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Graph Theory 1
In the course Algorithms and Data Structures last semester, you had a first
encounter with graphs: you have seen the definition, some properties and
algorithms such as BFS, DFS, Topological Sorting, algorithms for shortest
paths... In this course we go deeper in the topic, and we introduce other
exciting concepts. Some of them are exposed in this chapter, others that
exploit randomization are presented in Chapter 3.

1.1 Recap from Algorithms and Data Structures

Concepts and Notation

Graphs are a powerful mathematical tool that allows us to model many
different problems. The main idea is to define a collection of elements
called nodes or vertices (Knoten), and a relation between them that we
call the edges (Kanten). Edges can be directed or undirected, yielding
directed or undirected graphs respectively. An example could be tomodel
locations as nodes and the streets between them as edges, or people and
the relationship between them (e.g. "is the father of" or "are friends").
Both nodes and edges can also have additional information associated
with them such as color, location, length, capacity, flow and more.

If the underlying relationship used for the edges is symmetric (meaning
that E is connected to D if and only if also D is connected to E) then the
graph is said to be undirected (ungerichtet).

Definition 1.1.1 (Undirected Graph) An undirected graph is a tuple
� = (+, �) where
+ = {E1 , ..., E=}, |+ | = = is the set of nodes, and
� = {41 , ..., 4<} ⊆ {{D, E}|D, E ∈ +}, |� | = < is the set of edges between
them.

We call vertices D, E adjacent (benachbart) if and only if D, E ∈ � and we
call a vertex E and an edge 4 incident (inzident) if and only if E ∈ 4.

If however there is the possiblity of having E in relation to D without
D being in relation to E (e.g. father-of relationship) then the graph is
called directed (gerichtet). The direction is represented by an arrow. We
use some different letters to make the distinction easier.

Definition 1.1.2 (Directed Graph) A directed graph is a tuple � = (+, �)
where
+ = {E1 , ..., E=}, |+ | = = is the set of nodes, and
� = {41 , ..., 4<} ⊆ + ×+, |� | = < is the set of edges between them.
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Figure 1.1: Simple undirected graph

Important Graphs

Some graphs are used a lot and deserve their own name and symbol:

I A Complete Graph (vollständiger Graph)  = has = vertices and every
pair of different vertices is connected by an edge.

I A Circle (Kreis) �= is a graph that has = vertices that are connected
in one big circle. (A connected graph that has exactly once cycle
through any pair of different edges)

I A Path (Pfad) %= is �= , but with any one edge removed.
I A Hypercube (Hyperwürfel) of dimension 3, called &3, is a graph

with+ = {0, 1}3 (bitstrings of length 3) and edges between exactly
those vertices that differ at exactly one position.

It’s important to remember these, as they can often serve as counterex-
amples, even in small sizes.

Figure 1.2: The graphs  6 , �7 and %5

Bipartite Graphs

If our graph can be split into two sets of vertices such that there are no
edges within those sets then the graph is said to be bipartite (bipartit).
(This definition is easily extended to : independent sets (stabile Mengen)
to yield k-partite Graphs). Formally:

+ = � ∪ �, two disjoint sets of nodes (� ∩ � = ∅)
� ⊆ {{D, F}|D ∈ *, F ∈,} (undirected bipartite graph)
� ⊆ (* ×,) ∪ (, ×*) (directed bipartite graph)

Sequences

We can select an ordered sequence of vertices, and based on edges
between them and repetition of edges/vertices in our sequence, we
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Figure 1.3: Simple bipartite graph

can distinguish them as follows (note that this is not consistent in the
literature, we simply refer to the definitions in the lecture):

Let’s consider the sequence 〈E1 , E2 , . . . , E:〉

I Walk (Weg): a sequence with edges between E8 and E8+1 for all
8 ∈ {1, . . . , : − 1}. The length is : − 1.

I Path (Pfad): a walk without repeated vertices.
I Closed Walk (Zyklus): a walk where E1 = E:
I Cycle (Kreis): a closed walk where all vertices except start and end

are different
I Loop (Schleife): a sequence 〈E8 , E8〉.

If nothing else is mentioned, we only consider graphs without
loops and without multiple edges between the same vertices (note
that strictly speaking, our definitions already enforce that).

Here it’s a handy table that summarize these concepts:

Restrictions Name Name when closed
any vertices Walk (Weg) Closed Walk (Zyklus)
distinct vertices Path (Pfad) Cycle (Kreis)

A path starting at a given vertex B and ending at another given vertex C is
called an s-t-path (s-t-Pfad).

Degree

The degree (Grad) of a vertex E of a graph is the number of edges incident
to the vertex (with loops counted twice). It is denoted 346(E) := |#�(E)|,
where #�(E) is the neighborhood of E (all vertices adjacent to E).
For directed graphs, we have the in-degree (Eingangsgrad) deg−�(E) and
the out-degree (Ausgangsgrad) deg+�(E) which are defined as the number
of incoming and outgoing edges respectively.

Theorem 1.1.1 ∑
E∈+

deg(E) = 2|� |

This formula implies the following:

I the amount of vertices with odd degree is even
I the average degree in a graph is 2<

=
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Graph Data Structures

Until now, a graph � = (+, �) is an abstract data type that can be
represented as follows (ignore the weights on the edges, but we’ll use
the numbers on each node to refer to that node):

But how can we represent a graph in a computer? How can you code
algorithms that works with graphs? In order to do this, you need a data
structure to represent the graph. Here there are the three most popular
solutions.

Adjacency matrix We simply create a matrix with |+ | rows and |+ |
columns. The entry at position (8 , 9) (counting from zero here) has value
0 if there is no edge between nodes 8 and 9, and it has value 1 if there is
an edge. In the case of the previous image we would have the following
adjacency matrix (again, ignoring weights):

0 1 0 1 1
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
1 0 0 1 0


Note that if the graph is undirected, the matrix is symmetric, i. e. �) = �.
You don’t need to know a lot of runtimes for this course, andmost depend
on how exactly the data structures are implemented. Important to know
are:

I Memory space / time to create: O(|+ |2)
I Add edge: O(1)
I Remove edge: O(1)
I Are D and E adjacent? O(1)

Adjacency list We create a list of lists. The big list has an entry list for
every node (again, a list). The list corresponding to the node E contains
all edges that are incident to E.
For example, in the case of the previous image, we would have the
following adjacency list:
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{{{0, 1}, {0, 3}, {0, 4}}, {{1, 0}, {1, 3}, {1, 2}}, {{2, 1},
{2, 2}}, {{3, 2}, {3, 1}, {3, 0}, {3, 4}}, {{4, 0}, {4, 3}}}

Here, the important runtimes look as follows (assuming edges don’t have
references to their copies):

I Memory space / time to create: O(|+ | + |� |)
I Add edge: O(1)
I Remove edge {D, E}: O(346(D) + 346(E))
I Are D and E adjacent? O(min(346(D), 34 6(E)))

Obviously, if you have a complete graph (i. e. every node is connected to
all other nodes), the runtimes of many operations become the same as
the ones for adjacency matrices. The intuition behind using adjacency
matrices is that the efficiency ofmany operations is inversely proportional
to the number of edges (which, you should remember, is ≤ |+ |2 in
the graphs you consider in this course): if the graph has no edges,
the operations are very efficient, but if the graph has many edges,
the operations have the same efficiency they would have in adjacency
matrices.

Figure 1.4: different ways of storing a
graph. Adj. Matrix and Adj. List

Trees

A tree (Baum) ) is a graph on = vertices that satisfies the following
properties:

I it is connected
I it has no cycles
I it has = − 1 edges

Note that if ) satisfies two of these properties, it automatically also
satisfies the third.

In this context, a leaf (Blatt) is a vertex with degree 1.

Trees also have a few simple properties. (Let ) be a tree with = ≥ 2)

I ) contains at least two leaves.
I by removing a leaf from ), we obtain a graph �′ which is also a

tree.
I between any two nodes D, E, there is exactly one u-v-path in ). (any

graph that satisfies this is also a tree!)



1 Graph Theory 6

1.2 Minimum Spanning Tree

Given a graph � = (+, �) and a cost function 2 : �→ ℝ that assigns a
cost 2(4) to each edge in �, a minimum spanning tree (MST) ) over � is
a tree nodes + and edges �()), such that the sum∑

4∈�())
2(4)

is minimized. This means that among all possible complete trees over �,
) minimizes the total cost. Spanning Trees have many applications, for
example in networking, where they are applied to prevent forwarding
network packets in cycles while maintaining connectivity.

1.3 Advanced Graph Concepts

Definition 1.3.1 A graph is k-connected (k-zusammenhängend) if and only
if

I |+ | ≥ : + 1, and
I ∀- ⊆ +, |- | < :: �[+ \ -] is connected

Definition1.3.2 Agraphk-edges-connected (k-kanten-zusammenhängend)
if and only if

I |� | ≥ : + 1
I ∀- ⊆ �, |- | < :: (+, � \ -) is connected

Informally: The graph has at least : + 1 vertices/edges, and we need to
remove at least : vertices/edges to make the graph disconnected.

Theorem 1.3.1 (Menger) A graph is k-connected if and only if for all
D, E ∈ +, D ≠ E there exist at least : internally-vertex-disjoint u-v-paths.
(only D, E may appear on multiple paths)

A graph is k-edge-connected if and only if for all D, E ∈ +, D ≠ E there
exist at least : edge-disjoint u-v-paths. (no edges may appear on multiple
paths)

Since there are k paths that do not share vertices/edges, we cannot
disconnect the graph by removing any : − 1 vertices/edges, which
implies that the graph is k-(edge)-connected.

Single nodes and edges that disconnect the graph (therefore with : = 1)
are called Articulation points (Artikulationsknoten) and Bridges (Brücken)
respectively.

Figure 1.5: One Bridge and three articu-
lation points marked darker in the graph
(there are more bridges)
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Finding articulation points and bridges efficiently We can use the
following to find articulation points and bridges for each connected
component of the graph. Note that the search tree we will use now is a
directed graph.

I perform DFS on � starting at an arbitrary vertex B and assign a
number 35 B[E] to each vertex E according to the order they were
visited (the first vertex gets 0, the next 1, etc.)

I compute for each vertex E ;>F[E] = minimum dfs number of all
vertices reachable from E via arbitrarily many edges in the search
tree and at most one other edge that is in the graph (use DP)

I Profit:

• E is an articulation point if and only if
∗ E = B and s has degree ≥ 2 in ), or
∗ E ≠ B and ∃F ∈ + with {E, F} ∈ �()) : low[F] ≥ dfs[E].

(So the root is an articulation point if DFS was only able to
explore part of the graph before having to return, and the
other vertices are articulation points if one of their children in
the search tree has a low number at least as big as their dfs
number)

• {D, E} is a bridge if and only if (D, E) ∈ �()) ∧ low[E] >
dfs[D] or (E, D) ∈ �()) ∧ low[D] > dfs[E] (note the different
orientations of the edge in the search tree).
(So an edge can only be a bridge if it’s part of the search tree
and the parent node has a strictly lower dfs number than the
low number of the child)

Figure 1.6: A possible execution of this
algorithm. Dark edges are in the search
tree, light edges are in the original graph
but were not used by DFS, and dark ver-
tices are articulations. The notation G/H
indicates the dfs and low numbers, respec-
tively.

Both articulation points and bridges can be found in O(|� |) after DFS
(which takes a further O(|+ | + |� |)) with this algorithm.
The full algorithm can be found in the lecture script on page 35.

1.4 Blocks and the Block-Cut Tree

This section offers a possibly less confusing approach to the problem of
finding bridges and articulation points than above.

Given two edges 4 , 5 , we say that they are in the same block if and only if
there exists a cycle (Kreis) that contains both of them. This gives us the
set of all blocks �.

There might be some vertices that are incident to edges in different blocks
(you could say the blocks "overlap"), these are exactly the articulation
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points. This way, we can easily find all the set of articulation points %
given the blocks �.

Theorem 1.4.1 Let � = (+, �) be a graph.

A vertex is an articulation point in � if and only if it is incident to at least
two edges that are in different blocks of �.

An edge is a bridge if and only if it is the only edge in its block.

Finally, given a graph � = (+, �), we can create its block-cut tree (Block-
Zerlegung) as a graph with vertices � ∪ % where a block is connected to
an articulation point if and only if that point is incident to an edge in that
block (and there are no edges between blocks or between articulation
points).
Though this does not help us with finding bridges or articulation points,
it can be useful for various divide-and-conquer methods.

