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“I feel I understand
Existence, or at least a minute part
Of my existence, only through my art,
In terms of combinatorial delight;”

Vladimir Nabokov, Pale Fire
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1 Introduction

Coding theory is, fundamentally, the study of communication in the presence
of noise, or equivalently the study of error-correction. In the context of coding,
we have some message that we wish to transmit through a medium that can
corrupt it, and we want to introduce redundancy into what we transmit so that
the original message can be recovered from its noisy version. Any method for
doing this is called a coding scheme, and the messages that we send are called
codewords. The study of error-correcting codes was begun by Claude Shannon
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in his seminal 1948 paper, [15]. In this paper, Shannon formally defined the
central problem of error-correction and proved that protection against noise
was indeed possible. The ideas he introduced have found application in almost
every aspect of digital technology, and are invaluable whenever communica-
tion or storage is necessary.

By far the simplest and most thoroughly-studied codes are linear codes; in
these codes, the alphabet in which our messages are written is a field, and the
codewords form a vector space over this field. Linear codes are enormously
useful for a variety of reasons, both practical and theoretical, and this is why
they feature so prominently in coding theory research; nevertheless, they are
often studied using more general coding-theoretic techniques that do not ex-
plicitly use their linear structure. In this thesis, the goal is to study certain
classes of linear codes from a purely linear-algebraic point of view, and to
demonstrate that such an analysis can provide interesting insights into the na-
ture of these codes.

More formally, the setup is as follows:

Definition 1.1. A code with parameters [n, k] over an alphabetX , whereX is
any finite set, is subset C ⊆ X n with |C | = |X |k. The elements of C are called
codewords. n is called the blocklength of the code, and k is called the message
length or dimension of the code. The quantity k/n is called the rate of the code
(denoted r(C)), and measures how much redundancy we’re introducing; the
smaller the rate, the more redundancy we have. A code is called linear if X is
a field and C is a k-dimensional vector subspace of X n. In this case, we will
often write F for X .

We will be primarily interested in codes that can correct erasures, which are
corruptions in which transmitted message has some of its coordinates erased.
More formally,

Definition 1.2. The memoryless erasure channel (MEC) with parameter p ∈
[0, 1], denoted M EC(p), is the channel that takes an incoming message x ∈ X n

and returns a message y ∈ (X ∪{?})n, where each coordinate of x is replaced
with a ? with probability p and is left unchanged with probability 1− p, and
this happens independently in each coordinate. In the special case whereX is
the binary field F2, we will speak of the binary erasure channel BEC(p).

Since we are dealing with probabilistic erasures, our notion of successful
transmission must also be probabilistic:
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Definition 1.3. Fix a code C and a parameter p ∈ [0,1]. Pick a codeword
x ∈ C uniformly at random, and let y ∈ (X ∪ {?})n be the output of x under
the M EC(p). The probability of error of decoding C under the M EC(p) is
defined as

Pe(C , p) := P
x ,y
(∃x ′ ∈ C , x ′ 6= x , such that x ′ can output y under the M EC(p))

This is precisely the probability that when we transmit a random message from
C , we end up with an output that cannot be uniquely decoded.

Given a family of codes C = {Cn}n≥1, we say that C can successfully trans-
mit on the M EC(p) if

lim
n→∞

Pe(Cn, p) = 0

A famous theorem of Shannon [15] precisely tells us when we can hope to
successfully transmit over the M EC(p):

Theorem 1.1 (Shannon [15]). For any R< 1− p, there exists a family of codes
C = {Cn}n≥1 with rates r(Cn) ≥ R such that C can successfully transmit on
the M EC(p). On the other hand, for any R′ > 1 − p and any family of codes
C ′ = {C ′n}n≥1 with r(C ′n)≥ R′, we have that Pe(C ′n, p) is bounded away from zero
for all n.

The number 1− p is called the Shannon capacity of the M EC(p).

In other words, at rates lower the Shannon capacity, we can find coding
schemes that can protect against probability-p erasures, but at rates greater
than the Shannon capacity, any coding scheme is doomed to fail. This moti-
vates the following definition:

Definition 1.4. A family of codes C = {Cn}n≥1 is called capacity-achieving on
the M EC(p) if C can successfully transmit on the M EC(p) and

lim
n→∞

r(Cn) = 1− p

Shannon’s proof that capacity-achieving codes exist was probabilistic, and
therefore non-constructive; he demonstrated that such families exist, but could
not say how to find them, nor how to make them efficiently computable (and
thus practically useful). Therefore, much of the project of coding theory in the
past decades has been to try to find such capacity-achieving codes.

The rest of the thesis is divided into three major sections. The first intro-
duces the various important linear-algebraic concepts that will be used, the
second discusses their application to polar codes, and the third discusses their
application to Reed-Muller codes.
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1.1 Notations

We use the following (mostly standard) notations throughout.

• For a positive integer n, [n] denotes the set {1, . . . , n}.

• Given a matrix A with n columns and a set P ⊆ [n], A[P] denotes the
submatrix of A obtained by only keeping those columns indexed by P.

• Given an m × n matrix A and a parameter p ∈ [0, 1], A[p] denotes the
random submatrix of A obtained by selecting columns of A independently
with probability p; more formally, A[p] is just A[P]where P ⊆ [n] is sam-
pled according to the product Bernoulli distribution Ber(p)n. Similarly,
if p = (p1, . . . , pn) is a vector of probabilities, then A[p] is the random
matrix obtained by keeping the jth column of A with probability p j.

• Given a matrix A with m rows and an index i ∈ [m], Ai denotes the ith
row of A; similarly, A∼i denotes the submatrix of A obtained by removing
the ith row. Finally, A(i) denotes the first i rows of A.

• P(B) denotes the probability of an event B, and E(X ) denotes the expec-
tation of a random variable X .

• Given a sequence of events {Bn}n≥1, we say that the sequence happens
with high probability (whp) if

lim
n→∞
P(Bn) = 1

• All logarithms are in base 2.

