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15 Graph Ramsey numbers

15.1 Introduction

We will now move away to a more general topic than we have considered so far, that of graph
Ramsey numbers.

Definition 15.1. Given graphs H1, . . . , Hq, their Ramsey number r(H1, . . . , Hq) is defined
as the minimum N such that any q-coloring of E(KN) contains a monochromatic copy of
Hi in color i, for some i ∈ JqK. Here, by a monochromatic copy, we mean a subgraph of KN

isomorphic to Hi, all of whose edges receive color i.
In case H1 = · · · = Hq = H, we denote this Ramsey number by r(H; q). In case q = 2,

we use the shorthand r(H) := r(H; 2).

Of course, everything we have studied so far is a special case of these more general graph
Ramsey numbers, as r(k) is simply r(Kk), and r(k, ℓ) = r(Kk, Kℓ), etc. However, it turns
out that there is an extremely rich theory of Ramsey numbers of graphs H which are not
necessarily complete graphs; moreover, most of the interesting results actually arise when H
is extremely far from being a complete graph.

We begin with a simple observation, which is that if Hi is a subgraph of H ′
i, then

r(H1, . . . , Hq) ⩽ r(H ′
1, . . . , H

′
q), since any monochromatic copy of H ′

i also yields a monochro-
matic copy of Hi. Thus, r(H) ⩽ r(H ′) whenever H ⊆ H ′. Since every n-vertex graph is a
subgraph of Kn, we conlude that

r(H) ⩽ r(Kn) < 4n for every n-vertex graph H.

Thus, in the worst case, an n-vertex graph may have Ramsey number that is exponential in
n.

On the other hand, the most general lower bound we can get is that r(H) ⩾ n if H is an
n-vertex graph. Indeed, we need at least n vertices to be able to “fit” a copy of H. Moreover,
this trivial lower bound is best possible in general, for if H has no edges (or even one edge),
then r(H) = n.

Thus, for a general n-vertex graph H, we know n ⩽ r(H) ⩽ 4n, and both behaviors—
linear in n and exponential in n—are possible, for the empty graph and the complete graph,
respectively. Based on our experience for cliques, we might expect that the exponential
bound should be closer to the truth for most graphs. However, the striking result that we
will see is that for many “natural” classes of graphs—and, in fact, for all sparse graphs—the
lower bound is much closer to the truth.

15.2 Ramsey numbers of trees

Let us begin with the following simple result, which was probably first observed by Erdős
and Graham; it says that the lower bound is close to tight for trees.

Theorem 15.2. If T is an n-vertex tree, then r(T ) ⩽ 4n− 3.

48



PCMI 2025 Extremal graph theory and Ramsey theory Yuval Wigderson

To prove this, we will use a simple lemma from graph theory, which you already saw on
the homework.

Lemma 15.3. Let T be an n-vertex tree. If G is a graph with minimum degree at least n−1,
then T ⊆ G.

Proof. We proceed by induction on n, with the base case n = 1 being trivial since the only
1-vertex tree is a subgraph of every non-empty graph. Inductively, suppose this is true for all
(n− 1)-vertex trees. Let T ′ be obtained from T by deleting a leaf v, and let u be the unique
neighbor of v in T . By the inductive hypothesis, T ′ ⊆ G, so let us pick a copy of T ′ in G,
and let w be the vertex of G filling the role of u. As G has minimum degree at least n−1, w
has at least n− 1 neighbors, and at most n− 2 of these neighbors were used in embedding
the other n−2 vertices of T ′. Thus, there is at least one unused neighbor of w, which means
that we can extend the T ′-copy to a T -copy by adding in this unused neighbor.

With this lemma, it is straightforward to prove Theorem 15.2.

Proof of Theorem 15.2. Let N = 4n − 3, and fix a 2-coloring of E(KN). Without loss of
generality, we may assume that at least half the edges are red. Let G ⊆ KN be the graph
comprising the red edges, so

e(G) ⩾
1

2

(
N

2

)
=

1

2
· (4n− 3)(4n− 4)

2
= N(n− 1).

By Lemma 10.3, there is a subgraph G′ ⊆ G of minimum degree at least n − 1. By
Lemma 15.3, we have T ⊆ G′, and this yields a monochromatic red copy of T .

15.3 Ramsey numbers of complete bipartite graphs

We now turn our attention to complete bipartite graphs Ks,t.

Theorem 15.4. For any s ⩽ t, we have

r(Ks,t) ⩽ 2s+1t.