All of this is possible in linear time, i. e. O(|+ | + |� |).

1.5 Matchings

A set of edges" ⊆ � is calledmatching in a graph � = (+, �) if no vertex
in the graph is incident to more than an edge in". Formally:

4 ∩ 5 = ∅ for all 4 , 5 ∈ " with 4 ≠ 5

We call all the vertices that are incident to an edge from " covered
(überdeckt) by the matching.

"as big as possible" If we are interested in computing a matching "
that is "as big as possible", we can mean two things:

I A matching " is maximal (inklusions-maximal) if and only if no
edge in � \" can be added to the matching without violating the
definition of a matching.
It’s easy to find, e.g. with greedy strategy by iterating over all the
edges (and picking only those who have both vertices still free) in
time O(|� |).

I Amatching" is maximum (kardinalitäts-maximal) if and only if
there is no matching in the graph that contains more edges.
The algorithm byHopcroft &Karp computes amaximummatching
in O(

√
|+ |(|+ | + |� |)).

For any maximal matching " and any maximum matching "∗, it holds
that

|" | ≤ |"∗ | ∧ |" | ≥ 1/2|"∗ |

Perfect Matching

A matching "? is called perfect (perfekt) if and only if |"? | = |+ |
2 , i. e.

every vertex of the graph is incident to exactly one edge of the matching.
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Not every graph possesses a perfect matching (e.g. no perfect matching
can exist if there is an odd number of vertices).

Matchings in Regular Graphs If � = (+, �) is a 2:-regular bipartite
graph, then we can find a perfect matching in O(|� |).

If� = (�]�, �) is a :-regular bipartite graph, then there exist"1 , ..., ":

such that � = "1 ] ... ]": and all"8 with 1 ≤ 8 ≤ : are perfect match-
ings.

Augmenting Paths

A path in � = (+, �) is called an augmenting path (augmentierender Pfad)
for a given matching " if and only if exactly every second edge in the
path is in", starting and ending with vertices not covered by". This
means that an augmenting path has odd length.

We can use an augmenting path to increase the size of our matching by
1 if we remove all the edges along the path from " and add the ones
previously not contained. (in a way "swapping" them)

Figure 1.7: Augmenting path once the
edges are swapped

Hopcroft-Karp Algorithm

This algorithm works on a bipartite graph � = (� ] �, �). This has the
advantage that an augmenting path can be found in O(= + <) simply
using a slightly modified BFS.
The algorithm works by finding all the augmenting paths that have
minimal length, selecting an inclusion-maximal set of vertex-disjoint
paths and augmenting along all of those at once. This repeats until
there are no more augmenting paths, implying that the matching is
maximum.

The runtime is O(
√
|+ |(|+ | + |� |)).
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Figure 1.8: The layer structure produced
by BFS. Black edges are not in the match-
ing, red ones are. White vertices are not
covered by the matching, black ones are.

Theorem 1.5.1 (Berge) Let" be a matching in the graph � = (+, �).

" is a maximum matching in � if and only if there exists no"-augmenting
path in �.

Blossom’s Algorithm

This one works for any graph. It repeatedly finds augmenting paths and
uses those to increase the size of the matching until no more augmenting
path exists (meaning the matching is maximum).
You don’t need to know how it finds augmenting paths, just know that it
has runtime O(|� | · |+ |2).

Hall’s Marriage Theorem

Necessary and sufficient condition to have a matching that covers at least
one side of the bipartite graph.

Theorem 1.5.2 (Hall) Let � = (�∪�, �) be a bipartite graph and let#(-)
denote the neighbourhood of - ⊆ � ∪ � in � (all vertices in � ∪ � adjacent
to at least one vertex in -).

There exists a matching that covers all vertices in � if and only if

∀, ⊆ � : |, | ≤ |#(,)|

Informally Every subset, has enough adjacent vertices in �. Other-
wise, we could not pair up the vertices in, with different vertices in
�.
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1.6 Eulerian Tour

An Eulerian Tour (Eulertour) is a closed walk that visits every edge in the
graph exactly once.
Graphs that contain an Eulerian tour are called Eulerian (eulersch).

Theorem 1.6.1 A connected graph � = (+, �) is Eulerian if and only if all
vertices in � have even degree.

One algorithm to find an Eulerian tour is the following:
Imagine two runners, a fast and a slow one. They start at an arbitrary
vertex. First, the fast runner starts and moves from vertex to vertex,
randomly choosing which neighbor to visit next (but not using the same
edge twice) until the runner arrives at the start.
The fast runner has now traversed a closed walk. Only now, the slow
runner starts and moves one step along the closed walk we just found.
At the new vertex, we check if there are any edges that the fast runner
has not yet traversed. If so, we send the fast runner off again along one of
these unvisited edges. When the fast runner returns, we will have a new
closed walk that contains none of the edges we already found. We merge
this new walk into the first one by inserting it at the current vertex (think
of it as a detour).
Now, the slow runner makes another step along the newly merged path,
checks for unvisited edges and sends off the fast runner again if it finds
any and so on. The algorithm terminates once we arrive back at the vertex
we started at in the very beginning.

This algorithm finds an Eulerian tour in O(|� |). An implementation is
given below (the fast runner works like RandomTour and the slow runner
like EulerTour)

Algorithm 1.1: EulerTour(G,v)1 , ← RandomTour(�, EBC0AC)
2 EB;>F ← successor of EBC0AC in,
3 while EB;>F is not equal to EBC0AC do
4 if EB;>F has unvisited incident edges
5 , ′← RandomTour(�, EB;>F)
6 Merge, ′ into,
7 // We have, =,1 + 〈E〉 +,2 and create, =,1 +, ′ +,2
8 EB;>F ← successor of EB;>F in,

Algorithm 1.2: RandomTour(G,v)1 , ← 〈E〉
2 E8=8C ← E

3 while E is not E8=8C do
4 Choose an arbitrary unvisited edge {E, D} incident to E
5 Add D to,
6 Mark {E, D} as visited
7 E ← D

8 return ,
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1.7 Hamiltonian Cycles

In the previous chapter we studied Eulerian Tours, and we have seen
a linear time algorithm to find an Eulerian Tour. In this chapter, we
study an apparently similar problem: finding a cycle in a graph that
uses each vertex exactly once. Although this might seem just a variant
of the previous problem, this is very different and more difficult. In
facts, determining whether a graph contains a Hamiltonian cycle is an
NP-complete problem. This means that, given a possible solution, we can
check in polynomial time whether it is correct or not. However, it is not
known whether a polynomial time algorithm for finding such a solution
exists (and it’s not likely).
In the script, there is a dynamic programming approach that solves the
problem in exponential time, but we don’t present it here. However, we
state some important results about special cases of this problem:

I A grid graph with < rows and = columns contains a Hamiltonian
cycle if and only if < · = is even.

I A bipartite graph with partitions � and � can only contain a
Hamiltonian cycle if |�| = |�|.

I Hypercubes of any dimension 3 ≥ 1 contain a Hamiltonian cycle.
I Dirac’s theorem: every graph � = (+, �)with |+ | ≥ 3 andminimal

degree ≥ |+ |/2 contains a Hamiltonian cycle.

1.8 Travelling Salesman Problem

The travelling salesman problem (TSP) is a famous generalization of the
Hamiltonian cycle problem. A businessman wants to visit = cities, each
exactly once, by starting from their own city and returning in the end.
He knows the time it takes to travel between every pair of cities, and
he wants to pick the shortest cycle possible. Formally: we are given a
complete graph  = and a function ℓ :

([=]
2
)
→ ℕ0 that assigns a cost to

each edge. We want to find a Hamiltonian cycle � in  = with
∑
4∈� ℓ (4)

minimal.

The problem is of course at least as hard as determining whether a graph
contains a Hamiltonian cycle. In fact, if we had an algorithm to find the
optimal tour, we could decide whether a graph � contains a Hamiltonian
cycle in the following way: we build a complete graph with the same
number of vertices as � and we give cost zero to the edges in � and cost
one to the others. If and only if the optimal tour has weight zero, then �
contains a Hamiltonian cycle.

In general, in the context of optimization problems such as TSP, one
could be happy about finding a solution that is not worse than  times
the value of the optimal solution.
But this is still not feasible: If we had such an algorithm, we could deter-
minewhether a graph contains aHamiltonian cycle just as before (because
 time zero, i. e. the value of the optimal solution if the graph contains
a Hamiltonian cycle, is still zero). Hence, finding an -approximation
algorithm for TSP has to be at least as hard as finding a Hamiltonian
cycle.
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For this reason, we introduce a more restricted version of the TSP that
can still be useful: the metric TSP (metrisches TSP). The setting is the
same as before, but now we also require that

ℓ ({G, I}) ≤ ℓ ({G, H}) + ℓ ({H, I}) for all G, H, I

This property is called the triangle inequality, and it expresses that going
from G to I directly is never longer than taking a detour over H.

2-Approximation Algorithm for the Metric TSP

In this section, we explain an algorithm that finds an answer to the
metric TSP that not more than twice as costly as the optimal solution.
The runtime of the algorithm is O(=2). The algorithms work as follows:

1. We compute an MST in the graph in O(=2).
2. We create a multi-graph by doubling every edge in the MST.
3. We find an Eulerian Tour in that multi-graph (which exists because

all degrees are even).
4. We now translate this tour in the multi-graph to a cycle in the

original graph: We try to use the same sequence of vertices, but
whenever we would visit a vertex for the second time, we instead
go directly to the next unvisited vertex in the tour.

We can show that the MST has at most the same cost as an optimal
solution. Thus, the tour has at most twice that cost, and that’s already
enough to conclude that this gives us a 2-approximation for the metric
TSP in O(=2).

1.5-Approximation Algorithm for the Metric TSP

We can do this in exactly the same way, but we improve step 2. The goal
there is to end up in a graph where we can find an Eulerian Tour (which
is easy) that we can then correct to an answer to the TSP.

We notice that the problem is that we might have some vertices with
odd degrees in the MST. But, we also know that there is always an even
number of vertices with odd degree in any graph. We can now look at
a new complete graph with only these vertices, and there we can find
a perfect matching with minimal cost in O(=3) (you don’t need to know
how, this is Satz 1.50 in the lecture script). The new algorithm is:

1. We compute an MST in the graph in O(=2).
2. Find a perfect matching with minimal cost in the subgraph contain-

ing only the vertices with odd degree. Then add these edges to the
MST to obtain a multi-graph where all vertices have even degrees.

3. We find an Eulerian Tour in that multi-graph (which exists because
all degrees are even).

4. We now translate this tour in the multi-graph to a cycle in the
original graph: We try to use the same sequence of vertices, but
whenever we would visit a vertex for the second time, we instead
go directly to the next unvisited vertex in the tour.

This is a 1.5-approximation, because the perfect matching we find can at
most have half the cost of an optimal solution to the TSP.
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1.9 Graph coloring

One can solve a lot of problems by finding a partition of vertices such
that edges connect only vertices in different partitions. As an example,
consider exam scheduling:We have a graph� = (+, �)where+ is the set
of exams, and we have an edge {D, E} if and only if a student takes both
exam D and exam E; hence we can say that edges represent "conflicts" (we
call these kinds of graphs "Interference Graphs" or "Interferenz-Graphen";
they are often useful in exams too).
Our goal is to find the minimal number of partitions (here used as time
slots) of this graph such that there are no edges within the same partition
(an edge within the same partition would mean that two exams with at
least one student in common would take place at the same time). Such
a partition can then give us an easy way to schedule exams without
conflicts.

In general, we define a (vertex) coloring (Färbung) of a graph � = (+, �)
with : colors as a mapping

2 : + → [:]

such that 2(D) ≠ 2(E) for all edges {D, E} ∈ �. Moreover, we define the
chromatic number (chromatische Zahl) "(�) as the minimum number of
colors needed to color �.

An important example is the case where "(�) = 2, such graphs are
bipartite. In general, we have:

Theorem 1.9.1 A graph � = (+, �) is k-partite ⇐⇒ it can be colored with
no more than : colors (i. e. "(�) ≤ :).