2 Algebraic Measures of Independence

2.1 Definitions

In this section, we will define and begin to study four algebraic notions of
independence associated to matrices, whose properties and relationships to
one another will be used later to prove various coding-theoretic results. In
everything that follows, A is an m × n matrix over some field F, p ∈ [0,1] is
some parameter, p = (p1, . . . , pn) ∈ [0,1]n is a vector of probabilities, i ∈ [m] is
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a row index, and j ∈ [n] is a column index. Since we are working over a fixed
field F, all notions of linear dependence and independence are considered over
F.

Definition 2.1 (Originally defined in [1]). The conditional rank (COR) associ-
ated to A, p, and row i is

ρi(A, p) := P(row i of A[p] is linearly independent of the previous i − 1 rows)

Definition 2.2. The doubly-conditional rank (DOR) associated to A, p, and row
i is

Ψi(A, p) := P(row i of A[p] is linearly independent of the other m− 1 rows)

Note that the definition of DOR is almost identical to that of COR, with the
only difference being that COR only considers the previous rows of the matrix,
while DOR considers all other rows.

Definition 2.3 (Originally defined in [5]). The vector EXIT function associated
to A, p, and column j is

h j(A, p) := P(column j of A is linearly dependent on the columns in A[p
∼ j
])

where A[p
∼ j
] means that we discard the jth column of A and select each other

column with the probability indicated by p.
Note that the vector EXIT function is one whose argument is a vector and

whose output is a scalar. We will also be interested in the scalar EXIT function

h j(A, p) := h j(A, (p, . . . , p))

gotten by substituting a uniform probability vector p = (p, . . . , p) into h j.

Definition 2.4 (See, e.g., [12]). The probability of bit-error associated to A, p,
and column j is

Pe, j(A, p) := p · h j(A, p)

It is somewhat unfortunate that COR and DOR are defined in terms of lin-
ear independence, while the EXIT functions and the probability of bit-error are
defined in terms of linear dependence. This is primarily due to historical justifi-
cations: in order to agree with earlier definitions in the literature, they should
be defined in this way.
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It is important to remark that the definitions given here for the EXIT func-
tions and for the probability of bit-error are, on the surface, very different than
those given in the literature. However, these definitions turn out to be equiva-
lent when dealing with the MEC; in the next section, we prove this equivalence
for the probability of bit-error, and the equivalence for the EXIT functions is
proven in Section 4.3.

2.2 Properties and Relationships

In this section we collect some basic facts about the measures defined above.

Proposition 2.1. These measures can be equivalently defined in terms of expected
differences in rank. Specifically,

ρi(A, p) = E(rank A(i)[p])−E(rank A(i−1)[p])
Ψi(A, p) = E(rank A[p])−E(rank A∼i[p])

p j(1− h j(A, p)) = E(rank A[p])−E(rank A[p
∼ j
])

Proof. Beginning with the COR values, consider the quantity

E(rank A(i)[p])−E(rank A(i−1)[p])

By adding the ith row, we will either keep the rank constant or increase it by
1, and the latter will happen if and only if the ith row is independent of the
previous rows. Thus, the expected increase in rank is precisely the probability
that row i is independent of the previous rows, namely ρi(A, p). The proof for
Ψi is nearly identical, the only difference being that we now consider all other
rows rather than only the previous ones.

For h j(A, p), the proof is very similar, but one has to be a bit more careful.
By moving from A[p

∼ j
] to A[p], the rank will increase by 1 if and only if column

j is chosen and is linearly independent of the other chosen columns, and the
rank will stay the same otherwise. These two events—that column j is chosen
and that it’s independent of the other chosen columns—are independent, so the
probability that both happen is simply the product of their probabilities, namely
p j(1 − h j(A, p)), where the 1 minus comes from the fact that h j is defined in
terms of linear dependence.
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Proposition 2.2. There is a realtionship between DOR values and scalar proba-
bilities of bit-error when we consider the removal of a column or the removal of a
row from A, namely

Pe, j(A∼i, p)− Pe, j(A, p) = Ψi(A, p)−Ψi(A[∼ j], p)

Proof. First, from the definition of the probability of bit-error, we know that

Pe, j(A∼i, p)− Pe, j(A, p) = p · (h j(A∼i, p)− h j(A, p))

Now we proceed with a direct calculation from the previous proposition:

p(h j(A∼i, p)− h j(A, p)) = p(1− h j(A, p))− p(1− h j(A∼i, p))
= (E(rank A[p]− rank A[∼ j][p]))− (E(rank A∼i[p]− rank A∼i[∼ j][p]))
= (E(rank A[p]− rank A∼i[p]))− (E(rank A[∼ j][p]− rank A∼i[∼ j][p]))
= Ψi(A, p)−Ψi(A[∼ j], p)

which is what we wanted to show.

Proposition 2.3. We can express the EXIT function as the derivative of the ex-
pected dimension of the nullspace of A[p]:

h j(p) =
∂

∂ p j
E(dimker A[p])

for all j ∈ [n].

Proof. By the rank-nullity theorem, we know that the rank of a matrix plus the
dimension of its nullspace is the number of columns. Applying expectations to
this fact, we get that

E(dimker A[p]) = E(#columns of A[p]− rank A[p]) =
n
∑

k=1

pk −E(rank A[p])

where we have used the fact that the expected number of columns is the ex-
pected number of erasures, which is just the sum over the probability that each
bit is erased, namely

∑

pk. Differentiating this gives us

∂

∂ p j
E(dim ker A[p]) =

∂

∂ p j

�

n
∑

k=1

pk −E(rank A[p])

�

= 1−
∂

∂ p j
E(rank A[p])

7



To calculate this last derivative, suppose we increase the jth coordinate of p
by some small value ∆p j. Then what is the difference E(rank A[p +∆p j]) −
E(rank A[p])? Note that since we are only changing the probability of selection
of a single column, the rank can either stay the same or increase by 1. For it
to increase by 1, all three of the following must happen:

• We must not have selected column j when picking with probabilities p

• We must select column j when picking with probabilities p+∆p j

• Column j must be linearly independent of the other picked columns

What is the probability that all of these happen? The probability that the first
two happen, i.e. that we didn’t pick the column before but do now, is simply
∆p j. Thus,

E(rank A[p+∆p j])−E(rank A[p]) =

=∆p j · P(column j is independent of the columns in A[p
∼ j
])

Dividing out by ∆p j and taking the limit as ∆p j → 0 shows us that

∂

∂ p j
E(rank A[p]) = P(column j is independent of the columns in A[p

∼ j
])

= 1− h j(p)

Combining this with our earlier calculation gives exactly what we wanted.