Note that, if we plug in s = t = n, then we obtain that r(Kn,n) = O(n2n). Since Kn,n

has 2n vertices, this is a much better, although still exponential, bound than the näıve one
of

r(Kn,n) ⩽ r(2n) < 42n = 16n.

We remark that r(Kn,n) really does grow exponentially in n, and that the lower bound

r(Kn,n) > 2
n−1
2

will follow from a more general result, Proposition 15.5, which we will prove shortly. On the
other hand, if we think of s as a constant, we obtain that r(Ks,t) = Os(t) as t → ∞. Since
Ks,t has s+ t ⩽ 2t vertices, this shows that for fixed s, Ks,t has a Ramsey number which is
linear in its number of vertices—the same behavior as we saw for trees.

The proof of Theorem 15.4 uses essentially the same strategy we used in proving the
Kővári–Sós–Turán theorem.
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Proof of Theorem 15.4. The case s = 1 follows from a homework problem; it also follows, up
to an additive constant of 1, from Theorem 15.2, since K1,t is a tree. We henceforth assume
that t ⩾ s ⩾ 2.

Let N = 2s+1t, and fix a red/blue coloring of E(KN). For every vertex v ∈ V (KN),
let degR(v), degB(v) denote the red and blue degrees, respectively, of v. Let S denote the
number of monochromatic copies of K1,s in the coloring. We can count S by summing over
all N choices for the central vertex, and then picking s distinct neighbors; this shows that

S =
∑

v∈V (KN )

((
degR(v)

s

)
+

(
degB(v)

s

))
.

Note that degR(v) + degB(v) = N − 1 for every v, and that the sum
(
x
s

)
+
(
N−1−x

s

)
is

minimized7 when x = N − 1− x, i.e. x = N−1
2

. Therefore, we find that

S ⩾ N · 2
(

N−1
2

s

)
.

On the other hand, another way of counting S is by counting over all options for the s leaves
of the star. Let us assume for contradiction that there is no monochromatic Ks,t. Then
every s-set of vertices forms the set of leaves of fewer than t red stars K1,s, and of fewer than
t blue stars K1,s. Thus,

S < 2t

(
N

s

)
.

Comparing our lower and upper bounds on S, we find that

2t

(
N

s

)
> 2N

(
N−1
2

s

)
or equivalently

t ·N(N − 1) · · · (N − s+ 1) > N · N − 1

2

(
N − 1

2
− 1

)
· · ·
(
N − 1

2
− s+ 1

)
.

Rearranging, this is equivalent to

2st

N
>

(
N − 1

N

)(
N − 3

N − 1

)(
N − 5

N − 2

)
· · ·
(
N − 2s+ 1

N − s+ 1

)
=

s−1∏
i=0

N − 2i− 1

N − i
.

However, we have that

s−1∏
i=0

N − 2i− 1

N − i
=

s−1∏
i=0

(
1− i+ 1

N − i

)
⩾ 1−

s−1∑
i=0

i+ 1

N − i
⩾ 1−

2
(
s+1
2

)
N

⩾
1

2
,

7This is again a special case of Jensen’s inequality. This special case can also be proved directly without
appealing to convexity.
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where the second inequality uses that N ⩾ 2s, hence N − i ⩾ N/2 for all i ⩽ s− 1, and the
third inequality uses that 2

(
s+1
2

)
= (s+ 1)s ⩽ (s+ 1)t ⩽ 2st = N/2, since 2s ⩾ s+ 1 for all

s ⩾ 2. Putting this all together, we conclude that

2st

N
>

1

2
,

which contradicts our choice of N . This contradiction completes the proof.

15.4 The Burr–Erdős conjecture

So far, we have seen several examples of graph Ramsey numbers, and observed different
growth rates. First, we know that r(Kn) grows exponentially in n. Similarly, r(Kn,n) grows
exponentially in n (and thus in 2n, which is its number of vertices). On the other hand, all
trees, as well as complete bipartite graphs in which one side has constant size, have Ramsey
numbers linear in the number of vertices. Can we figure out a general rule explaining these
extremely different growth rates?

Looking at the examples above, it is natural to guess that the major difference has to
do with density. Both Kn and Kn,n are very dense graphs, namely graphs with a quadratic
number of edges. On the other hand, trees and complete bipartite graphs with one side of
constant size are very sparse, in that their number of edges is only linear in their number of
vertices. Equivalently, the average degree of the former graphs is large—linear in the number
of vertices—whereas it is constant for the latter graphs. Perhaps this explains the difference
in the Ramsey numbers?

As it turns out, this is close to the correct explanation. One direction really is true; if a
graph has high average degree, then its Ramsey number is large, as shown in the following
simple proposition.