A classical graph coloring problem is the coloring of maps, where
neighbouring lands should be assigned to different colors. This problem
comes with the assumption that the territory of each land is connected
and that lands that touch in a single point can be colored with the same
color. An important theoretical result in graph coloring is that every such
map can be colored with (at most) four colors.

How can we determine the coloring of a graph with the least number
of colors? In order to decide, whether a graph is bipartite or not, a BFS
is sufficient, but how can we extend this to larger chromatic numbers?
In general, graph coloring is a difficult problem. Already the question
does a given graph � = (+, �) have "(�) ≤ 3? is NP complete. This means
that there is (probably) no polynomial time algorithm that computes the
chromatic number of a graph. In practice, this means that we have to
find approximations of the optimal solution.

The following algorithm computes a coloring of the vertices of the graph
by visiting the vertices in an arbitrary order E1 , . . . , E= and assigning to
each vertex the lowest color that is not used among its neighbours.

Algorithm 1.3: GreedyColoring(G)1 Choose an arbitrary order of the nodes E1 , . . . , E=
2 for 8 = 1, . . . , = do
3 2(E8) ← min(ℕ \ {2(D) | D ∈ #(E8) ∩ {E1 , . . . , E8−1})
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This can be implemented in O(|+ | + |� |).

It is clear that the algorithm returns a valid coloring, because given this
construction, the color of a vertex is always different from the one of its
neighbours. Now the question is, how many colors does the algorithm
use in the worst case? Since the algorithm chooses the smallest color
that is not yet used in one of the neighbours, we have the worst case
scenario when the neighbours of a vertex E8 are already colored with
colors 1, . . . , 34 6(E8). In this case, E8 gets the color 346(E8) + 1. This
means that the algorithm uses at most Δ(�) + 1 colors, where Δ(�) is
the maximal degree of a node in �. The number of colors used by the
algorithm depends on which sequence of vertices we consider. There
is always a sequence that yields to the best solution, but since we don’t
know this sequence we can get a worse result.

Exercise 1. Given a graph � = (+, �) and a coloring 2 that uses : colors,
show how we could construct a sequence of vertices where the greedy
algorithm uses ≤ : colors.

Then show why this implies that there is a vertex sequence where the
greedy algorithm uses exactly "(�) colors for any graph.

In general, choosing the correct sequence is not an easy task, and there
are various heuristics that could be used to improve our chances. Some
additional results are given below:

Theorem 1.9.2 (Brooks) Given a connected graph that is neither complete
nor a circle of odd length, there is an algorithm that computes a sequence with
which we will use at most Δ(�) colors in time O(|� |).

Complete graphs and circles of odd length are the only graphs
where "(�) = Δ(�) + 1 colors are needed (the coloring is trivial).
In all other graphs "(�) ≤ Δ(�).

By extension:

Theorem 1.9.3 Let � = (+, �) be a graph and : a natural number such that
any induced sub-graph of � has at least one vertex with degree ≤ :. It holds,
"(�) ≤ : + 1 and there is an algorithm that computes a coloring with : + 1
colors in O(|� |)

Proof. Repeatedly remove one of the vertices with maximum degree and
use those to fill in the vertex sequence starting at the end. Since the
maximum degree is ≤ : for all the intermediate graphs, we can always
color them with : + 1 colors (Brooks) and the next vertex in the sequence
may never have more than : neighbors, so it cannot be assigned a color
greater than Δ(�) + 1.

The following theorem shows us that there are also non-complete graphs
that need many colors.
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Theorem 1.9.4 (Mycielski Construction) For all : ≥ 2 there is a triangle-
free graph �: with "(�:) ≥ :.

Theorem 1.9.5 A graph � = (+, �)with "(�) ≤ 3 can be colored in O(|� |)
with O(

√
|+ |) colors.

The algorithm can be found on page 84 of the lecture script.

Applications We already discussed an example where we were able to
use colorings in a conflict graph to find conflict-free schedules of events.
Colorings can also be applied to the following scenarios:

I Map coloring (duh)
I Frequency/channel assignment
I Register allocation
I Sudoku (try this on your own or check out this blog post ∗)

It always comes down to some notion of "conflicts" between entities
(expressed as edges) and "groupings" of entities (the color assignments).
If this makes sense to you, you should be able to apply this easily to many
similar problems.

1.10 Network Flow

Network Definition A network (Netzwerk) is a tuple (+, �, 2, B, C)
with

I � = (+, �) a directed graph
I 2 : �→ ℝ+0 the capacity function
I B, C ∈ +, B ≠ C two special nodes, the source (Quelle) and the sink

(Senke)

This is simply a directed graph with two nodes marked as source and
target, and a non-negative value assigned to each edge stating the capacity
for transport of that edge.

Figure 1.9: Simple networkwith capacities
marked above the edges

∗ https://medium.com/code-science/sudoku-solver-graph-coloring-8f1b4df47072

https://medium.com/code-science/sudoku-solver-graph-coloring-8f1b4df47072
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Flow Definition A flow is a function 5 : � → ℝ+0 with the following
conditions:

I Capacity constraint (Zulässigkeit):

∀4 ∈ � : 0 ≤ 5 (4) ≤ 2(4)

I Flow Conservation (Flusserhaltung):

∀E ∈ + \ {B, C} :
∑
D∈+
(D,E)∈�

5 (D, E) =
∑
D∈+
(E,D)∈�

5 (E, D)

The first condition means that on every edge a non-negative amount of
flow not exceeding the capacity of the edge.
The second condition states that no flow disappears or appears at any
given node other than the source and sink, i. e. flow is conserved in the
network.

Inflow and Outflow We can define the following quantities (they al-
ready appear above):

I inflow(E) :=
∑

D∈+
(D,E)∈�

5 (D, E)
I outflow(E) :=

∑
D∈+
(E,D)∈�

5 (E, D)

With these quantities we can simplify the second condition to

∀E ∈ + \ {B, C} : inflow(E) = outflow(E)

Flow Value Let’s first define two corresponding quantities for B and
C:

netoutflow(B) := outflow(B) − inflow(B)
netinflow(C) := inflow(C) − outflow(C)

It follows from flow conservation that netoutflow(B) = netinflow(C).

The value (Wert) of a flow is defined as

val( 5 ) := netoutflow(B)

Max-Flow Min-Cut The algorithmic problem we study in this section,
is to efficiently compute a maximum flow in the graph, i. e. a flow with
maximum value. In order to gain some insights about this, we introduce
a dual problem.

A B − C cut � = ((, )) in a network is a partition of + into (, ) ⊂ + such
that ( ∩ ) = ∅, ( ∪ ) = + with B ∈ (, C ∈ ).
The capacity of this cut is informally how much flow can at most pass
from ( to ) and is defined as

cap((, )) =
∑

(D,E)∈((×))∩�
2(D, E)
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Since a B − C cut limits how much flow can move through the network,
we know for every B − C cut � = ((, )) and every flow 5 :

val( 5 ) ≤ cap((, ))

Theorem 1.10.1 (Max-FlowMin-Cut) In any network # = (+, �, 2, B, C),
there exists a flow 5<0G and a B − C cut � = ((, )) such that

val( 5<0G) = cap((, ))

We can now be sure that, yes, there is a maximum flow in any network
and its value is equal to the minimum (−) cut in the graph. Wewill look
to efficient algorithms to compute minimal cuts in Chapter 3, but since
there are finitely many cuts in a graph, we already have a naive algorithm
to determine a minimal cut (i. e. enumerating them and keeping the
minimum).

Further (important!): If we find a flow 5 and a ( −) cut with cap((, )) =
val( 5 ), this is a proof that 5 is a maximum flow.

Augmenting Paths The idea of the algorithm that we present here is
to improve a given flow. In order to do that, we’ll first try to look for a
path from B to C in the graph, such that the flow on each edge of the path
is strictly less than the capacity of the edge. Then, we can increase the
flow on each edge on the path by the quantity � := min4∈ path 2(4) − 5 (4)
without violating capacity constraints or flow conservation.

Unfortunately, there are sub-optimal flows that can not be improved
in this way†. A key observation here is that increasing the flow on an
incoming edge can not only be compensated with an increase of the flow
on an outgoing edge, but also with the decrease of the flow of another
incoming edge. (instead of sending out more flow, we can accept less and
still satisfy flow conservation)

Residual Network We want to fix the problem above by introducing
two new concepts: residual networks and augmenting paths (mind you
that these have nothing to do with augmenting paths for matchings!).

Given a network # = (+, �, 2, B, C) with a flow 5 , we define the residual
network (Restnetzwerk) # 5 = (+, �′, 2′, B , C) as follows:

I For each edge 4 ∈ � with 5 (4) < 2(4) in # (not yet at capacity), we
add an edge in the same direction with capacity 2′(4) = 2(4) − 5 (4)
(remaining capacity) to # 5 .

I For each edge 4 ∈ � with 5 (4) > 0 in # (there is flow we could
potentially decrease), we add an edge in the opposite direction
with capacity 2′(4) = 5 (4) to # 5 .

This way, for every edge in # , there are edges in the residual network
with their capacities representing the "margins" of the flow over this edge
in # .

† for an example, you can take a look at https://de.wikipedia.org/wiki/Algorithmus_
von_Ford_und_Fulkerson#Beispiel

https://de.wikipedia.org/wiki/Algorithmus_von_Ford_und_Fulkerson##Beispiel
https://de.wikipedia.org/wiki/Algorithmus_von_Ford_und_Fulkerson##Beispiel
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We can now apply the same idea as before and try to find B − C paths in
# 5 , and indeed: given such an augmenting pathwe can increase the value
of 5 as follows:
First, calculate � := min4∈ path in # 5

2′(4).
If the augmenting path traverses an edge in # 5 in the same direction as
it exists in # , we increase the flow over that edge by �, and
if the augmenting path traverses an edge in # 5 in the opposite direction
as it exists in # , we decrease the flow over that edge by �.

Exercise 2. Prove that a flow 5 ′ constructed in this way from a flow 5

given an augmenting path in # 5 is again a valid flow (in particular, prove
that it satisfies the capacity constraints and flow conservation) and also
show that it has a strictly bigger value.

Residual networks are very useful because we can now prove the follow-
ing:

Theorem 1.10.2 Let 5 be a flow in the network # .

5 is a maximum flow in # if and only if there is no directed B − C path in # 5

Ford-Fulkerson Algorithm This algorithm finds a maximal flow in
a network by repeatedly finding an augmenting flow in the residual
network and using that to increase the flow value. The algorithm is
guaranteed to terminate only if the capacities are integers or rational
(yielding an integer flow or a rational flow respectively), but not if we
allow irrational capacities! ‡

An integer flow (ganzzahliger Fluss) is a flow where 5 (4) ∈ ℕ0 for every
edge 4 (and consequently the value of such a flow is also an integer).
Similarly, for rational flows.

It works as follows:

Algorithm 1.4: Ford-Fulkerson1 5 (4) ← 0 for all 4 ∈ �
2 while there is an s−t path % in the residual network do
3 increase flow 5 along %
4 return 5

In networks with integer capacities and without opposite edges:
Since in every iteration the flow is augmented by at least 1 unit, and the
algorithm stops when we have a flow with maximum value (as only then,
no augmenting path exists), we know the algorithm will run through
a maximum of val( 5<0G) iterations. Each time we must construct the
residual network, and this takes O(|� |). Therefore, the algorithm has a
worst case runtime of O(val( 5<0G) · |� |). We can give an upper bound
for val( 5<0G) as |+ | ·* , where* = max4∈� cap(4). This corresponds to
the fact that no flow can be higher than the maximum capacity in the
network times the amount of vertices (you could use a B − C cut with

‡ A counterexample is given here: https://faculty.math.illinois.edu/~mlavrov/
docs/412-spring-2018/infinite-loop.pdf

https://faculty.math.illinois.edu/~mlavrov/docs/412-spring-2018/infinite-loop.pdf
https://faculty.math.illinois.edu/~mlavrov/docs/412-spring-2018/infinite-loop.pdf
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( = {B}).
This gives a total runtime of: O(* · |+ | · |� |)

For networks with rational capacities, we can simply multiply them all
by the largest denominator to get a network with integer capacities.

