1940s, Turán believed that the Erdős–Szekeres bound is way off, and that the truth
is r(k) = Θ(k2) (i.e. that Proposition 13.6 is best possible up to a constant factor). As it
turns out, this belief was way off.

Theorem 13.7 (Erdős). For any k ⩾ 2, we have r(k) ⩾ 2k/2.

Together with Theorem 13.4, this proves that r(k) really does grow as an exponential
function of k, although these theorems do not tell us the precise growth rate. Theorem 13.7
was a major breakthrough not only—or even primarily—because of the result itself. In
proving Theorem 13.7, Erdős introduced the so-called probabilistic method to combinatorics.
This method would quickly become one of the most important tools in combinatorics, and
will recur frequently throughout this course.

Proof of Theorem 13.7. Fix k, and let6 N = 2k/2. The claimed bound is trivial for k = 2, so
let’s assume k ⩾ 3. Consider a random 2-coloring of E(KN). Namely, for each edge of KN ,
we assign it color red or blue with probability 1

2
, making these choices independently over all

edges. We begin by estimating the probability that this coloring contains a monochromatic
Kk.

For any fixed set of k vertices, the probability that it forms a monochromatic Kk is

precisely 21−(
k
2). This is because we have

(
k
2

)
coin tosses, which we need to all agree, and we

have two options for the shared outcome (hence the extra +1 in the exponent). Moreover,
there are exactly

(
N
k

)
possible k-sets we need to consider. Therefore,

Pr(there is a monochromatic Kk) ⩽

(
N

k

)
21−(

k
2),

where we have applied the union bound
(
N
k

)
times; this is the bound that says that the

probability that A or B happens is at most the sum of the probability that A happens and
the probability that B happens.

6The astute reader will notice that 2k/2 is not an integer unless k is even. Thus, we should really write
here N = ⌈2k/2⌉. However, once the computations we do become more complicated, keeping track of such
floor and ceiling signs becomes not just annoying, but actively confusing. Therefore, for the rest of the
course, we’ll omit floor and ceiling signs unless they are actually crucial, and it will be understood that any
quantity that should be an integer but doesn’t look like one should be rounded up or down to an integer.
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Note that
(
N
k

)
< Nk/k! and that k! > 21+k/2 for all k ⩾ 3. Therefore, we have(

N

k

)
21−(

k
2) <

Nk

k!
· 21−

k2−k
2 <

Nk

21+
k
2

· 21+
k
2
− k2

2 =
(
N · 2−

k
2

)k
= 1, (5)

where the final equality is our choice of N .
Putting this all together, we find that in this random coloring, the probability that there

is a monochromatic Kk is strictly less than one. Therefore, there must exist some coloring
of E(KN) with no monochromatic Kk, as if such a coloring did not exist, the probability
above would be exactly one. This completes the proof.

It’s worth stressing the miraculous magic trick that takes place in the proof of Theo-
rem 13.7. Unlike in Proposition 13.6, Erdős does not give any sort of explicit description
of a coloring on 2k/2 vertices with no monochromatic Kk. Instead, he argues that such a
coloring must exist for probabilistic reasons, but this argument gives absolutely no indication
of what such a coloring looks like. In fact, the following remains a major open problem.

Open problem 13.8 (Erdős). For some ε > 0 and all sufficiently large k, explicitly construct
a 2-coloring on (1 + ε)k vertices with no monochromatic Kk.

There was a great deal of partial progress over the years, much of it exploiting a deep and
surprising connection to the topic of randomness extraction in theoretical computer science.
Very recently, there was a major breakthrough on this problem.

Theorem 13.9 (Li). For some absolute constant ε > 0 and all sufficiently large k, there is
an explicit 2-coloring on 2k

ε
vertices with no monochromatic Kk.