Recall that a linear code is one that is a k-dimensional vector subspace of
the vector space Fn, where F is some field. Any such subspace can be given as
the nullspace of some (n− k)× n matrix, and such a matrix is called a parity-
check matrix of the code. More formally,

Definition 2.5. Given an [n, k] linear code C ⊆ Fn, a parity-check matrix (PCM)
for C is any (n− k)× k matrix A satisfying Ax = 0 for all x ∈ C . Note that the
condition on the dimensions of A guarantees that A will have full row rank.

With this definition, we can state our final proposition.
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Proposition 2.4. Let A be as above, except that now we think of it as the PCM
of a code C with blocklength n. We pick a codeword x ∈ C uniformly at random,
and let y(p) denote the random vector that we get by erasing the jth bit of x with
probability p. Then

Pe, j(A, p) = P
x ,y(p)

(x j cannot be recovered from y(p))

= P
x ,y(p)

(∃x ′ ∈ C , x ′j 6= x j, x ′ can yield y(p) via erasures)

This justifies the name “probability of bit-error,” and is in fact the usual definition
for this quantity.

Proof. In order for us to make an error in decoding coordinate j, two things
must happen. First, we must erase coordinate j, for otherwise we will certainly
be able to recover it. And second, we must have some x ′ ∈ C with x ′j 6=
x j such that when we erase according to the erasure pattern given by y(p),
x and x ′ become indistinguishable. This means that the support of x − x ′

must be contained in the erasure pattern; however, by linearity, x − x ′ is a
codeword, so if its support is in the erasure pattern, that must mean that the
columns indexed by the erasure pattern are linearly dependent. Moreover,
since x and x ′ disagree at the jth coordinate, there must be some such linear
dependence that contains the jth column. In other words, column j must be
linearly dependent on the other columns picked in A[p

∼ j
].

Finally, observe that these two events are independent, so the probabil-
ity that both happen is just the product of their probabilities, which is simply
ph j(A, p), which was our definition for Pe, j(A, p).

2.3 Algebraic Measures of Tensor Power Matrices

Let F be any field, let n be a power of 2, and let Gn be the matrix over F defined
by

Gn =
�

1 1
0 1

�⊗ log n

Note that the entries of this matrix are only 0’s and 1’s, and therefore this can
be viewed as a matrix over any field.

Many important codes can be derived from Gn, and they are all based on
the following simple idea. First, we pick some measure of “goodness” on the
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rows of Gn. Then, we take the submatrix of Gn obtained by keeping only those
rows which are the “best” under this metric. Finally, we define a code whose
PCM is this matrix. Two important examples are the Reed-Muller codes defined
in [14, 13], where goodness is measured by the weight of the rows, and more
recently Arıkan’s polar codes, defined in [3, 2], where goodness is measured
by the entropy (or mutual information); both of these will soon be discussed
in greater detail.

One important property of the tensor product matrices Gn is that we can
explicitly calculate the values of our four algebraic independence measures on
them, as shown in the following lemmas.

Lemma 2.1. For any j ∈ [n],

h j(Gn, p) = h j(Gn, p) = Pe, j(Gn, p) = 0

Proof. Since Gn is an invertible square matrix, none of its columns is linearly
dependent on any collection of other columns, so h j(Gn, p) must be identically
zero, which implies the same for h j and Pe, j.

Lemma 2.2. Define the functions

`(x) = 2x − x2

r(x) = x2

and define a branching process of depth log n and offspring 2 (i.e., each node has
exactly two descendants) as follows: the base node has value p, and for a node
with value x, its left-hand child has value `(x) and its right-hand child has value
r(x). Then the n leaf-nodes of this branching process are, in order, the values
ρi(Gn, p) for 1≤ i ≤ n.

Proof. The proof of this lemma is rather technical and can be found in [1].
One important thing to note, however, is that the functions ` and r do not
depend on F, while the COR values ρi(Gn, p) are defined in terms of linear
independence, and therefore do depend on F, a priori. Thus, one consequence
of this lemma is that the COR values of Gn are field-independent, though their
definition does depend on the base field.

For the final lemma, we will need some notation. Given a binary vector v,
let w(v) denote the Hamming weight of v, namely the number of non-zero co-
ordinates in v. Similarly, for a positive integer i, let w(i) denote the Hamming
weight of the binary representation of i, or equivalently the minimum number
of powers of 2 whose sum is i.
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Lemma 2.3. Fix F = F2, the binary field. Then for any n a power of 2 and for
all i ∈ [n],

Ψi(Gn, p) = p2w(i−1)
= pn/w((Gn)i)

Proof. First, we will show that the two terms on the right-hand side are equal
for all n and 1≤ i ≤ n, i.e. that

2w(i−1) =
n

w((Gn)i)

This is proved by induction on n. The base case is n= 2, where

G2 =
�

1 1
0 1

�

and so
w((G2)1) = 2 w((G2)2) = 1

In addition,
2w(0) = 1 2w(1) = 2

Thus, 2w(i−1) = n/w((Gn)i) is indeed true for n = 2 and 1 ≤ i ≤ 2. For the
inductive step, observe that we may write Gn in block form as

Gn =
�

Gn/2 Gn/2

0 Gn/2

�

Therefore, if 1 ≤ i ≤ n/2, then (Gn)i is simply a concatenation of two copies
of (Gn/2)i, and thus

w((Gn)i) = 2w((Gn/2)i) = 2
n/2

2w(i−1)
=

n
2w(i−1)

where the middle equality is the inductive hypothesis. Similarly, we see that
for n/2 + 1 ≤ i ≤ n, we have that (Gn)i is a row of zeros concatenated to
(Gn/2)i−n/2, and therefore

w((Gn)i) = w((Gn/2)i−n/2) =
n/2

2w(i−n/2−1)
=

n
2w(i−1)

where we have used the fact that since i ∈ [n/2+ 1, n], the binary expansion
of i − 1 has a 1 in the location corresponding to n/2, which means that w(i −
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n/2−1) = w(i−1)−1. From this, we conclude that the two quantities on the
right-hand side of the statement of the lemma are indeed equal.