Useful Tricks Flow problems have many application in the real world,
most of which have to do with scheduling the use of a finite amount of
resources or find some optimal utilization and transport of quantity in a
network. The following tricks allow adapting problems that appear to
not fit into this model:

I WecanmodelMultiple sources/sinksbyaddinga "master" source/sink
and connect it to each source/sink that we are given with a big
enough capacity (you could again use |+ | ·*)

I We can model undirected graphs by doubling all the edges and
making them directed using the original capacity

I We can model capacities at vertices by splitting the vertex into
two vertices with only incoming/outgoing edges respectively, and
limit the capacity from "incoming" to "outgoing" using a new edge
between them.

The following figure should help remember these tricks.

Figure 1.10: The tricks shown graphically

Another interesting observation is that we can compute maximum
matchings in bipartite graphs with a network flow approach: we add a
source B with edges of capacity 1 to each node of the first partition, and
from each node of the other partition we add edges with capacity 1 to
the target. Edges of the bipartite graph have capacity one. By following a
maximum integer flow in this graph, we find a maximum matching in
the underlying bipartite graph.

Exercise 3. 1. Sheryl tries to use this algorithm in graphs that are not
bipartite as follows: She connects B with capacity 1 to all vertices in
the graph, she connects those according to the edges in the graph
to a second copy of + and then connects all those vertices in the
second copy to C with capacity 1 (so instead of using � and � as
described above, she uses + twice).
Show why this approach does not work (Give an example of a
graph where this fails).

2. Show why it’s essential to use an integer flow to find the matching.
(Give an example of a maximum non-integer flow where it’s not
clear how we could construct a maximum matching)
This is one of these things where you can easily lose points on an
exam even though you might have a perfectly correct idea!
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3. Argue why it’s always possible to find a maximum integer flow in
such a network (the correct one, not the one from 1.).

Exercise 4. Design an algorithm that, given a graph � = (+, �) and two
vertices D, E, finds the number of edge-disjoint D− E paths using network
flow. (Describe a suitable network, describe how maximum flow values
are related to the amount of disjoint paths and prove that your claim is
correct)



Probability Theory 2
In this course, you had your first contact with discrete probability theory,
at least with respect to your ETH studies in Computer Science. Probability
theory is a wonderful theory that has both mathematical foundations
(which you will study in more detail in the course Wahrscheinlichkeit and
Statistik in the fourth semester) and practical applications (which you
have seen in this course, and you will see in other courses at CADMO
or in the area of Machine Learning). In the context of this course, the
chapter about probability theory can be divided into two fundamental
parts: a mathematical approach to the essential concepts of (discrete)
probability and an algorithmic approach to some problems that can be
solved by exploiting the idea of randomization.

In this chapter, we first introduce notions of probability theory which
will be useful in the next chapter, where we will exploit them in the
context of randomized algorithms.

2.1 Basic Concepts

When doing a random experiment (flipping a coin, picking a group of 10
people by chance, trying not to lose all of your money in a casino), there
is a set of possible outcomes.

Definition 2.1.1 We describe such an experiment as a probability space
(Wahrscheinlichkeitsraum). For us, a probability space consists of two parts:

A discrete sample space (Ereignisraum)Ω = {$1 , . . . , $=} (that is in turn
composed of elementary events (Elementarereignisse) $8 ∈ Ω)
and a probability function (Wahrscheinlichkeitsfunktion) Pr : Ω→ [0, 1].

The probability function is a function that measures how "likely" an event is,
and it has two fundamental properties:

I ∀$8 ∈ Ω : 0 ≤ Pr [$8] ≤ 1
I

∑=
8=1 Pr [$8] = 1

A set � ⊆ Ω is called event (Ereignis). The probability Pr [�] is defined
as the sum of the elementary events included in �. We also define the
complementary event (Komplementärereignis) �̄ := Ω \ �.

It’s noteworthy that we usually ignore elementary events with probability
0 in this course.

When trying to figure out what the probability space is, it can be useful
to notice that every time you run the experiment, exactly one of the
elementary events takes place. So if your experiment hasmultiple "results"
(rolling two dice at once, selecting 10 people from 100, shuffling cards)
you need to make sure that one experiment results in exactly one element
of the sample space being randomly selected. You can sometimes make a
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choice about how to best model your experiment and there is not only
one correct way, it’s just important to then be consistent.

For example, you could model two dice rolled at the same time using
36 different ordered 2-tuples (in a way assuming you can distinguish
one die from the other, usually the best approach) or using 21 different
unordered sets with up to two elements (sets with one element could be
used if you roll the same number twice) or if you’re only interested in
the sum you rolled, you could use the 12 different possible sums.
Roll 1st option 2nd option 3rd option
3 and 5 (3, 5) {3, 5} 8
5 and 3 (5, 3) {3, 5} 8
4 and 4 (4, 4) {4, 4} = {4} 8

These probability spaces are entirely different, but they will not disagree
on questions like "how likely is it to roll a sum of 8" if you’re consistent
when calculating.

Exercise 5. Explicitly (and formally) write down these three ways of
modelling the experiment and calculate the probability of getting a sum
equal to 8 for each one. Which one is most intuitive for you?

In general, the probability is a function from the set of events (often
denoted 2Ω or P(Ω)) to the interval [0, 1]. The probability function
satisfies the following properties (some of those are axioms, others can
be easily derived):

Pr [Ω] = 1
Pr [∅] = 0

Pr
[
�̄
]
= 1 − Pr [�]

� ⊆ �⇒ Pr [�] ≤ Pr [�]
Pr [� ∪ �] = Pr [�] + Pr [�] − Pr [� ∩ �]

Inclusion/ Exclusion Principle

If we are interested in the probability of the union of some events, we
could use the following:

Theorem 2.1.1 If the events �1 , . . . , �= are pairwise disjoint (i. e. if for all
pairs 8 ≠ 9 it holds �8 ∩ � 9 = ∅), then

Pr

[
=⋃
8=1

�8

]
=

=∑
8=1

Pr [�8]
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But what happens if the events are not disjoint? The general case is
covered by the inclusion/exclusion principle, stated in the Theorem 2.1.2.

Theorem2.1.2 (Inclusion/exclusionprinciple) For any events�1 , . . . , �=
(= ≥ 2), we have

Pr

[
=⋃
8=1

�8

]
=

=∑
ℓ=1
(−1)ℓ−1

∑
1≤81<···<8ℓ≤=

Pr
[
�81 ∩ · · · ∩ �8ℓ

]
=

=∑
8=1

Pr [�8]

−
∑

1≤81<82≤=
Pr [�81 ∩ �82]

+
∑

1≤81<82<83≤=
Pr

[
�81 ∩ �82 ∩ �83

]
− . . .
+ (−1)=+1 · Pr [�1 ∩ · · · ∩ �=]

This result is very important and gives the exact result to the problem.
However, for a large value of =, it gets tedious to compute. The Union
Bound comes to rescue by giving a upper bound to the value of the same
probability.

Theorem 2.1.3 For any events �1 , . . . , �= it holds

Pr

[
=⋃
8=1

�8

]
≤

=∑
8=1

Pr [�8]

For the sake of simplicity, we avoid giving a formal proof of Theorems
2.1.2 and 2.1.3. The intuition for Theorem 2.1.2 can be given with Venn
diagrams, for Theorem 2.1.3 just consider that we don’t subtract any
overlap and that the intersection of more events becomes strictly less
likely.

Laplace Spaces

We call a probability space with finitely many elementary events that all
have the same probability (namely 1/|Ω|) a Laplace space (Laplace-Raum).
This simplifies all the calculations a lot since we only need to worry
about how big the events we’re interested in are and not exactly which
elementary events comprise them:

If we are considering a discrete sample spaceΩ of cardinality =, then all
elementary events have probability 1

= . And we get

Pr [�] = |�|
=
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In other words, we describe the probability of an event as the number
of "favorable" events divided by the total number of "possible" events.
This reduces complex probability calculations to counting how many
favorable and possible outcomes there are.

Combinatorics A quick refresher on things you should already know:
If we want to count how many ways of picking : out of = elements there
are, it matters whether we are allowed to pick the same element twice
(repetitions) and whether we consider the order important.

The number of different ways of picking those elements is best summa-
rized in a small table:

order matters order does not matter
repetition allowed =:

(=+:−1)!
:!(=−1)!

no repetition allowed =!
(=−:)!

=!
:!(=−:)!

Exercise 6. Find a real-world example for each of the situations in the
table above.

Conditional Probability

Until now, we considered the case where we don’t have any prior infor-
mation regarding the probability space. But what happens if we already
have some information about the outcome of an experiment?
e.g. our friend could tell us they rolled two fair dice and did not get a
sum of 7; it makes sense to say that the event corresponding to a sum of
7 should now have probability 0

Example 2.1.1 Throw a fair dice. You know that the result is an odd
number. What is the probability that you got a prime number?

The prior knowledge that the result is odd reduces the probability
space from {1, 2, . . . , 6} to {1, 3, 5}. Since both 3 and 5 are prime, we
get a probability of 2

3 .

We can formalize the argument in the following way. Let � := {1, 3, 5}
be the event that the result is odd and � := {2, 3, 5} the event that the
result is prime. We can read the probability of observing a result from
� when we already know that we observed a result from � as follows:
we know that the "good events" are the one contained in the set � ∩ �
and the "possible events" are the one contained in �. Hence, we get

Pr
[
� given �

]
=

Pr [� ∩ �]
Pr [�]

In general, given two events � and � in a sample space Ω, we want
to determine the probability of event � knowing already that some
elementary event in � happened. We write Pr [� | �] and we speak of
the probability of � given � (� gegeben �). Just as above, we argue that
the fact that � happened leads to a new probability space. This explains
the following theorem.
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Definition 2.1.2 (Conditional Probability) LetΩ be a sample space and
�, � two events overΩ. We define

Pr [� | �] = Pr [� ∩ �]
Pr [�]

We can rearrange the formula for condition probability in the following
way

Pr [� ∩ �] = Pr [� | �] · Pr [�]

This situation (first knowing about � and then finding out about �) can
be graphically represented as a tree:

�̄

�̄ ∩ �̄

1 − Pr [
� | �̄ ]

�̄ ∩ �
Pr

[
� | �̄

]1 − Pr [�]

�

� ∩ �̄

1 − Pr [� | �]

� ∩ �
Pr [� | �

]

Pr [�]

Exercise 7. Prove or disprove: For any events �, � with 0 < Pr [�] < 1,
it holds that Pr[� | �] = 1 − Pr[� | �]

The above tree can be useful to compute other probabilities: Pr [�] and
Pr [� | �]. We first compute them in the example above, and then we
present two theorems than generalize the concept.

I Pr [�] = Pr [�] · Pr [� | �] + Pr
[
�̄
]
· Pr

[
� | �̄

]
Theorem 2.1.4 (Total Probability) If we divide Ω into a disjoint
partition of �8 for 8 ∈ [<], we have

Pr [�] =
<∑
8=1

Pr
[
� 9

]
· Pr

[
� | � 9

]
I Pr [� | �] = (Pr [� | �] · Pr [�]) /Pr [�]

Theorem 2.1.5 (Bayes) If we divideΩ into a disjoint partition of �8
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for 8 ∈ [<] and we consider an event � with Pr [�] > 0, we get

Pr [�8 |�] =
Pr [�8 ∩ �]

Pr [�] =
Pr [� | �8] · Pr [�8]∑<
9=1 Pr

[
� | � 9

]
· Pr

[
� 9

]
Most often, we simply pick �1 = � and �2 = � given some event �.

Exercise 8. You are on a TV show and the questions are chosen u.a.r
(uniformly at random) from a pool of questions. With probability ? you
know the answer, and you answer correctly. Otherwise, you guess, and
you give the right answer with probability 1/4. What is the probability
that you answer correctly to a randomly chosen question?

Exercise 9. You are on another TV show and you have to choose one out
of three closed doors. Behind one door (chosen uniformly at random in
advance) there is a wonderful race car, behind the other two doors some
friendly goats. You choose a door uniformly at random. The TV host
opens a door that you have not chosen (he will never open your chosen
door) and behind it is a goat (he will never open the door with the car).
Then he makes you an offer: You can change your choice to the other
closed. Do you have a probabilistic advantage in accepting the offer?
First describe a suitable probability space (there are three random choices
happening in each experiment), then define suitable events and then
calculate your chance of winning with and without switching.