The central open problem in Ramsey theory is to narrow the gap between the lower and
upper bounds 2k/2 ⩽ r(k) ⩽ 4k. For over 75 years, there was a great deal of interest in this
question, and while there were several important developments, none of them were able to
improve either of the constants in the bases of the exponents. But very recently, there was
a huge breakthrough on this problem.

Theorem 13.10 (Campos–Griffiths–Morris–Sahasrabudhe). There is an absolute constant
δ > 0 such that r(k) ⩽ (4− δ)k for all k.

Their original proof showed roughly that r(k) ⩽ 3.993k. A later result by Gupta, Ndiaye,
Norin, and Wei, which both optimized the original technique and introduced beautiful new
ideas, shows that r(k) ⩽ 3.8k, which remains the current record. The proof of Theorem 13.10
is far too complex to cover in this course, but I have written an exposition of it that you can
find on my website.

Additionally, just yesterday, there was another breakthrough, due to Ma, Shen, and Xie,
this time on the lower bound. Erdős’s random argument naturally extends to the off-diagonal
setting, and proves that

r(k, Ck) ⩾ (f(C) + o(1))k,
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for some explicit function f , where we think of C ⩾ 1 as an absolute constant and let k → ∞.
Ma, Shen, and Xie improved this bound for any C > 1, proving that for any C > 1, there
exists some ε > 0 such that

r(k, Ck) ⩾ (f(C) + ε+ o(1))k.

They also use the probabilistic method, but consider a different probability distribution
coming from high-dimensional geometry. Unfortunately, their technique does not, at the
moment, give any improvement on the diagonal Ramsey number r(k).

14 Hypergraph Ramsey numbers

14.1 The hypergraph Ramsey theorem

We saw in the proof of the Erdős–Stone–Simonovits theorem that it can be very useful to
study hypergraph analogues of graph-theoretic resutls. In the present context, there is a
natural analogue of Ramsey’s theorem for hypergraphs, which was also proved by Ramsey.
Recall that K

(t)
N denotes the complete t-uniform hypergraph on N vertices.

Theorem 14.1 (Ramsey). For all integers k ⩾ t ⩾ 2, q ⩾ 2, there exists some N such that

the following holds. In any q-coloring χ : E(K
(t)
N ) → JqK, there is a monochromatic copy of

K
(t)
k . In other words, there exist k vertices such that each of the

(
k
t

)
t-tuples among them

receive the same color under χ.

Continuing our earlier practice, we define the t-uniform Ramsey number rt(k; q) to be
the least N for which Theorem 14.1 is true, and we use the shorthand rt(k) when q = 2.
We also define the off-diagonal t-uniform Ramsey number rt(k1, . . . , kq) to be the least N so

that in any q-coloring of E(K
(t)
N ), there is a monochromatic copy of K

(t)
ki

in color i, for some
i ∈ JqK. Similarly, for any t-uniform hypergraphs H1, . . . ,Hq, we denote by rt(H1, . . . ,Hq)

the least N such that any q-coloring of K
(t)
N contains a monochromatic copy of Hi in color

i, for some i ∈ JqK, and write rt(H; q) for shorthand if H1 = · · · = Hq = H.
Probably the most natural way to prove Theorem 14.1 is via the following argument,

directly mimicking the proof of Theorem 13.4.

Proof of Theorem 14.1. Let us only deal with the case q = 2. We prove by induction on t
the statement that rt(k, ℓ) exists for all k, ℓ ⩾ t, and for any fixed t we prove this statement
by induction on k + ℓ. Note that the base case t = 2 is already done by Theorem 13.1, so
we fix some t ⩾ 3 and assume the result has been proved for t− 1. For this fixed t, the base
case k = t or ℓ = t is trivial, so we may assume the result has been proved for the pairs
(k − 1, ℓ) and (k, ℓ− 1).