So it only remains to prove that for all n and i, Ψi(Gn, p) is equal to either
p2w(i−1)

or to pn/w((Gn)i). For this, we again proceed by induction. The base case is
again G2; we can see that in order for the first row of G2[p] to be independent
of the second row, we must select either only the first column or both columns,
meaning that

Ψ1(G2, p) = p(1− p) + p2 = p

On the other hand, for the second row to be independent of the first, we must
select both columns, so

Ψ2(G2, p) = p2

as desired. For the inductive step, suppose that we have proven that for all
i ∈ [n/2],

Ψi(Gn/2, p) = p2w(i−1)

To prove the same for Gn, we begin with the case where i ≤ n/2. Rather
than computing Ψi(Gn, p), we will actually compute 1−Ψi(Gn, p), namely the
probability that row i of Gn[p] is linearly dependent on the other rows. Since
we are computing linear dependence over F2, this is simply

1−Ψi(Gn, p) = P

�

∃S ⊆ [n] \ {i} :
∑

k∈S

(Gn)k[p] = (Gn)i[p]

�

We will treat the left-hand side of the matrix and the right-hand side of the ma-
trix differently. For this purpose, let L = {1, . . . , n/2} and R= {n/2+ 1, . . . , n};
then the probability above can be rewritten as

P

�

∃S ⊆ [n]\{i} :
∑

k∈S

(Gn)k[p][L] = (Gn)i[p][L]∧
∑

k∈S

(Gn)k[p][R] = (Gn)i[p][R]

�

We have done nothing so far; all this says is that if some set of vectors sum to
another vector, then in particular, the first few coordinates of the summands
sum to the first few coordinates of the sum, and similarly for the last coordi-
nates. However, since the bottom-left corner of Gn is all zeros, the above is the
same as

P

 

∃S :
∑

k∈S∩[n/2]

(Gn)k[p][L] = (Gn)i[p][L] ∧
∑

k∈S

(Gn)k[p][R] = (Gn)i[p][R]

!
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All we have done is change the index set on the first sum; it suffices to consider
only those summands in the top half of the matrix. However, now we can use
a “cloning” trick, as follows. We claim that for any set S′ ⊆ [n/2] \ {i}, there
exists a set S with S′ ⊆ S ⊆ [n] \ {i} such that

∑

k∈S

(Gn)k[p][R] = (Gn)i[p][R]

To see this, simply set S = S′ ∪ {i + n/2} ∪ (S′ + n/2), where

S′ + n/2= {k+ n/2 : k ∈ S′}

In other words, S consists of S′, along with a clone of every element of S′ in
the bottom half of the matrix, along with a clone of row i in the bottom half.
Then S clearly satisfies the properties we want, since
∑

k∈S

(Gn)k[p][R] =
∑

k∈S′
(Gn)k[p][R] +

∑

k∈S′
(Gn)k+n/2[p][R] + (Gn)i+n/2[p][R]

= (Gn)i[p][R]

where we use the fact that on the right-hand side of the matrix, row k and row
k+ n/2 are identical, so all the terms but the last one cancel.

In other words, we have just shown that given any set of rows that yields a
linear dependence on the left-hand side, we can extend it to a set of rows that
yields a linear dependence on both sides of the matrix. This implies that above,
when we considered the probability that two events happen, the second event
is a consequence of the first, so we are simply calculating the probability

P

�

∃S′ ⊆ [n/2] \ {i} :
∑

k∈S′
(Gn)k[p][L] = (Gn)i[p][L]

�

However, now that we are working wholly on the left-hand side, we see that
this is the same as

P

�

∃S′ ⊆ [n/2] \ {i} :
∑

k∈S′
(Gn/2)k[p] = (Gn/2)i[p]

�

which is simply 1−Ψi(Gn/2, p). Thus, we have shown that for 1≤ i ≤ n/2,

Ψi(Gn, p) = Ψi(Gn/2, p) = p2w(i−1)
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as desired.
For n/2+1≤ i ≤ n, a similar inductive proof must exist; however, we have

been unable to find it. Nonetheless, it turns out to be unnecessary. We again
split into two cases; we will first deal with the case where n/2+1≤ i ≤ n−1.
We wish to prove that

Ψi(Gn, p) = pn/w((Gn)i)

Note that the right-hand side does not actually depend on the row we have
chosen, only on the weight of that row in the matrix Gn. In addition, it turns
out that the left-hand side also doesn’t depend on the specific row chosen. The
reason is that the definition of Ψi is clearly invariant under permutations of
columns, since a permutation of the coordinates of a collection of vectors does
not change the linear dependence properties of that collection (since linear
dependence is a coordinate-wise relation). However, any row of a given weight
can be turned into another row of the same weight by a simple permutation of
columns. So the statement that we wish to prove only depends on the weight
of row i, and on nothing else. Moreover, for any n/2+1≤ i ≤ n−1, the weight
of (Gn)i is equal to the weight of some row in the top half of the matrix, and
for those rows we have already shown that this equality holds. Therefore, the
theorem is true for n/2+ 1≤ i ≤ n− 1.

Therefore, the only case remaining to be checked is the case i = n. In this
case, we have to show that Ψn(Gn, p) = pn. To do so, we claim two things:
first, that (Gn)n is independent of the other n − 1 rows, and second, that for
any P ( [n], (Gn)n[P] is linearly dependent on the other rows of Gn[P]. This
suffices because the probability that we pick all the columns is precisely pn, and
this is the only way to get linear independence. The first claim is true because
Gn has full rank, so there can be no linear dependence among its rows. For
the second claim, we again proceed by induction on n; we already checked the
base case above. For the inductive step, let P ( [n]. If n /∈ P, then (Gn)n[P]
is the all-zeros vector, which is trivially dependent on the other rows. Oth-
erwise, there is some n 6= k /∈ P. If k ∈ {1, . . . , n/2}, the top-left Gn/2 has
more rows than columns, meaning that there is some subset of its rows that
sum to zero. We can now do another “cloning” trick like the one used above:
we take these rows, together with their clones in the bottom half, together
with the (n/2)th row, and these will sum to (Gn)n[P]. On the other hand, if
k ∈ {n/2+ 1, . . . , n− 1}, then we work only within the bottom-right Gn/2; by
the inductive hypothesis, there is some linear combination of these rows that
sums to (Gn/2)n/2[P ∩ R], and this linear combination works for Gn as well.
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Therefore, (Gn)n[P] is dependent on the other rows of Gn[P], as desired.