Independence of Events

In the previous subsection, we studied the formula for conditional
probability. When we consider Pr [� | �], the prior knowledge that �
happened can increase, decrease or not influence the probability of �. If
the event � does not influence the event �, we have Pr [� | �] = Pr [�].
This fact also implies that � does not influence �:

Pr [�] = Pr [� | �] = Pr [� ∩ �]
Pr [�]

⇐⇒Pr [�] · Pr [�] = Pr [� ∩ �]

⇐⇒Pr [�] = Pr [� ∩ �]
Pr [�] = Pr [� | �]

The intuitive concept of independence is the following: two events are
independent if they don’t influence each other. In other words, knowing
that an event happened does not give us any additional information
about the probability of another event. This last observation motivates
the following definition.

Definition 2.1.3 (Independence of two Events) Two events � and � are
(stochastically) independent (unabhängig) if and only if one of the following
three (equivalent) proposition hold.

I Pr [� | �] = Pr [�]
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I Pr [� | �] = Pr [�]
I Pr [� ∩ �] = Pr [�] · Pr [�]

How can we generalize the concept of independence of more than two
events?

Definition 2.1.4 (Independence of = Events) The events �1 , . . . , �= are
(stochastically) independent if and only if for all subsets � ⊆ {1, . . . , =} with
� = {81 , . . . , 8:} we have

Pr
[
�81 ∩ · · · ∩ �8:

]
=

:∏
9=1

Pr
[
�8 9

]
We point out that checking independence only for all pair of events does
not work, as shown in the following example.

Example 2.1.2 Consider the Laplace space Ω = {1, 2, 3, 4} and the
following events:

I � := {1, 2}
I � := {1, 3}
I � := {1, 4}

We have

Pr [�] = Pr [�] = Pr [�] = 1
2

We also have that

Pr [� ∩ �] = Pr [� ∩ �] = Pr [� ∩ �] = Pr [{1}] = 1
4

Hence

I Pr [� ∩ �] = Pr [�] · Pr [�]
I Pr [� ∩ �] = Pr [�] · Pr [�]
I Pr [� ∩ �] = Pr [�] · Pr [�]

Thus, the events �, �, � are pairwise independent. Now consider

Pr [� ∩ � ∩ �] = Pr [{1}] = 1
4

But Pr [�] · Pr [�] · Pr [�] = 1
8 ≠

1
4 = Pr [� ∩ � ∩ �]

Summarizing: Independence implies pairwise independence, but the
opposite direction does not hold.

Independence is useful because it allows us to compute the probability
of the intersection of events simply by multiplying the individual events.
But what can we do to compute the intersection of non-independent
events? The next theorem helps us to solve the problem in general.

Theorem 2.1.6 (Full Multiplication Rule) For any events�1 , . . . , �= with
Pr [�1 ∩ · · · ∩ �=] > 0 we have

Pr [�1 ∩ · · · ∩ �=] = Pr [�1] · Pr [�2 |�1] · Pr [�3 |�1 ∩ �2] . . . Pr [�= |�1 ∩ · · · ∩ �=−1]
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For independent events, this theorem reduces nicely to the definition of
independence.

Exercise 10. Show that if Pr [� | �] = Pr
[
� | �̄

]
then � and � are

independent.

2.2 Discrete Random Variables

Often we are not really interested in the result of a random experiment.
What we are really interested in are the consequences of such a result.
For example, when we play roulette, we are not really interested in the
number that comes out, but in the possible increase or decrease of our
money.

Example 2.2.1 Consider an unfair coin with a probability of head (H)
of 0.4 and a probability of tail (T) of 0.6. We make the following bet: if
the coin shows head, we lose $100, otherwise we win $80. We model
this idea using a function - that maps every possible result of the
random experiment (H or T) to the corresponding gain or loss. We
have:

-(�) = − 100 with probability 0.4
-()) =80 with probability 0.6

This example motivates the following definition.

Definition 2.2.1 (Random Variable) A function

- : Ω→,- ⊆ ℝ

is called random variable (Zufallsvariable) -,- or -(Ω) = {-($) | $ ∈
Ω} is the set of all possible values - can take.

The function

5- : ,- → [0, 1]
G ↦→ 5-(G) := Pr [- = G]

is called probability mass function (Dichtefunktion) of the random variable
-.

The function

�- : ,- → [0, 1]
G ↦→ �-(G) := Pr [- ≤ G] =

∑
:∈ℝ
:≤G

5-(:)

is called cumulative distribution function (Verteilungsfunktion) of the
random variable -.

The PMF tells us how likely each value of - is while the CDS tells us
how likely it is to see a value of - that is at most some value.
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Example 2.2.2 (Indicator RandomVariable) A very important example
of random variable is the indicator variable (Indikatorvariable). For an
event � ⊆ Ω, we define the corresponding indicator variable as

��($) =
{

1 if $ ∈ �
0 otherwise

Note that we can use �-(G) also to express Pr [- > G]

Pr [- > G] = 1 − Pr [- ≤ G] = 1 − �(G)

There are also conditional random variables (bedingte Zufallsvariablen)
- | � that are only defined on the elementary events of some event
� instead of all of Ω. While this does not change the values - takes
given an outcome of the experiment, the distribution of - might change
drastically because certain outputs might now be more or less likely.
Many concepts from conditional probability can be applied to conditional
random variables as well, but if in doubt, you can always refer to

E [- | �] =
∑
$∈Ω

-($) · Pr [{$} | �]

=
∑
$∈�

-($) · Pr [{$} | �]

Independence of Random Variables

Definition 2.2.2 The random variables -1 , . . . , -= are independent if and
only if for all {G1 , . . . , G=} in the codomain of -1 , . . . , -= it holds

Pr [-1 = G1 , . . . , -= = G=] =
=∏
8=1

Pr [-8 = G8]

Note that, interestingly enough, here we don’t have to look at subsets of
the variables being independent.

An important theorem about independent random variables is the fol-
lowing.

Theorem 2.2.1 Let 51 , . . . , 5= be real functions. If the random variables
-1 , . . . , -= are independent, then so are the transformed random variables
51(-1), . . . , 5=(-=).

(Given a real function 6 : ℝ→ ℝ and a random variable - , the transformed
random variable 6(-) is simply a function that maps $ ↦→ 6(-($)))

This means that we cannot make independent random variables depen-
dent by only applying functions to each variable separately.
For example: Given any independent randomvariables-,., the variables
-- and

(
log(.) + sin(.)

) 1
.2+1 are also independent.
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Expected Value

The expected value is useful to determine the "average" outcome of a
random experiment (though most of the time that’s not an outcome that
can appear in any one experiment).

Definition 2.2.3 (Expected Value) The expected value (Erwartungswert)
of a random variable - is

E [-] :=
∑
$∈Ω

-($) · Pr [$]

or sometimes more useful if we don’t know the probability space but only the
distribution of -:

E [-] =
∑
G∈,-

G · 5-(G)

It’s possible to show that, if the random variablemaps results of a random
experiment to natural numbers, an equivalent definition of expected
value is given by

E [-] =
∞∑
8=1

Pr [- ≥ 8]

Acrucial property of the expectedvalue is linearity of expectation (Linearität
des Erwartungswertes). This property is very useful to solve a lot of
exercises in this course.

Theorem 2.2.2 (Linearity of Expectation) For any two random variables
-,. and 0 ∈ ℝ it holds that:

E [- + .] = E [-] + E [.]

E [0 + -] = 0 + E [-]

E [0 · -] = 0 · E [-]

We can generalize this to finitely many random variables:
For any random variables -1 , . . . , -= and 01 , . . . , 0= , 1 ∈ ℝ, we have

E

[
1 +

=∑
8=1

08-8

]
= 1 +

=∑
8=1

08E [-8]

This property is particularly useful if a random variable can be expressed
as a sum of simpler random variables with known expected value (e.g.
indicator variables).

Example 2.2.3 We toss a fair coin 100 times. How many heads do we
expect? We denote with - the number of heads and for 8 = 1, . . . , 100
we define -8 as the indicator random variable for head. We get

E [-] = E

[
100∑
8=1

-8

]
=

∑
8=1

100E [-8] =
100∑
8=1

1
2
= 50
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Theorem 2.2.3 For independent random variables -1 , . . . , -= , we have

E

[
=∏
8=1

-8

]
=

=∏
8=1

E [-8]

Exercise 11. Given a graph � with 2= vertices, with = vertices blue and
= vertices red. The probability that there is an edge between any two
nodes is 1

2 for all pair of nodes. What is the expected number of edges
between vertices of the same color? Do you need the existence of those
edges to be independent?

Exercise 12. In the same situation as above, let - be the random variable
defined as the number of edges that stay within a color. Assume now
that the existence of the edges are independent events. Calculate E

[
-2] .

(Write - as a sum of indicator variables �1 , . . . , �< and use the fact that
(∑<

8=1 �8)2 =
∑<
8=1

∑<
9=1 �8 · � 9)

Variance

The expected value E [-] of a random variable - gives some useful
information about it, but it does not say how - is "spread out". We would
"like" to be able to distinguish random variables whose values all lie very
close to the expected value and ones where the spread is very big. To
that end, we introduce another quantity to measure the spread of the
distribution around its mean.

Definition 2.2.4 (Variance) For a random variable - with � := E [-], we
define its variance (Varianz) (sometimes written as �2) as

Var [-] := E
[
(- − �)2

]
=

∑
$∈Ω
(-($) − �)2 Pr [$]

We also define the standard deviation � :=
√
Var

You can think of the variance as "average distance from the mean
squared".

Computing the variance with the definition can be quite tedious. The
following formula is often easier to use:

Var [-] = E
[
-2] − E [-]2

Two other important results about variance are given in the following
theorems.

Theorem 2.2.4 For any random variable - and 0, 1 ∈ ℝ we have

Var [0 · - + 1] = 02 · Var [-]
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(shifting the values has no effect on the spread, but scaling them is even
more important)

Theorem 2.2.5 For independent random variables -1 , . . . , -= , we have

Var

[
=∑
8=1

-8

]
=

=∑
8=1

Var [-8]

Exercise 13. Given is the following distribution of a random variable -
G -4 -2 5 8 10
5-(G) 0.25 0.10 0.20 0.15 0.30

Compute E [2- + 8] and Var [2- + 8].

Multiple Random Variables

Wemight find experiments in which we always observe multiple random
variables at the same time, such as throwing a die with both number and
color on each face. We then obtain a joint probability density function

5-,.(G, H) = Pr[- = G, . = H]

which expresses the probability of observing values G and H for the two
random variables - and . respectively.

It is possible to extract the individual probability distributions asmarginal
distributions (Randdichten)

5-(G) =
∑
H∈,.

5-,.(G, H)

And similarly for Pr[. = H].

Theorem 2.2.6 Let - and . be two independent random variables, and
/ = - + .. We then have

5/(I) =
∑
G∈,-

5-(G) · 5.(I − G)

This allows us to compute the density function of a random variable
using those of others, which might be helpful in some cases.

A special case that can come in very handy in an exam is the following.

Definition 2.2.5 We call the random variables -1 , . . . , -= independent
and identically distributed (unabhängig und identisch verteilt) - or just
i.i.d. - if and only if

I they all have the same distribution ( 5-1 = 5-2 = . . . or equivalently
�-1 = �-2 = . . . )

I and they are all independent
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(We know you didn’t cover this in the course, but you should be able to
grasp this concept fairly well if you understand the density function, and
it makes it easier to talk about certain things here)

Exercise 14. Find an example of a set of random variables that are i.i.d.

Find an example of a set of random variables that are independent but
not i.i.d.

Find an example of a set of random variables that are identically dis-
tributed but not i.i.d.

Theorem 2.2.7 (Wald’s Identity) Let - and # be two independent random
variables, with,# ⊆ ℕ.
If we nowdefine/($) = ∑#($)

8=1 -8($)where the variables-, -1 , -2 , . . . , -=
are i.i.d.
Then it holds that

E[/] = E[#] · E [-]

This can be used when we have many independent outcomes, we ran-
domly select a number # and then sum up the first # of the independent
outcomes.

2.3 Important Discrete Distributions

Following, some of the most common and useful distributions are given,
with density, expected value and variance.

Bernoulli Distribution

ABernoulli random variable can take two values, 1 and 0 with probability
? and 1−? respectively. This is useful to describe events that either happen
or don’t (indicator variables also follow a Bernoulli Distribution).

- ∼ Bernoulli(?)

5-(G) =


? for G = 1
1 − ? for G = 0
0 else

E [-] = ? Var [-] = ?(1 − ?)