Proposition 15.5. If H has average degree d, then r(H) > 2
d−1
2 .

Proof. The proof is very similar to that of Theorem 13.7. LetH have k ⩾ 2 vertices, and thus
kd/2 edges. Let N = 2

d−1
2 , and consider a uniformly random 2-coloring of E(KN). Every

tuple of k vertices inKN forms a monochromatic copy ofH with probability 21−kd/2, and there
are k!

(
N
k

)
such tuples8. Therefore, the probability that the coloring has a monochromatic

copy of H is at most

k!

(
N

k

)
· 21−

kd
2 < Nk · 21−

kd
2 = 2k

d−1
2

+1− kd
2 = 21−

k
2 ⩽ 1,

and thus there must exist a coloring with no monochromatic copies of H.

8Note that we include an extra factor of k!, which was not present in the proof of Theorem 13.7. The
reason is that Kk is highly symmetric; for a general H, we need to consider not only the k vertices that can
define it, but also the potentially k! different ways of identifying V (H) with these k vertices.
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Thus, we find that if H has average degree which is linear in its number of vertices v(H),
then r(H) is exponential in v(H). Is it possible that the same holds at the opposite extreme,
namely that if H has constant average degree, then r(H) is linear in v(H), as happened for
trees and complete bipartite graphs? It is not hard to see that the answer is no.

Proposition 15.6. There exists an n-vertex graph H with average degree at most 1 and with
r(H) > 2

√
n/2.

Proof. Let H be obtained from a complete graph K√
n by adding n −

√
n isolated vertices.

Then H has
(√

n
2

)
edges, and thus average degree 2

n

(√
n
2

)
⩽ 1. However,

r(H) ⩾ r(K√
n) > 2

√
n/2,

by Theorem 13.7.

Given this example, it’s clear why the näıve conjecture “constant average degree implies
linear Ramsey number” cannot be true. Namely, the graph H above has constant average
degree, but it contains a subgraph (namely K√

n) with much higher average degree, and it
is this subgraph that really determines r(H). This shows that rather than considering the
global average degree, we need to consider a more refined parameter that takes into account
subgraphs that are denser than H itself. There are several different ways of formalizing such
a parameter, and they end up giving essentially identical results; we will use the following.

Definition 15.7. The degeneracy of a graph H is defined as the maximum, over all sub-
graphs H ′ ⊆ H, of the minimum degree of H ′. H is said to be d-degenerate if its degeneracy
is at most d.

From Lemma 10.3, we see that a d-degenerate graph has average degree at most 2d. On
the other hand, the H in Proposition 15.6 is an example of a graph with constant average
degree and degeneracy

√
n − 1. Thus, we see that having bounded degeneracy is a strictly

stronger condition than having bounded average degree. In particular, Proposition 15.5
implies that graphs with high degeneracy have large Ramsey numbers, as shown in the
following result.

Theorem 15.8. Let H be a graph of degeneracy d. Then r(H) > 2
d−1
2 .

Proof. By the definition of degeneracy, there is a subgraph H ′ ⊆ H with minimum degree
at least d, and thus also average degree at least d. Then Proposition 15.5 implies that

r(H) ⩾ r(H ′) > 2
d−1
2 .

Given this, we can now amend our näıve conjecture to the following fundamental conjec-
ture of Burr and Erdős.

Conjecture 15.9 (Burr–Erdős). Graphs of bounded degeneracy have linear Ramsey num-
bers.

More precisely, for every d ⩾ 1 there exists C ⩾ 1 such that the following holds. If an
n-vertex graph H is d-degenerate, then r(H) ⩽ Cn.
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The Burr–Erdős conjecture is now a theorem.

Theorem 15.10 (Lee). Conjecture 15.9 is true.

Now that we know that the Burr–Erdős conjecture is true, we can start asking more
refined questions. What if the degeneracy is not bounded, but instead grows as a function
of n? The following conjecture predicts a fairly precise answer.

Conjecture 15.11 (Conlon–Fox–Sudakov). If H has n vertices and degeneracy d, then

r(H) = 2Θ(d+logn).

If d is much larger than log n, then this conjecture predicts that r(H) is exponential in d,
matching the lower bound from Theorem 15.8. On the other hand, if d is much smaller than
log n (e.g. if d is bounded, as in the Burr–Erdős conjecture), then it predicts that r(H) is
polynomial in n. While this conjecture remains open, there are a number of partial results
that come quite close to proving it, differing from the conjecture by only a polylogarithmic
factor in the exponent.
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