Having proven all the necessary basic facts about these algebraic measures,
we now turn their applications in the world of codes.

3 Polar Codes

In 2009, Arıkan published a groundbreaking paper, [3], in which he defined
polar codes. These codes were the first explicit examples of codes that achieve
the Shannon capacity on any channel, and thus answered the main question
left open from Shannon’s original paper [15]. These codes are defined by hav-
ing a PCM which is obtained by selecting some rows of Gn, where the selection
is based on an information-theoretic notion of independence. Arıkan’s con-
struction inspired the construction defined below (originally published in [1]),
in which we sought to replace this information-theoretic measure by a linear-
algebraic measure of independence, namely the COR values.

3.1 High-Girth Matrices

Before explaining the construction, we will need to understand the relationship
between some coding-theoretic and linear-algebraic properties. First of all, we
can express the coding-theoretic property of achieving capacity on the M EC(p)
as a linear-algebraic property of a matrix, as shown in the following lemma.

Lemma 3.1. Fix a sequence of codes C = {Cn}n≥1, and let Hn be a PCM of Cn.
Then C can successfully decode on the M EC(p) if and only if Hn[p] has linearly
independent columns with high probability.

Therefore, C is capacity-achieving on the M EC(p) if and only if Hn[p] has
linearly independent columns with high probability and

lim
n→∞

number of rows of Hn

number of columns of Hn
= p

Proof. The second statement follows from the first and the fact that the rate
of Cn is precisely 1 minus the fraction of the number of rows to the number
of columns of Hn. So it suffices to show the first statement, which is proved
analogously to Proposition 2.4.

15



For that, observe that the probability of error of decoding Cn is precisely

Pe(Cn) = PE(∃x , x ′ ∈ Cn, x 6= x ′, x[Ec] = x ′[Ec])
= PE(∃z ∈ Cn, z 6= 0, z[Ec] = 0)

where E is the erasure pattern of the M EC(p), i.e., a random subset of [n]
obtained by picking each element with probability p. In the second equality,
we have used linearity to deduce that z = x − x ′ is also a codeword.

Note that E has the property that there exists a codeword z ∈ Cn such that
z[Ec] = 0 if and only if the columns indexed by E in Hn are linearly dependent.
Indeed, assume first that there exists such a codeword z, where the support of
z is contained in E. Since z is in the kernel of Hn, the columns of Hn indexed
by the support of z must add up to 0, hence any set of columns that contains
the support of z must be linearly dependent. Conversely, if the columns of
Hn indexed by E are linearly dependent, then there exists a subset of these
columns and a collection of coefficients in F such that this linear combination
is 0, which defines the support of a codeword z. Hence,

Pe(Cn) = PE(Hn[E] has linearly dependent columns)

Therefore, Pe will tend to 0 if and only if the right-hand side tends to 0, which
is precisely what we wanted to show.

This lemma allows us to precisely characterize capacity-achieving codes in
terms of a linear-algebraic property of their PCMs. Because of this, it is useful
to give this property a name:

Definition 3.1. Fix a parameter p ∈ [0,1]. A sequence of matrices {Hn}n≥1

where Hn has n columns and full row rank is called a p-high-girth family if
Hn[p] has linearly independent columns with high probability, and

lim
n→∞

rank(Hn)
n

= p

When the p is understood, we will simply call such families high-girth.
Note that by concentration of measure, Hn[p] will have very close to pn

columns. Moreover, it will have roughly pn rows, since the definition guar-
antees that the fraction of rows to columns in Hn will tend to p. Therefore,
the high-girth property can be thought of as roughly saying that when we ran-
domly pick a square submatrix of Hn, we will get full column rank with high
probability.
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3.2 Examples of High-Girth Matrices

There are many explicit examples of high-girth families.

1. Most obviously, any time we find a sequence of capacity-achieving linear
codes, their PCMs will form a high-girth family. However, from a coding-
theoretic point of view, this observation is uninteresting—we hope to use
our understanding of high-girth matrices to construct new codes, not vice
versa.

2. Fix some number n and suppose that our alphabet field F has at least
n + 1 elements in it. Fix nonzero elements x1, . . . , xn ∈ F and consider
the matrix

V =













1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

x k−1
1 x k−1

2 x k−1
3 · · · x k−1

n













Then this matrix has the property that any square submatrix has full rank.
That is because any square submatrix is a k × k Vandermonde matrix
generated by distinct elements, so it must have nonzero determinant, and
therefore have full rank. Therefore, if |F| =∞, then this construction
will give us a high-girth family. However, this example cannot be used to
construct high-girth families over any finite field F, since once n+1> |F|,
this construction will fail, as we will then get repeated columns.

3. Working over the binary field F2, a family of matrices whose nth member
is a (pn+ εn)× n matrix whose entries are iid Ber(1

2) random variables
will be p-high-girth for any p ∈ (0, 1), where εn =ω(1) and εn = o(n). As
this fact is well-known (see, e.g., [9, Section 3.2]), we will only sketch a
proof. By concentration of measure and the iid-ness, we see that picking
random columns from this random matrix is essentially the same as sim-
ply picking a random (pn+εn)×pn matrix. Then the probability that the
first column is the zero vector is 2−pn−εn . The probability that the second
column is in the span of the first is the probability that a random vector
lies in a 1-dimensional subspace, namely 2−pn−εn+1. More generally, the
probability that the kth column is in the span of the previous columns is
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2−pn−εn+k. Thus, by the union bound, the probability of a linear depen-
dence among the columns is at most

pn−1
∑

k=0

2−pn−εn+k = 2−pn−εn

pn−1
∑

k=0

2k ≤ 2−pn−εn · 2pn→ 0

where we have used εn = ω(1). Moreover, since we also know that
εn = o(n), we see that the fraction of rows to columns in these matrices
tends to pn, so they indeed form a high-girth family.