Exercise 15. Compute the variance of - ∼ Bernoulli(?) by hand.
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Binomial Distribution

A Binomial random variable is useful when we sum up multiple inde-
pendent(!) Bernoulli random variables that all have the same success
probability. For example, we can describe the probability of scoring a
certain number of points in a game or look at how many light bulbs are
expected to break during delivery.

- ∼ Bin(=, ?) =
=∑
8=1

Bernoulli(?)

5-(G) =
{(

=
G

)
?G(1 − ?)=−G for G ∈ ℕ0

0 else

E [-] = =? Var [-] = =?(1 − ?)

Exercise 16. Consider a football league. A victory gives 3 points and
a loss 1 points. There is no draw possible. Each team plays 25 games.
Consider a team that wins each game independently with probability
? = 0.6. Let - be the random variable for the number of points obtained
by the team. Compute E [-] and Var [-].

Geometric Distribution

A geometric random variable is used to describe the amount of time
or number of events we have to wait for a Bernoulli event to happen.
For example, it can be used to estimate the MTBF (mean time between
failures), or the expected life of a hard disk before it dies.

- ∼ Geo(?)

5-(G) =
{
?(1 − ?)G−1 for G ∈ ℕ
0 else

E [-] = 1
?

Var [-] =
1 − ?
?2

An important property of the geometric distribution is the fact that it
is memoryless (gedächtnislos). The fact that an event happened in the
past doesn’t change the probability of it happening in the future (for
independent variables).

Pr[- ≥ B + C | - > B] = Pr[- ≥ C]

Exercise 17. Compute the expected value of - ∼ Geo(?) by hand using∑∞
8=0 ?

8 = 1
1−? .
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Negative Binomial Distribution

The negative binomial distribution is a generalization of the geometric
distribution: instead of waiting for the first success, we repeat the ex-
periment until we have = successes. Of course, if = = 1, we are back to
the geometric distribution. But what if = is larger? The random variable
- describes the number of repetitions until we see = successes of an
independently repeated event with probability ?.

- ∼ NegativeBinomial(=, ?)

5-(G) =
{(

G−1
=−1

)
?=(1 − ?)G−= for G ∈ ℕ0

0 else

E [-] = =

?
Var [-] =

=(1 − ?)
?2

Poisson Distribution

Let’s say you wanted to model births per week in some city (or any
random event in time) as a random variable, knowing that there are
on average 6 births per week. Two problems arise if you try to use a
Binomial distribution: Firstly, 6 cannot be the ? parameter of the Binomial
distribution and secondly, if you do try to do Bin(7, 6/7) (modelling
births per day for each of the seven days), it’s impossible to have 8 births
per week.
Maybe Bin(7 · 24, 6

7·24 ) (modelling births per hour for each hour) is better.
If you continue to do this, you will end up (in the limit) with the Poisson
distribution.

The Poisson distribution is used to model events happening randomly in
time when you know the rate of those events (in our case, 6 births per
week) and when you assume that a birth in any equally sized time frame
is equally likely. The parameter � now does not take a probability, but
rather a rate over time for the interval we’re interested in!

- ∼ Po(�)

5-(G) =
{
4−��G
G! for G ∈ ℕ0

0 else

E [-] = � Var [-] = �

When we consider the limit lim=→∞ Bin(=, �= )we could see that it equals
Po(�).

2.4 Coupon Collector Problem

Imagine that you have to complete a collection of = items 00 , . . . , 0=−1.
At each iteration, you receive one object independently and uniformly
at random from the set of all objects. The Coupon Collector Problem
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studies the random variable - that describes the number of iterations
until the collection is complete.

The key idea to approach the situation is to break it down into phases:
phase 8 describes the time between getting our (8 − 1)-st object until we
get the 8-th object. Let -8 be the number of iterations in phase 8. We have
- =

∑=
8=1 -8 .We observe that phase 8 ends,whenwe get one of the =−8+1

items that we don’t have yet. Hence, -8 has a geometric distribution with
parameter =−8+1

= and E [-8] = =
=−8+1 . We can now compute the expected

value of the Coupon Collector Problem.

E [-] =
=∑
8=1

E [-8] =
=∑
8=1

=

= − 8 + 1
= =

=∑
8=1

1
= − 8 + 1

We can now observe that this sum is simply 1
= + 1

=−1 + · · · + 1
1 and we

can rearrange those terms to give us a sum that’s easier to work with:

= =
=∑
8=1

1
8
= = · �=

Where �= is the n-th harmonic number defined simply as �= =
∑=
8=1

1
8 .

It’s a very useful fact now that we can write �= also as ln = + O(1).

= = ln = + O(=)

And finally we have the expected number of iterations (asymptotically
anyway, but this is fine).

Exercise 18. Consider the coupon collector of = elements, starting with 0
elements and ending after collecting =/2 elements. Compute the expected
number of rounds until completion. Watch carefully for where you need
to do something different from above.

2.5 Important Inequalities

In the script, you have seen an important example that shows that the
expected value describes the mean of the results of several repetitions
of a random experiment. However, if we consider a single realization of
the random experiment, this value could be quite far from the expected
value in some cases. This fact motivates us to introduce three useful
inequalities.

Theorem 2.5.1 (Markov’s Inequality) Let - be a random variable that
takes only non-negative values. Then, for all C ∈ ℝ+, we have

Pr [- ≥ C] ≤ E [-]
C
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Proof. We have

E [-] =
∑
$∈Ω

-($)Pr [$]

≥
∑

$∈Ω,-($)≥C
-($)Pr [$]

≥ C
∑

$∈Ω,-($)≥C
Pr [$] = C · Pr [- ≥ C]

Theorem 2.5.2 (Chebyshev’s Inequality) Let - be any random variable
with non-zero variance and C ∈ ℝ+. We have

Pr [|- − E [-] | ≥ C] ≤ Var [-]
C2

Proof. We have Pr [|- − E [-] | ≥ C] = Pr
[
(- − E [-])2 ≥ C2

]
. Since the

latter is a non-negative randomvariable,we can applyMarkov’s inequality
and get

Pr [|- − E [-] | ≥ C] = Pr
[
(- − E [-])2 ≥ C2

]
≤

E
[
- − E [-])2

]
C2

=
Var [-]
C2

Informally, this estimates the probability that the realization of a random
variable will be far from the expected value. This is the probability that
- ∉ [E [-] − C ,E [-] + C]. An upper bound is given, that depends on the
variance (the larger the variance, the more likely that - will lie far from
the mean) and t (the bigger, the less likely it is to find a value that far
out).

We conclude this section by stating, without proof, three other important
inequalities known as Chernoff’s bounds. The inequality of Chernoff
gives a usually much more precise result than Markov and Chebyshev
but is not applicable to all random variables. This is because Chernoff
works only for the sum of independent Bernoulli variables with the same
parameter ?.

Theorem 2.5.3 (Chernoff Inequalities) Let -1 , ..., -= be i.i.d. Bernoulli
variables with the same parameter ?. We have for - =

∑=
8=1 -8 and every

0 < � ≤ 1

Pr[- ≥ (1 + �)E [-]] ≤ 4− 1
3 �

2E[-]

Pr[- ≤ (1 − �)E [-]] ≤ 4− 1
2 �

2E[-]

Pr[- ≥ C] ≤ 2−C for C ≥ 24E [-]

Exercise 19. Find an example of a randomvariable (that can take negative
values) where Markov’s inequality does not hold.
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Exercise 20. Consider a test with 18 questions and two possible answers
to each question. If one guesses each answer, what is the probability
of answering correctly to at least 5 and at most 13 answers? Give an
expression for the exact probability (no need to calculate it). Then use
all three inequalities if possible to give bounds on that probability and
compare the results.

Exercise 21. A factory produces 45’000 screw per day. The screws are
supposed to be 30 mm long, but sometimes manufacturing errors add
up, and some screws have to be discarded. The probability that any given
screw is too short is 1

3 and the probability that a screw is too long is 1
5

(the different screws’ lengths are independent).

1. Let - be the number of screws discarded over a whole day. How is
- distributed? Calculate the expected value �.

2. Tom is a supervisor at the factory and if 0.9� < - and - < 1.2�,
he reports to his boss that the day was uneventful. Use Chernoff to
give an upper bound on the probability that a given day is eventful.

3. Another factory produces nails and its supervisor tells Tom that
their expected number of discarded nails per day is not more than
50. Without knowing anything else about the other factory (except
that their nails are also produced independently and have identical
chances of being too long or too short), use Chernoff to give an
upper bound on the probability that at least 300 nails have to be
discarded in a given day.



Randomized Algorithms 3
In the course Algorithms and Data Structures and in the first chapter
of this course you have encountered many algorithms: Karatsuba’s
algorithm, dynamic programming algorithms,merge sort, DFS, Kruskal’s
algorithm... All these algorithms are deterministic, i. e. given an input they
always return the same output. Here we study randomized algorithms
(QuickSort is an example you already know), i. e. algorithms that may
return different outputs in different executions. A more formal approach
to define randomized algorithms (which is not absolutely essential for the
purpose of this course) could be: randomized algorithm are deterministic
algorithms if we consider that their input consists not only of the data
relative to the problem, but also of an (infinite long) sequence of random
bits. A more intuitive definition could be that randomized algorithms
have access to the (pseudo) random number generator of Java, and hence
you can generate samples from a distribution of your choice. Randomized
algorithms are beautiful. First, they are often very elegant, and their
analysis is often very clean. Second, they are powerful: some problems
that are very difficult to solve, such as the NP-complete longest path
problem, can be efficiently approximated via randomized algorithms (at
least for short longest paths).

We distinguish two classes of randomized algorithms: Monte Carlo al-
gorithms and Las Vegas algorithms. Monte Carlo algorithms have a
deterministic runtime, but they can return wrong answers. Las Vegas al-
gorithms always return the correct answer, but their runtime is a random
variable.

Exercise 22. Which of the following Monte Carlo algorithms are useful
for a problem that requires a binary answer?

I An algorithm that returns the correct answerwith probability ≥ 0.6
I An algorithm that returns the correct answerwith probability ≥ 0.5
I An algorithm that returns the correct answerwith probability ≥ 0.4

Exercise 23. Does the answer to the previous exercise change if we
consider a maximization problem? (assuming the result is never too big)

Exercise 24. How can we transform a Las Vegas algorithm to a Monte
Carlo algorithm? What about the opposite direction?

3.1 Success Probability Amplification

In this section, we explore some techniques useful to design Las Vegas
and Monte Carlo algorithms with certain properties.



3 Randomized Algorithms 41

Monte Carlo Algorithms: One Sided Errors

We say that a Monte Carlo algorithm � for a decision problem has a
one-sided error if and only if, for some � > 0:

Pr [�(�) = .�(] = 1 if the correct answer for input � is YES, and
Pr [�(�) = #$] ≥ � if the correct answer for input � is NO

for any input �.

Right now, this algorithm has a success probability of � and whenever it
returns NO, we can be sure that NO is the correct answer whereas the
answer YES could be wrong. (really think about this if it doesn’t make
sense)
We can let this algorithm run multiple times to increase its chance of
success to 1 − � for an arbitrary � > 0:

Theorem 3.1.1 Let � be a Monte Carlo algorithm for a decision problem with
one-sided error that has a success probability of �. Let 0 < � ≤ 1 be a real
number.

If we repeat � at least # = �−1 ln �−1 times and answer YES only if every
execution of � returned YES, the resulting algorithm will have a success
probability of at least 1 − �.

Monte Carlo Algorithms: Two Sided Errors

We say that a Monte Carlo algorithm � for a decision problem has a
two-sided error if and only if

Pr [�(�) is correct] ≥ 1/2 + � for some � > 0

for any input �.

Right now, this algorithm has a success probability of 1/2 + � and both
answers could be wrong. It should make sense that we will need to "vote"
on the correct answer and that we will need more executions to have a
high chance of success:

Theorem 3.1.2 Let � be a Monte Carlo algorithm for a decision problem
with two-sided error that has a success probability of 1/2 + �. Let 0 < � ≤ 1
be a real number.

If we repeat � at least # = 4�−2 ln �−1 times and answer with the majority
of results from all executions, the resulting algorithm will have a success
probability of at least 1 − �.