The key claim is that the following recursive bound holds, analogously to (4):

rt(k, ℓ) ⩽ rt−1(rt(k − 1, ℓ), rt(k, ℓ− 1)) + 1. (6)
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Note that we are done if we prove (6), since by induction, we know that the numbers
a := rt(k− 1, ℓ) and b := rt(k, ℓ− 1) are finite, as is the number rt−1(a, b). Thus, (6) implies
Theorem 14.1, at least in the case q = 2.

To prove (6), let N = rt−1(rt(k − 1, ℓ), rt(k, ℓ − 1)) + 1, and consider any 2-coloring

χ : E(K
(t)
N ) → {red, blue}. Fix a vertex v ∈ V (K

(t)
N ). There is a bijection between hyperedges

containing v and (t− 1)-tuples of vertices in V (K
(t)
N ) \ {v}. That is, we can use χ to define

a coloring ψ : E(K
(t−1)
N−1 ) → {red, blue}, by setting

ψ({w1, . . . , wt−1}) := χ({w1, . . . , wt−1, v}).

By the definition of N , we know that ψ contains a monochromatic red clique of order
rt(k−1, ℓ), or a monochromatic blue clique of order rt(k, ℓ−1). The two cases are symmetric,
so let us assume we are in the first. Looking at χ on these rt(k− 1, ℓ) vertices, we can either

find a monochromatic blue K
(t)
ℓ , or a monochromatic red K

(t)
k−1. In the first case we are

done. In the second case, we have k− 1 vertices, such that each of the t-tuples among them
are colored red. Moreover, by the definition of ψ, if we combine any (t− 1)-tuple from this
set with v, we obtain another t-tuple that is colored red by χ. That is, we have found a
monochromatic red K

(t)
k , showing that we are done in this case as well.

Remark. While this proof is clearly reminiscient of the proof of Theorem 13.4, you might
think that some things are different. For example, (6) is a bit different from (4), in that the
former has this strange rt−1 term, whereas the latter simply has a sum. It is worth pondering
what a 1-uniform hypergraph should be, and what the 1-uniform version of Theorem 14.1
should say. If you think about this enough, you’ll come to realize that the proof above really
is nothing more than a generalization of the proof of Theorem 13.4.

14.2 A geometric application

The paper of Erdős and Szekeres in which they proved Theorem 13.4—one of the most
influential and foundational papers in the field—was titled “A combinatorial problem in
geometry”. We will now study this geometric problem, and see how it relates to Ramsey
theory.

Definition 14.2. Let p1, . . . , pk be points in Rd. A point p ∈ Rd is in their convex hull if
there exist numbers λ1, . . . , λk ⩾ 0 with

∑k
i=1 λi = 1 such that

p =
k∑

i=1

λipi.

That is, p is in the convex hull of p1, . . . , pk if p is a weighted average of them.

Definition 14.3. A collection p1, . . . , pk of points in Rd is in convex position if no pi is in
the convex hull of p1, . . . , pi−1, pi+1, . . . , pk.
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Five points in convex position
(the gray region is their convex hull)

Five points not in convex position
(the gray region is their convex hull)

The question studied by Erdős and Szekeres begins with a simple observation of Klein.

Proposition 14.4 (Klein). Among any five points in R2, no three of them collinear, there
are four points in convex position.

Proof. Consider the convex hull of the five points. It is a polygon with at most five vertices.
If it has four or five vertices, then four of these vertices yield our four desired points in convex
position. So we may assume that the convex hull is a triangle, meaning that the final two
points lie inside the triangle, as shown in the following picture.

Consider the line through the two interior points. Since no three points are collinear, two
of the vertices of the triangle must lie on one side of this line. But then these two vertices,
plus the two interior points, yield four points in convex position.

Although this was before Ramsey theory really existed, Klein realized that there was
a Ramsey-theoretic flavor to this result. She asked Erdős and Szekeres whether Proposi-
tion 14.4 could be generalized to finding arbitrarily large collections of points in convex
position. Erdős and Szekeres proved that the answer is yes.