4. A new method for constructing high-girth matrices was developed in [1],
and is described below.

3.3 Conditional-Rank Matrices

Recall Lemma 2.2, which said that the COR valuesρi(Gn, p) can be found as the
leaves of a branching process initialized at p. A key property of the branching
process in Lemma 2.2 is that it is a balanced process, meaning that the average
value of the two children of a node with value x is x again:

`(x) + r(x)
2

=
(2x − x2) + x2

2
= x

This means that a random walk on this tree that goes left or right with prob-
ability 1

2 defines a martingale. Moreover, since ρi(Gn, p) is a probability, we
have that this martingale stays in [0,1]. So by Doob’s martingale convergence
theorem [6], we must have that this martingale converges almost surely to its
fixed points. Its fixed points are those x ’s for which `(x) = r(x) = x . The
only points satisfying this are 0 and 1, so almost all values attained by this
branching process approach either 0 or 1; this is a property that Arıkan called
polarization in [3]. Moreover, since the process is balanced, we must have that

n
∑

i=1

ρi(Gn, p) = np

This, together with the polarization, implies that for any δ ∈ (0, 1
2),

lim
n→∞

|{i ∈ [n] : ρi(Gn, p)> 1−δ}|
n

= p

lim
n→∞

|{i ∈ [n] : ρi(Gn, p)< δ}|
n

= 1− p
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The reason is simple: if almost all of the values are very close to either 0 or 1,
but they must sum up to np, then roughly a p fraction of them should be close
to 1 and roughly a 1− p fraction should be close to 0. In fact, the branching
process defined by the functions `(x) and r(x) was already studied in [4],
and this allows us to say much more about the speed at which this branching
process polarizes:

Theorem 3.1 (Application of [4]). For any n,

|{i ∈ [n] : ρi(Gn, p)> 1− 2−n0.49}|
n

= p+ o(1)

|{i ∈ [n] : ρi(Gn, p)< 2−n0.49}|
n

= (1− p) + o(1)

Hence the theorem tells us that the above martingale polarizes very quickly:
apart from a vanishing fraction, all ρi(Gn, p)’s are exponentially close to 0 or
1 as n→∞. With this in mind, we define the following.

Definition 3.2. Let n be a fixed power of 2, and let p ∈ [0, 1] be fixed. Let
I ⊂ [n] be the set of indices i for which ρi(Gn, p)> 1− 2−n0.49

, and let m= |I |.
By Theorem 3.1, we know that m = pn + o(n). Let Rn,p denote the m × n
submatrix of Gn gotten by selecting all the columns of Gn, but only taking those
rows indexed by I . We call Rn,p the COR matrix of size n with parameter p.

We will index the rows of Rn,p by i ∈ I , rather than k ∈ [m]. The most
important property of Rn,p is expressed in the following theorem.

Theorem 3.2. For any p ∈ [0, 1], Rn,p[p] has full row rank (i.e. rank m) with
high probability, as n→∞. In fact, Rn,p[p] has full row rank with probability
1− o(2−n0.48

).

Proof. For i ∈ I , let Bi be the event that the ith row of Rn,p[p] is linearly de-
pendent on the previous rows. Note that if Rn,p[p] has full rank, then no Bi

is satisfied, while if Rn,p[p] has non-full rank, then there must be some linear
dependence in the rows, so at least one Bi will be satisfied. In other words, the
event whose probability we want to calculate is simply the event

⋂

i∈I Bc
i .

Note that in our notation, the ith row of Rn,p is also the ith row of Gn.
Therefore, for any P ⊆ [n], the ith row of Rn,p[P] is the ith row of Gn[P].
This means that any linear dependence between the ith row of Rn,p[P] and the
previous rows automatically induces a linear dependence between the ith row
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of Gn[P] and the previous i − 1 rows, since the previous rows in Gn[P] are a
superset of the previous rows in Rn,p[P]. Since this is true for any set P ⊆ [n],
we see that

P(Bi) = P(the ith row of Rn,p[p] is dependent on the previous rows of Rn,p[p])
≤ P(the ith row of Gn[p] is dependent on the previous rows of Gn[p])
= 1−ρi(Gn, p)

< 2−n0.49

Therefore,

P
�

⋂

i∈I

Bc
i

�

= 1− P
�

⋃

i∈I

Bi

�

≥ 1−
∑

i∈I

P(Bi)

> 1−
m
∑

i=1

2−n0.49

= 1− [pn+ o(n)]2−n0.49

= 1− o
�

2−n0.48
�

→ 1 as n→∞

Intuitively, this should imply that Rn,p is a p-high-girth family: we have
shown that each Rn,p[p] has full row rank, so it should also have full column
rank, and thus be high-girth. However, there is a slight subtlety stemming from
the fact that Rn,p[p] will generally have more columns than rows, so full row
rank will not imply full column rank. However, this is an easily fixable problem:
we define R′n,p to be the same as Rn,p, except that we also select o(n) additional
rows from Gn. Then R′n[p] will have rank strictly more than m whp, and we
can therefore conclude, via another concentration of measure argument:

Theorem 3.3. For any p ∈ [0, 1], R′n,p is p-high girth.

Since the proof of Theorem 3.2 works independently of the base field F,
the same is true of Theorem 3.3. Thus, the COR matrix construction is fully
deterministic and works over any field. From all of this discussion, we can
finally get a coding-theoretic application:
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Corollary 3.1. The code family {Cn} where Cn = ker(R′n) is capacity-achieving
on the M EC(p) for any p ∈ [0,1] and any alphabet field F.

Proof. By Theorem 3.3, R′n is high-girth, which by Lemma 3.1 implies that {Cn}
achieves capacity on the M EC(p). We call this family the COR codes.

3.4 Relation to Polar Codes

It is perhaps surprising that in a section named “Polar Codes,” these codes have
not yet been discussed in any detail. The reason is primarily pragmatic—it is
not necessary to know anything about polar codes in order to understand the
above material. Nevertheless, they certainly should be mentioned, since there
are at least two close relationships between COR codes and polar codes.