Monte Carlo Algorithms: Optimisation Problems

We can also do a similar thing for maximization problems, so long as the
algorithm never gives an answer that is bigger than is possible (it always
returns valid answers, but not always optimal ones) and has a non-zero
chance to return a "good" answer (≥ 5 (�)):
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Theorem 3.1.3 Let� be aMonte Carlo algorithm for a maximization problem
as above and

Pr
[
�(�) ≥ 5 (�)

]
≥ � for some � > 0

If we repeat � at least # = �−1 ln �−1 times and answer with the maximum
of the results from all executions, the resulting algorithm will output an
answer that is not smaller than 5 (�) with probability at least 1 − �.

This might sound confusing, but you can simply pick 5 (�) to be whatever
suits you. e.g. the optimal answer or 50% of the optimal answer, etc.
We can use the exact same strategy for minimization problems if we
replace "≥ 5 (�)" with "≤ 5 (�)" and return the minimum result instead.

3.2 Primality Tests

An easy example for Monte Carlo algorithms are primality tests. These
are often used when we need to be fairly sure that a certain big number
is prime (e.g. for applications in cryptography).
We will look at three different ways of testing whether a given number =
is prime or not, using a randomly chosen number 0 (1 ≤ 0 < =) that has
some (hopefully high) chance of serving as a counterexample if = is not
in fact prime.

Euclid One of the most obvious ways to check whether = is prime,
given a randomly chosen 0, is to see whether they have any factors in
common.

gcd(0, =) ≠ 1 =⇒ = is not prime

Giving us the Monte Carlo algorithm:

Algorithm 3.1: EuclidPrimalityTest(n)1 Choose 1 ≤ 0 < = uniformly at random
2 if gcd(0, =) ≠ 1
3 return "not prime"
4 else
5 return "prime"

This algorithm is quite bad as we can’t give a good lower bound on the
success probability (it depends heavily on the amount of factors = has)

Fermat A slightly less obvious property of primes that you might
remember from discrete maths is that

= is prime =⇒ ∀0 ∈ {1, . . . , = − 1} : 0=−1 ≡= 1

Which leads us to a second algorithm:

Algorithm 3.2: FermatPrimalityTest(n)1 Choose 1 < 0 < = uniformly at random
2 if 0=−1 .= 1
3 return "not prime"
4 else
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5 return "prime"

This algorithm is better. It has a one-sided error and its success probability
is at least 1/2.
But, sadly, there are some numbers (Carmichael numbers) that will
always be categorized as prime even though they are not.

Miller-Rabin So we take the same idea one level further and also
remember that

= is prime =⇒ the equation G2 ≡= 1 has exactly the solutions 1 and = − 1

We first check that 0=−1 ≡= 1. We then observe that = − 1 is even (it has
to be if = is prime), so we can apply what we just remembered and check
that the square root 0 =−1

2 is indeed either 1 or = − 1. We can keep going
like this until we either get = − 1 as a square root or the exponent is
not even anymore (in which case we don’t have an equation of the form
G2 ≡= 1 anymore).

Following this train of thought, we get the Miller-Rabin primality test:

Algorithm 3.3: MillerRabinPrimali-
tyTest(n)

1 Write = − 1 as 2: · 3 with 3 odd
2 Choose 1 < 0 < = uniformly at random
3 if 03 .= 1
4 for i = 1, \dots, k do
5 if 028 ·3 ≡= = − 1
6 return "prime"
7 return "not prime"
8 else
9 return "prime"

This is finally good! It has one-sided error, and has a success probability
of at least 3/4 for any =. This algorithm is widely used and thanks to the
efficiency of modular exponentiation it is also remarkably fast.

Exercise 25. We stated multiple times that these algorithms have one-
sided error. Which answer ("prime" or "not prime") is always correct?

Give an algorithm that has a success probability of at least 99.99% using
the Miller-Rabin primality test.

3.3 Target Shooting

The goal of this section is to analyze an algorithm to compute |( ||* | , where
( and* are finite sets with ( ⊆ * . Here we assume that we can generate
elements D ∈ * u.a.r. and that we can efficiently compute an indicator
function �((D) which, given an element D ∈ * , tells us whether D is in (
or not. Popular examples of these algorithms include computing the area
of an object in a geographic map. The algorithm that we use is simple: We
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sample # elements from* and we use the samples with the indicator
function to estimate the desired ratio. Formally

Algorithm 3.4: Target-Shooting1 Choose D1 , . . . , D# u.a.r. from*

2 return 1
#

∑#
8=1 �((D8)

It is intuitively clear that this value approximates |( ||* | and that a larger
value # leads to a better result. We want to give quantitative arguments
to this idea and give criteria for the choice of the parameter # .

Theorem 3.3.1 The expected value of the returned result is equal to the true
ratio |( ||* | .

Proof. We can define a variable .8 for each sample D8 that indicates
whether or not D8 ∈ (. .8 is Bernoulli distributed with parameter |( ||* | . We

return 1
#

∑#
8=1.8 , which has expected value |( ||* | .

The variance of the same random variable is 1
# (
|( |
|* | − (

|( |
|* | )2): this tells us

that larger values of # lead to an approximation closer to the expected
value, and hence closer to the true result. We want to find a value of #
such that the relative error of our answer is less than some � > 0, i. e.:

Pr
[����. − |( ||* | ���� ≤ �

|( |
|* |

]
≥ 1 − �

for a given � > 0.

Theorem 3.3.2 Let �, � > 0. If # ≥ 3 |* ||( | · �−2 · log( 2� ), then the output

of the Target-Shooting algorithm is in the interval
[
(1 − �) |( ||* | , (1 + �)

|( |
|* |

]
with probability 1 − �.

3.4 Long Paths

In the course Algorithms and Data Structures you have seen multiple
algorithms to compute shortest paths. At this point, a natural question
is: Can we modify those algorithms in order to compute longest paths?
We start by looking at a special case, directed acyclic graphs. Computing
longest paths in this situation is easy: we just multiply all the weights
by minus one, and we use the tools from the previous semester. For
most graphs, this transformation is not useful because it creates cycles of
negative length in the graph. But in the case of directed acyclic graphs,
then no negative cycles can be created.

In the general case, however, this problem is NP complete and hence it
is at least plausible to think that no polynomial time algorithm exists
for this task. But this does not mean that we have to give up completely.
For example, we might want to solve the problem of deciding whether
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a graph � has a path of length (at least) � for small �, concretely for
� ∈ O(log =). In order to solve this task, we first introduce another
problem, the colorful-path problem, and then we show how an algorithm
for this new problem can be used as a subroutine for a randomized
algorithm for the long path problem that will be relatively efficient for
small �.

Colorful-Path Problem

Let : ∈ ℕ. We color a graph � = (+, �) with the function � : + → [:]
(where � describes an arbitrary assignment of colors, e.g. neighbors can
get the same color). We say that a path is called colorful (bunt) if and only
if all its vertices have different colors. We now define the colorful-path
problem: given a graph �, an integer : and a color function �, decide
whether there is a colorful path of length : − 1 in � colored with �. In
order to determine whether the colored graph contains a colorful path of
length : − 1, we define the following quantity

%8(E) :=
{
( ∈

(
[:]
8 + 1

) ���� there exists a colorful path of length 8 that
ends in E with exactly the colors in (

}
We can easily initialize

%0(E) = {{�(E)}} for all E ∈ +

This is useful because there is a colorful path of length : − 1 in � if and
only if

⋃
E∈+ %:−1(E) ≠ ∅. Hence, to solve the colorful-path problem, we

compute %:−1(E) for all vertices E and we check, whether these sets are
all empty or not.

The natural question now is how to compute %8(E) given E and all %8−1(E).
We can do this by looking at the colors that we could use to get to a
neighbor G of E and checking whether �(E) is already used or not:

%8(E) =
⋃

G∈#(E)
{' ∪ {�(E)} | ' ∈ %8−1(G) and �(E) ∉ '}

Since we have the base case for 8 = 0, we can implement this using a
dynamic programming approach with increasing values of 8.

Algorithm 3.5: ColoredPath(G, i)1 for all E ∈ +
2 %8(E) ← {}
3 for all G ∈ #(E)
4 for all ' ∈ %8−1(G)with �(E) ∉ '
5 %8(E) ← %8(E) ∪ {' ∪ {�(E)}}

Algorithm 3.6: ShortLongPath(G)1 for all E ∈ +
2 %0(E) ← {{�(E)}}
3 for 8 = 1, . . . , : − 1
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4 ColoredPath(�, 8)
5 return whether

⋃
E∈+ %:−1(E) ≠ ∅

Since ColoredPath(G,i) has complexity

O

(∑
E∈+

346(E) ·
(
:

8

)
· 8

)
∈ O

((
:

8

)
· 8 · <

)
our final algorithm has complexity

O

(
|+ | +

:−1∑
8=1

((
:

8

)
· 8 · <

)
+ |+ |

)
= O(2: :<)

which is polynomial if : ∈ O(log =).

Short Long Path

Now thatwe have a deterministic algorithm for the colorful-path problem
(which is polynomial for : = O(log =)), we go back to our original
problem of determining whether � contains a path of length �. We use
the following Monte Carlo algorithm:

1. Set : = � + 1 and color � randomly with : colors.
2. Use the algorithm of the previous section to find a colorful path

with : vertices. Repeat these first two steps � · 4 : times.
3. If at least one of the repetition of the previous step found a colorful

path with : vertices, we have a long path of length �. Otherwise,
we return that no such path exists.

The runtime of the Monte Carlo algorithm is simply given by multiplying
the complexity of the algorithm of the previous section with the number
of repetitions. We get

O

(
� · 4 : · 2: :<

)
which is polynomial if : = O(log =). For the success probability, we
observe the following:

I If there is no path with �+ 1 vertices, the success probability is one
(we will never answer YES).

I If there is a path with �+1 vertices, we fail only if in every iteration
our random coloring is unlucky (we always have some color twice
on this path=. The probability of coloring the path of length � + 1
with : different colors is :!

::
≥ 4−: .

With this argument, it is easy to see that the failure probability is at most
(1 − 4−:)�·4 : ≤ (4 4−: )�·4 : ≤ 4−�.
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3.5 Min Cut

In this section, we consider undirected multigraphs � = (+, �)without
loops. We say that a set � ⊆ � is a cut (Kantenschnitt) in � if and only
if �′ = (+, � \ �) is disconnected. We are interested in finding a cut of
minimum cardinality, a so-called min cut. With �(�)we denote the size
of such a minimum cut in � (note that the minimum cut does not have
to be unique).

Some important facts

Throughout this section, we repeatedly use an operation called edge
contraction (Kantenkontraktion). Let � be a multigraph and let 4 = {D, E}
be an edge of �. The contraction of 4 means that we "glue" D and E
together into a single new vertex, removing the edges between D and E,
but keeping all other edges incident to D, E, simply redirecting them to
the new vertex. The resulting graph is denoted by �/4. This is illustrated
in the following figure:

Every contraction reduces the number of nodes by exactly one and the
number of edges by at least one.

Lemma 3.5.1 Let � be a multigraph and 4 an edge of �. Then �(�/4) ≥
�(�). Moreover, if there exists a minimum cut � in � such that 4 ∉ �, then
�(�/4) = �(�).

This means that contracting edges can never decrease the size of a
minimum cut.

Lemma 3.5.2 Let � = (+, �) be a multigraph with = vertices. Then the
probability that we preserve the size of a min cut (�(�) = �(�/4)) for a
uniformly randomly chosen edge 4 ∈ � is at least 1 − 2

= .

Basic Version

In this section, we assume that the input graph is connected. We assume
that the graph is represented in a way such that we can:

I perform an edge contraction in O(=)
I choose an edge uniformly at random among all edges of the current

multigraph in O(=)
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I find the number of edges connecting two given vertices in O(1)

The idea is very simple: we consider a graph with two vertices as base
case (i. e. in this case we count the number of edges between the two
vertices, and we return the size of the min cut). If we have more than two
vertices we repeatedly choose a random edge of the current graph, and
we contract it, until only two vertices are left (in which case a minimum
cut has to remove every edge, giving us an easy answer).

Algorithm 3.7: Cut(G)1 while � has more than two vertices do
2 4 ← u.a.r. edge from �

3 �← �/4
4 return number of edges left over

The runtime of this algorithm is O(=2).

By using the observations of Lemma 3.5.1, we see that this algorithm
always returns a number at least as large as �(�). If � is a minimum cut
in the input graph �, and if we never contract an edge of � during the
whole algorithm, then the returned number is exactly �(�).