Theorem 14.5 (Erdős–Szekeres). For every k ⩾ 4, there exists some N such that the
following holds. Among any N points in R2, no three of them collinear, there are k points
in convex position.

We will see two proofs of this theorem (and another proof is in the homework); the first
is the original proof of Erdős and Szekeres.

Erdős and Szekeres’s proof of Theorem 14.5. We will show that the theorem holds with N =
r4(5, k). Fix N points p1, . . . , pN in R2, no three of them collinear. We identify V (K

(4)
N ) with

{p1, . . . , pN}, and define a two-coloring of E(K
(4)
N ) as follows. Given a 4-tuple {pa, pb, pc, pd},

we color it blue if these four points are in convex position, and red otherwise.
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The first observation is that we cannot have a monochromatic red K
(4)
5 . Indeed, this

would correspond to five points in the plane, no three collinear, such that every 4-tuple
among them is not in convex position. Proposition 14.4 says that such a configuration
cannot exist.

Therefore, by the choice of N , there must exist k points, say p1, . . . , pk, such that each
hyperedge among them is colored blue. That is, every 4-tuple among them is in convex
position. To complete the proof, we require the following simple lemma.

Lemma 14.6 (Carathéodory’s theorem). Let p1, . . . , pk be a collection of points in R2, such
that each 4-tuple among them is in convex position. Then p1, . . . , pk are in convex position.

In a moment, we will give a formal proof of Lemma 14.6, but the intuitive proof is the
following. Suppose for contradiction that p1, . . . , pk are not in convex position, and say
without loss of generality that pk is in the convex hull of p1, . . . , pk−1, and call this convex
hull P . Then P is a convex polygon, whose vertices are (some subset of) p1, . . . , pk−1. Pick
an arbitrary triangulation of P , that is, a partition of P into triangles whose vertices are
vertices of P itself. Since pk ∈ P , we must have that pk is contained in one of the triangles
of the triangulation. But that means that pk is in the convex hull of three vertices of P ; this
yields four points out of p1, . . . , pk which are not in convex position.

Given Lemma 14.6, the proof is complete: we have found k points from our original
collection that are in convex position.

While the geometric proof sketch presented above can be made rigorous, there is also a
fairly simple linear-algebraic proof of Lemma 14.6, which we now present.

Proof of Lemma 14.6. We may assume that k ⩾ 5, for otherwise there is nothing to prove.
Suppose for contradiction that one of the points, say pk, is in the convex hull of of the remaining
points. This means that there exist numbers λ1, . . . , λk−1 ⩾ 0 with

∑
λi = 1 and

pk =
k−1∑
i=1

λipi.

Let us fix such a collection λ1, . . . , λk−1 with the fewest number of non-zero elements. That is,
we may assume by renaming the points that λ1, . . . , λt > 0, that λt+1, . . . , λk−1 = 0, and that
no such representation is possible with fewer than t non-zero coefficients.

If t ⩽ 3, then we have shown that the points p1, p2, p3, pk are not in convex position (since
pk is in the convex hull of p1, p2, p3), contradicting our assumption that all 4-tuples are in
convex position. Therefore we may assume that t ⩾ 4. Consider the vectors

v1 := p1 − pt, v2 := p2 − pt, . . . , vt−1 := pt−1 − pt.

These are t − 1 ⩾ 3 vectors in R2, so they must be linearly dependent. That is, there exist
α1, . . . , αt−1 ∈ R, at least one of which is non-zero, such that

∑t−1
i=1 αivi = 0. Now note that
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for any ε ⩾ 0, we have

pk =
t∑

i=1

λipi

= λtpt +
t−1∑
i=1

λipi +
t−1∑
i=1

εαivi

= λtpt +

t−1∑
i=1

[(λi + εαi)pi − εαipt]

=

t−1∑
i=1

(λi + εαi)pi +

(
λt − ε

t−1∑
i=1

αi

)
pt

=:
t−1∑
i=1

µi(ε)pi + µt(ε)pt.