First and foremost is one of inspiration. As anyone familiar with polar codes
will realize, the construction of COR codes directly mimics that of polar codes:
in both cases, one defines a measure of some sort of statistical independence on
the rows of Gn, proves that this measure polarizes, and concludes that selecting
only the rows that fare best under this measure yields the PCM of a capacity-
achieving code. Thus, COR codes can be seen as a sort of conceptual relative of
polar codes, with all of our definition and proof ideas inspired by what Arıkan
had done in the realm of polar codes.

Moreover, it turns out that COR and polar codes are even more closely re-
lated; specifically, in the special case of the binary erasure channel (i.e. work-
ing over F2), it turns out that COR codes and polar codes are identical. The
reason is that in this special case, Arıkan’s measure of goodness, namely the
conditional entropy, turns out to follow the exact same branching process as
the COR values, namely that given in Lemma 2.2; this is proven in [3, Propo-
sition 5]. There are many ways to think about this equivalence, but one of
them is to consider the COR construction as a linear-algebraic proof that po-
lar codes achieve capacity on the BEC. For Lemma 3.1 implies that achieving
capacity on the BEC is, fundamentally, a linear-algebraic property, so in partic-
ular, the fact that polar codes achieve capacity on the BEC is a linear-algebraic
fact. Previously, however, the only proof that was known for this was Arıkan’s
far more general and non-algebraic proof that polar codes achieve capacity on
any channel. So the COR construction can be thought of as a linear-algebraic
proof of this important linear-algebraic fact.
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4 Reed-Muller Codes

From now on, we will be working only over the binary field F2. Our main
object of study will be Reed-Muller (RM) codes, defined by [14, 13]. There are
several equivalent ways of defining these codes, but the one most useful for
our purposes is the one that demonstrates their relation to the tensor power
matrix Gn:

Definition 4.1. Let n be a power of 2 and let 0 ≤ r ≤ log n. The (n, r) Reed-
Muller code is the code whose PCM is given by selecting only those rows of Gn

whose weight is at least 2r . This code has blocklength n and rate

log n
∑

k=r

�

log n
k

�

since Gn has precisely
�log n

k

�

rows of weight exactly 2k.

Reed-Muller codes are of enormous interest and have been extensively stud-
ied since they were defined in the 1950s. Therefore, it is extremely surprising
that almost nothing was known about their effectiveness at transmitting on the
BEC until 2015, when two teams, Kumar-Pfister [12] and Kudekar et. al [11],
independently proved that RM codes achieve capacity on the BEC(p) for all
p ∈ [0,1]. Both teams used essentially the same ingenious proof technique,
one that relies on some fairly heavy mathematical machinery. However, by
Lemma 3.1, we know that the statement that RM codes are capacity-achieving
is, fundamentally, a linear-algebraic statement. So one might hope that their
proof could be simplified so that it does not require any of the sophisticated
tools they use.

In what follows, we present a purely linear-algebraic version of almost their
entire proof. We have yet to succeed in reinterpreting one major step, though
we have some partial progress leading to a linear-algebraic question. If this
question can be answered, we will have a linear-algebraic proof that RM codes
achieve capacity on the BEC.

4.1 The Linear-Algebraic Area Theorem

By definition, RM codes achieve capacity on the BEC if and only if the proba-
bility of error in decoding erasures tends to zero. For now, rather than trying
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to prove that the probability of error Pe is small, we will only try to prove that
the probability of bit-error Pe, j is small for all j. Recall that by Proposition 2.4,
Pe, j deserves its name—though we defined it as an algebraic measure, it really
does capture the probability that we make an error in decoding. Of course, Pe, j

only considers errors in decoding the jth coordinate, and therefore proving
that Pe, j is small is, a priori, a weaker statement than proving that Pe is small.
However, it was shown in [10] that for RM codes, proving that Pe, j is small
implies that Pe is small as well.

By our definition of Pe, j, we see that if we can prove that h j is small for
RM codes in certain regimes of p, then we will be able to deduce that the bit-
error probability is small as well, and therefore that they achieve capacity on
the BEC(p). The way that this is shown in [12, 11] is using the following
important theorem:

Theorem 4.1 (The Area Theorem). Let A be an m× n matrix which is the PCM
of a Reed-Muller code C. Then for any j ∈ [n],

∫ 1

0

h j(A, p)dp =
n−m

n
= r(C)

where r(C) is the rate of C.

Proof. The fact that r(C) = (n−m)/n is simply the statement that A is an m×n
matrix. So the actual strength of the theorem comes from the first equality,
which will follow from Proposition 2.3. Recall that it stated that

h j(A, p) =
∂

∂ p j
E(dim kerA[p])

If we define a function

ϕ(p) = E(dimker A[p])

then Proposition 2.3 will imply that

ϕ′(p) =
n
∑

j=1

h j(p)

by the multivariate chain rule. Then integrating both sides from 0 to 1 gives

n
∑

j=1

∫ 1

0

h j(p)dp = ϕ(1)−ϕ(0) = dim ker A= n−m
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since A has full rank. Finally, we claim that for RM codes, all the EXIT functions
are equal. This follows from an important symmetry property of RM codes,
namely that for any j1, j2 ∈ [n] there exists a permutation π ∈ Sn with the
properties

• π( j1) = j2

• for any codeword of C , if we permute its coordinates according to π, we
will get another codeword in C

For a proof of this fact, see e.g. [8, Corollary 4].
In our linear-algebraic language, this says that π permutes the columns of A

without changing its nullspace; therefore, notions of linear dependence among
columns are unchanged. Thus, this and our definition of the EXIT function tell
us that h j2(A, p) = h j2(A

π, p), where Aπ is A with its columns permuted accord-
ing to π. However, since π( j1) = j2, we also see that h j2(A

π, p) = h j1(A, p).
Therefore, the EXIT functions h j1 and h j2 are equal for all j1, j2, and thus all of
the EXIT functions are equal. Therefore, our equality above can be rewritten
as

n−m=
n
∑

j=1

∫ 1

0

h j(p)dp = n

∫ 1

0

h j(p)dp

for any j ∈ [n]. Dividing by n gives what we claimed.

From the Area Theorem, [12, 11] proceed by invoking a very general theo-
rem, the Friedgut-Kalai theorem from [7], which allows them to demonstrate
that as n grows, the EXIT functions h j(p) start to look more and more like
step functions: they are extremely close to 0 below some threshold value of
p, and then spike up suddenly and stay extremely close to 1 after this thresh-
old. The Friedgut-Kalai theorem does not enable them to determine where this
threshold is, which would be a problem, except that the Area Theorem saves
the day: the integral of such a step function is precisely 1 minus the location
of the threshold, so from the Area Theorem, this threshold must take place at
1− r(C). This, in turn, means that below the threshold, we have that

Pe, j = ph j(p)

must be very small, since h j(p) is very small. Thus, they conclude that RM
codes can successfully transmit over the BEC(p) at all rates larger than 1− p,
and thus that RM codes achieve capacity on the BEC.
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4.2 Ideas Towards a New Proof

The Friedgut-Kalai theorem is very general and powerful, and we have not
been able to find a linear-algebraic alternative for it, even in this one special
application. However, we believe we have the beginnings of a replacement,
using DOR values.

The reason to study DOR values comes from the following idea. We are
working in a PCM obtained by selecting some subset of the rows of Gn. In
Gn, we understand the bit-error probabilities: they are all zero, by Lemma 2.1.
Now, suppose we discard rows from Gn one at a time; if we could understand
how the bit-error probabilities change at each step, we could hopefully under-
stand how they behave once we’ve discarded all the “bad” rows. Moreover, by
Proposition 2.2, we can interpret a change in bit-error probabilities when we
delete a row as a change in DOR values when we delete a column; recall that
the proposition stated that

Pe, j(A∼i, p)− Pe, j(A, p) = Ψi(A, p)−Ψi(A[∼ j], p)

In other words, we can think of DOR values as being a sort of dual to bit-
error probabilities, under the duality between rows and columns. Moreover,
we know precisely what Ψi(Gn, p) is, thanks to Lemma 2.3. So it is not unrea-
sonable to hope that one can understand how the DOR values change each time
we delete a row of small weight from Gn, and use this understanding, along
with the duality given by Proposition 2.2, to successfully bound Pe, j(A, p), and
thus prove that RM codes achieve capacity on the BEC. However, we have been
unable to do this, and therefore leave it as an open question:

Question: What happens to Ψi when we delete a low-weight row from Gn?
What happens when we do this again and again, deleting one row at a time?
Can we get sufficiently sharp bounds to bound Pe, j and conclude that RM codes
achieve capacity on the BEC?

4.3 Appendix: Equivalence to the earlier proof

In this section, we explain why the various concepts and results studied in
Section 4.1 are indeed equivalent to those presented in [12, 11]. This section
is only an appendix, and the above proofs are complete on their own.

First, recall the following basic definitions of Information Theory:
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Definition 4.2. For a random variable X on a finite setX , we define its entropy
to be

H(X ) = −
∑

a∈X

PX (a) log PX (a)

Given another random variable Y on some finite set Y , we define the condi-
tional entropy to be

H(X | Y ) =
∑

b∈Y

H(X | Y = b)PY (b)

where here H(X | Y = b)means the entropy, in the sense above, of the random
variable X | Y = b.

Proposition 4.1. Fix a code C and a column index j. Pick a codeword x ∈ C
uniformly at random and let y(p) denote its output under the BEC(p). Then

h j(p) = H(x j | y∼ j(p))

Proof. For any given erasure pattern E, we have one of two options: either
column j is linearly dependent on the columns indexed by E, or it is not. If it
is, then we get a contribution to h j(p) equal to the probability that E will occur
as an erasure pattern; moreover, in this situation, the entropy of guessing x j

from y∼ j(p) will be 1, since column j being dependent precisely means that
we cannot guess it from the other coordinates, by the proof of Lemma 2.4.
So we will also get a contribution to H(x j | y∼ j(p)) equal to the probability
of E occurring. Similarly, if column j is independent of the others, then we
will get a contribution of 0 to both sides of the equation: the left-hand side by
definition, and the right-hand side by the fact that independence means that
we can guess x j from the other coordinates, and will thus have zero entropy.
Thus, summing over all erasure patterns E gives us the desired result.

In [12, 11], they use H(x j | y∼ j(p)) as the definition of the EXIT function,
since it is a more broadly-applicable information-theoretic definition. However,
as we can see, it can really be thought of as a linear-algebraic quantity when
dealing with the BEC.

Proposition 4.2. Under the same conditions as the last proposition,

E(dimker A[p]) = H(x | y(p))
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Proof. We can write

H(x | y(p)) =
∑

b∈{0,1,?}n
P(y(p) = b)H(x | y(p) = b)

For any observed vector b, we know that

H(x | y(p) = b) =

=

¨

0 x can be recovered from b
log #{z ∈ C : z can yield b when erased} otherwise

The reason is straightforward: if x can be recovered from b, then there is no
entropy (since that is what recoverability means), whereas if x cannot be recov-
ered from b, then we have a uniform distribution on all the possible codewords
that can yield b, and its entropy is precisely log of the size of the support. This
number above is, by linearity, the number of codewords whose supports are
covered by the erasure pattern of b. This is the number of codewords in the
nullspace of A[E], where E is the erasure pattern. Therefore, its log is just
dim ker A[E], the dimension of this nullspace. Note that since 0 = log 1, this
also covers the case when x can be uniquely recovered from b. Thus, we see
that

H(x | y(p)) =
∑

b∈{0,1,?}n
P(y(p) = b)H(x | y(p) = b)

=
∑

b∈{0,1,?}n
P(y(p) = b)dim ker A[E(b)]

= E(dimker A[p])

Note that these two propositions give us equivalent ways of expressing the
quantities in Proposition 2.3. Thus, the way Proposition 2.3 is stated in [12,
11] is by saying that

∂

∂ p j
H(x | y(p)) = H(x j | y∼i(p))

and similarly the Area Theorem is given as

∫ 1

0

H(x j | y∼ j(p, . . . , p))dp = H(x | y(p, . . . , p))

�

�

�

�

�

1

0

=
n−m

n
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With all this in mind, we see that our EXIT functions are the same as theirs,
our Area Theorem is the same as theirs, and the proof presented in Section 4.1
is fundamentally the same as theirs.
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