Notice that each µi(ε) is a continuous (in fact, linear) function of ε. Also, by assumption, we
have that µi(0) > 0 for all i ∈ JtK. Also, by construction, we have that

∑
i µi(ε) = 1 for all ε.

However, since one of the αi is non-zero, we see that in the limit ε → ∞, at least one of the
µi(ε) must become negative. Therefore, there is some smallest value ε∗ such that µi(ε

∗) = 0
for at least one i, and µj(ε

∗) ⩾ 0 for all j ̸= i. However, this gives us a new representation of
pk as a convex combination of p1, . . . , pk−1 with fewer non-zero coefficients, contradicting our
choice of λ1, . . . , λk−1.

An alternative proof of Theorem 14.5 was found by Tarsi, who showed how to obtain
the same result by using a diagonal 3-uniform Ramsey theorem, rather than the off-diagonal
4-uniform Ramsey theorem used by Erdős and Szekeres.

Tarsi’s proof of Theorem 14.5. Let N = r3(k), and fix points p1, . . . , pN in R2. By ro-
tating the plane if necessary, we may assume that all the points p1, . . . , pN have distinct
x-coordinates. Let us also relabel them so that they are sorted by x-coordinate, that is, so
that p1 is to the left of p2, which is to the left of p3, and so on. We identify V (K

(3)
N ) with

{p1, . . . , pN}, and color E(K
(3)
N ) as follows. For 1 ⩽ i < j < ℓ ⩽ N , we color the hyperedge

{pi, pj, pℓ} red if pj lies above the line pipℓ, and blue if pj lies below the line pipℓ.

By the choice of N , there is a monochromatic K
(3)
k , say pi1 , . . . , pik , where i1 < · · · < ik.

Let us suppose this K
(3)
k is red. This means that every point in this set lies above the line

between its neighbors on the left and right; intuitively, this means that the points need to
look like this:
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In particular, the points pi1 , . . . , pik are in convex position, as is hopefully intuitive from the
picture. This is in fact true, and is a discrete version of the well-known fact that a function
with non-positive second derivative is concave.

To prove that pi1 , . . . , pik are in convex position, it suffices by Lemma 14.6 to show that
any four of them are in convex position. So let pa, pb, pc, pd be four points, ordered from left
to right, with the property that each of the triples they define is red, that is, that each point
lies above the line connecting its two neighbors. If they are not in convex position, then one
of them must be in the convex hull of the other three, and it is not hard to see that the
interior point must be either pb or pc (pa and pd are necessarily extreme points because they
minimize and maximize, respectively, the x-coordinate among these four points). If, say, pb
is in the convex hull of pa, pc, pd, then we see that pb lies below the line between pa and pc,
a contradiction.

pa

pc

pd

pb

Similarly, if pc is an interior point, it lies below the line joining pb, pd, another contradiction.
This shows that all 4-tuples are indeed in convex position, and thus we have found our
desired k-set in convex position by Lemma 14.6. In case {pi1 , . . . , pik} form a blue clique,
the same argument works after vertically reflecting the whole picture.

14.3 Bounds on hypergraph Ramsey numbers

The proof we saw of Theorem 14.1 shows that rt(k, ℓ) is finite for all t, k, ℓ. However, the
bound it gives is absolutely enormous. For example, just trying to upper-bound r3(k, k), we
find from (6) that

r3(k) ⩽ r2(r3(k − 1, k), r3(k, k − 1)) + 1.

Plugging in our bound r2(a) < 4a, this implies that

r3(k) ⩽ 4r3(k−1,k).

That is, a single step of the recursion has cost us an exponential! Continuing in this way,
this proof yields a bound roughly of the form

r3(k) ⩽ 44
··
·4
}

2k times
.

But then the bound in uniformity 4 is then much worse—a single step of the recursion (6)
for t = 4 shows that r4(k) is bounded as a tower-type function of r4(k − 1, k). That is, this
proof yields a wowzer-type bound on r4(k), and in general, the bounds it gives for uniformity
t are at the (t− 1)th level of the Ackermann hierarchy.
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Are such abysmal bounds necessary? At first glance, one might suspect that they are—
exponential bounds really are the truth for r2(k), so the argument above is not particularly
wasteful for uniformity 2. However, Erdős and Rado discovered an alternative proof of
Theorem 14.1, which gives a much stronger bound.

Theorem 14.7 (Erdős–Rado). For all integers t ⩾ 3, q ⩾ 2, and k1, . . . , kq > t, we have

rt(k1, . . . , kq) ⩽ q1+(
rt−1(k1−1,...,kq−1)

t−1 ).

In particular,

rt(k; q) ⩽ q1+(
rt−1(k−1)

t−1 ).

Theorem 14.7 is sometimes called the stepping-down argument; it shows that we can
bound a t-uniform Ramsey number by (an exponential function of) a (t−1)-uniform Ramsey
number, that is, we step down one level in the uniformity. As an immediate consequence, we
obtain much stronger bounds on hypergraph Ramsey numbers: for any fixed t, the bound is
a fixed tower of 2s.

Corollary 14.8. We have

r3(k; q) ⩽ 22
(Cq log q)k

for some absolute constant C > 0. Similarly,

r4(k; q) ⩽ 22
2(C

′q log q)k

,

and in general,

rt(k; q) ⩽ 22
··
·2
(Ctq log q)k

}
t− 1 twos

,

for some constant Ct depending only on t.

Additionally, there is a beautiful argument, called the stepping-up lemma of Erdős–
Hajnal–Rado, which yields nearly matching lower bounds. At a high level, it allows us to
convert a lower bound for rt−1(k/2; q) into a lower bound for rt(k; q) which is exponentially
larger. In particular, it “should” allow us to close the gap above, by acting in concert with
the stepping-down argument Theorem 14.7, as the two yield upper and lower bounds on
rt(k; q) which are exponential in the (t − 1)-uniform Ramsey number. However, there is
an important catch: the stepping-up lemma only works if we start with a construction in
uniformity 3 or above.

Theorem 14.9 (Erdős–Hajnal–Rado). For every k ⩾ t ⩾ 3, q ⩾ 2, we have

rt+1(2k + t− 4; q) > 2rt(k;q)−1.

As a corollary, we get a lower bound which “almost” matches Corollary 14.8, but there
is a gap of 1 in the height of the tower.
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Corollary 14.10. We have

r4(k) ⩾ 22
ck2

,

for some absolute constant c > 0. In general, for every t ⩾ 4, there is a constant ct > 0 such
that

rt(k) ⩾ 22
··
·2
ctk2
}

t− 2 twos
.

The most important open problem about hypergraph Ramsey numbers is to close this
exponential gap. Note that if one closes this gap for any uniformity t ⩾ 3, then one auto-
matically closes it for all higher uniformities, thanks to the stepping-down and stepping-up
lemmas, Theorems 14.7 and 14.9. In particular, closing the gap for uniformity 3 would close
it for all uniformities. It is generally believed that the upper bound is closer to the truth.

Conjecture 14.11 (Erdős–Hajnal–Rado). There exists an absolute constant c > 0 such that
r3(k) ⩾ 22

ck
. As a consequence, for every t ⩾ 3, there exist constants ct, Ct > 0 such that

22
··
·2
ctk

t− 1 twos

{
⩽ rt(k) ⩽ 22

··
·2
Ctk
}

t− 1 twos
.

One important reason to believe this conjecture is that it is known to be true once the
number of colors is at least four, via a variant of the stepping-up lemma due to Hajnal.

Theorem 14.12 (Hajnal). For every k, q ⩾ 2, we have

r3(k; 2q) > 2r2(k−1;q)−1.

In particular,
r3(k; 4) > 22

ck

for some absolute constant c > 0.
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