In general, we note that the algorithm is correct if and only if:

I �(�) = �(�/4) for the first contracted edge 4 (which has a proba-
bility of at least 1 − 2

= )
I Cut succeeds for �/4

Which gives us the following recurrence relation for the success proba-
bility ?(=) (defined as the worst-case success probability for graphs with
= vertices):

?(=) ≥
(
1 − 2

=

)
· ?(= − 1)

From which we get:

?(=) ≥ = − 2
=
· = − 3
= − 1

· = − 4
= − 2

. . .
2
4
· 1

3
· ?(2)︸︷︷︸

=1

=
2

=(= − 1)

In order to get an algorithm with an arbitrary good success probability
we use a Monte Carlo approach by running Cut # times and return
the smallest cut size found in all these runs. If the returned size is not
correct, it means that the algorithm failed # times in a row. The failures
in different runs are independent, and hence the probability of # failures
in a row is bounded by:(

1 − 2
=(= − 1)

)#
≤ 4−

2#
=(=−1)

where we used the inequality 1 + G ≤ 4G . If we set, for example, # =

10=(= − 1), then the failure probability is bounded above by 4−20 (which
is very small). By increasing the number of repetitions # , the failure
probability can be further decreased. Altogether, by setting # = 2 · =2we
have an algorithmwith runtime O(=4) (because we have O(=2) repetitions



3 Randomized Algorithms 49

of the O(=2) algorithm) and arbitrary small constant probability of
failure.

Bootstrapping

Let’s develop a better algorithm and let’s call it BetterCut.

The probability of error in Cut increases with the number of contractions
(i. e.with the first contraction we have an error probability of 2

= , but the
last iteration has an error probability of 2

3 ). Why should we take the risk
of contracting edges until we have only two vertices? It is better to do
less contractions (let’s say, until the graph has C nodes, where C has to be
chosen carefully) and then moving on in a way that is perhaps slower
but has a better success probability.

What algorithms can we use in order to calculate the min cut when we
have reached the threshold C?
Well, once we have a constant number of vertices left (for example 6
because why not), we can use a deterministic approach that would then
have constant runtime and certainly be correct. But what do we do until
we get there?
We can just call BetterCut again on our smaller graph with C nodes! If
we do this multiple times, we can amplify the success probability just
like we did in the beginning of this chapter.

Suffice to say, we can use a recursive algorithm to achieve a runtime of
O(=2 log:(=)) for a constant :, which is practically O(=2).

3.6 Hashing

Hash Tables

A hash table is a data structure used to implement an associative array,
a structure that can map keys to values. If we have many possible keys,
implementing this with an actual array is extremely costly. Linked Lists
come to mind, but we can do better!

A hash function ℎ(:) is used to map an arbitrary type of key (string,
number, etc) to an index of the array, also called bucket or slot (we
could for example take the hash modulo our array size to determine the
bucket). The idea being to have much fewer buckets than possible keys,
but enough so this approach is still better than a linked list.

Ideally, the hash function assigns to each key a unique value, but often
this is not possible. This causes collisions, when two or more keys map
to the same index. The better the hash function and the more buckets we
use, the lower the number of collisions.

There are many ways to handle collisions. One is to save a linked list
for each bucket, and if we get a collision, we simply append the new
key-value pair to the list in that bucket.
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Bloom Filters

Another application of hash functions are Bloom Filters. Those are data
structures whose job it is to save a boolean value for each key. Instead of
using an array and a single hash function to calculate an index into the
array where we read the value, Bloom Filters use multiple hash functions
at once.

When we insert an element into the Bloom Filter, we run it through all
hash functions and calculate indices into our array and write a 1 into each
of those positions. When we later ask ourselves whether we have already
seen a certain key, we simply check whether all corresponding entries in
the array are 1.
Note that Bloom Filters cannot remove elements (so they are usually
cleared periodically), and can give false positives (say that we have seen
an element when we have not). But they are still very useful when we
want to quickly determine whether we have a certain web resource
cached, for example.

3.7 Smallest Enclosing Circle

Definition 3.7.1 (Smallest Enclosing Circle) Given a set of points % in the
plane with |% | = = (i. e. % = {?1 , ..., ?=}, ?8 = (G8 , H8) ∈ ℝ2) the Smallest
Enclosing Circle problem asks us to find a circle �(%) with minimum possible
radius A such that all points are contained in this circle.

The following holds:

I points are allowed to be on the boundary
I the smallest enclosing circle is unique
I for any set % with |% | ≥ 3, there exists a subset& ⊆ % with |& | = 3

such that �(%) = �(&). The points in & determine � uniquely.

Naive Algorithm

A trivial (and inefficient algorithm) is to simply go over all possible sets
&, compute the enclosing circle in constant time, check if it contains
all points, and if so return it. In this case, we are guaranteed to have
found the smallest enclosing circle. However, the algorithm has runtime
O(=4).

Algorithm 3.8: Naive smallest enclosing
circle - "CompleteEnumeration"

1 for all & ∈
(
%
3
)

do
2 compute �(&)
3 if % ⊆ �(&)
4 return �(&)

There are twomore algorithms ("SmartEnumeration" and "Randomized_PrimitiveVersion")
that are not particularly interesting or fast.
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Randomized Algorithm

A better algorithm is to pick points randomly. Every time a point is found
to be outside the circle, we know that with higher probability it will be
on the border instead of those that are contained. Therefore, we increase
the probability of picking it in the future by duplicating it.

Algorithm 3.9: Randomized smallest en-
closing circle - "Randomized_CleverVer-
sion"

1 while true
2 pick & ∈

(
%
11
)
uniformly at random

3 compute �(&)
4 if % ⊆ �(&)
5 return �(&)
6 double all points outside �(&)

The algorithm computes the smallest enclosing circle in expected time
O(= log =). The drastic difference comes from the fact that wemake points
that are unlikely to be inside �(&) exponentially more likely to be chosen.
We pick 11 to strike a balance between having too many points outside
�(&) (and having to deal with a lot of points) and having a bad runtime
because calculating �(&) takes too long.

3.8 Convex Hull

Definition 3.8.1 A set ( is called convex if and only if, for every two points
?1 , ?2 contained in the set (, all the points on the straight line connecting the
two points are also included in the set (. Formally

( convex ⇐⇒ ∀?1 , ?2 ∈ (, C ∈ [0, 1] : ?1 + C(?2 − ?1) ∈ (

Given a set of points %, the convex hull 2>=E(%) of % is the smallest convex
set that contains %. In the plane, the convex hull is always delimited by
straight lines between points in %.

We describe a convex hull by the points in % that are used in the border,
starting anywhere and moving counterclockwise around the set.

Figure 3.1: Convex hull of a set of points

Jarvis Wrap

For simplicity, we here assume that all points are in general position
(allgemeiner Lage), meaning that no three points on the same line and
no two points have the same x-coordinate.

The idea of the algorithm is to start with a point ?0 guaranteed to be on
conv(%) (e.g. the left-most point) and iteratively looking for a next point
such that all other points are left of the connecting line to the next point,
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which guarantees that it will also be on conv(%). This point can be found
in O(=) by iterating through the other points and keeping the one which
is the rightmost (this is FindNext in the lecture script).

Informally, the algorithm proceeds as follows:

1. Select point ?0 that lies on convex hull (e.g. lowest x-coordinate)
2. Find next point ?8+1, such that all other points lie left of the line

going through ?8 , ?8+1.
3. Repeat until you reach ?0 again

This algorithm computes the convex hull in O(= · ℎ), where ℎ is the
number of points that lie on the convex hull’s edge. This because the
algorithm takes O(=) for each iteration, and it requires ℎ loop iterations.
This time isn’t optimal, and there are algorithms that perform much
better. Moreover, some modifications are required to address our general
position assumption, but the runtime does not change.

Local Repair

LocalRepair is another algorithm for the convex hull problem. Here the
idea lies in startingwith a polygonwithout self-intersections that contains
all of % and progressively fixing parts of it that are not convex. During the
algorithm, we’ll keep as invariants that we never have self-intersections
and that no points are below the vertex sequence from ?1 to ?= and none
are above the sequence from ?= to ?1. If we then manage to construct a
locally convex polygon (only left turns), we have constructed the convex
hull.
Note that both of the invariants are necessary for this to work, oth-
erwise we might be locally convex but not globally convex (due to
self-intersections and "loops") or we might not enclose all points.

The algorithm proceeds as follows:

1. Sort all the points in % by ascending x coordinate to give ?1 , . . . , ?=
2. Startwith thepolygondefinedby theborder 〈?1 , . . . , ?=−1 , ?= , ?=−1 , . . . , ?2〉
3. Start at ?1 and move towards ?= . Every time we make a right turn

(?8+2 is right of the line through ?8 , ?8+1), we remove the middle
vertex (?8+1) and check again for possibly newly created right turns
starting at the previous vertex (?8−1).

4. Oncewe arrive at ?= , we repeat the same process to go back towards
?2.

This algorithm has runtime O(= log =) including sorting and runtime
O(=) if the vertices are already sorted.
Examples and illustrations as well as an implementation can be found in
the lecture script on page 211.



Exercise Solutions 4
4.1 Graph Theory

Ex 1 We use the given coloring 2 as follows:
Let �8 be the set of all vertices colored with 8, then the sequence we use is
�1 , �2 , �3 , . . . , �: (order of the elements in those sets doesn’t matter).

This works because the greedy algorithm will assign the smallest color
not in use by neighbors. Thus, we will always be able to use the color
from 2 (no neighbors are colored the same) or a smaller one (because
bigger colors have not yet been used). Which gives us a coloring with
≤ : colors.

Ex 2 We won’t provide a solution here, as there could be many valid
proofs. Just show us your solution if you’re unsure.
It’s probably easiest to prove flow conservation for each vertex using two
nested case distinctions about whether inflow increases or decreases and
whether outflow increases or decreases after augmentation. The capacity
constraints should follow from the definition of � and the capacities in
# 5 .
The strictly bigger value can be proved by an increase of netoutflow in
B.

Ex 3

1. Consider the graph �3. A maximum flow in the network Sheryl
builds has value 3, indicating that a perfect matching should exist.
However, a maximum matching in this graph has only cardinality
1.

2. Consider the graph � = ({0, 1, 2, 3}, {0, 1} × {2, 3}) and the net-
work build (correctly) from it. Amaximummatching has cardinality
2 and the maximum flow also has value 2 - so far so good.
One way to get a flow value of 2 is to assign edges from B to 0, 1
flow 1, each edge between 0, 1 and 2, 3 flow 0.5 as well as each
edge from 2, 3 to C flow 1.
This is a maximum flow that is not an integer flow.

3. Because we have only integer capacities, a maximum integer flow
exists. It could be found, for example, using Ford-Fulkerson.

Ex 4 The network is # = (+, �, 2, D, E) where 2(4) = 1 for all edges
4 and � is built by adding two edges for each edge in �, one for each
direction.
The amount of edge-disjoint D − E paths is given by the value of a
maximum flow.
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You can prove this by looking at an integer maximum flow and showing
how to construct the edge-disjoint paths from it. And also showing how
to construct a maximum flow from all the edge-disjoint D − E paths.

4.2 Probability Theory

Ex 5

1. Ω = [6]2 ,∀$ : Pr[$] = 1/36
2. Ω =

([6]
2
)
∪ [6], Pr[$] = |$ |/36

3. Ω = {2, 3, . . . , 12}, Pr[$] = 6−|7−$ |
36

Ex 6 Repetition allowed, ordermatters: Rolling an =-sided die : times.

Repetition allowed, order doesn’t matter: Choosing which : items to buy
from a store that has unlimited amounts of = different items.

No repetition allowed, order matters: The number of possible first :
places on a scoreboard of = people.

No repetition allowed, order doesn’t matter: Drawing : cards from a
deck of = cards.

Ex 7 Let �, � be independent events with Pr[�] ≠ 1/2, because
Pr[� | �] = Pr[�] = Pr[� | �].
For example, we could use a fair six-sided die and the events � = {3, 6}
and � = {1, 2, 3}.

Ex 8 We use Total Probability:

Pr[2>AA42C] = Pr[2>AA42C | :=>F=] · Pr[:=>F=]
+ Pr[2>AA42C | :=>F=] · Pr[:=>F=]

= 1 · ? + 1
4
· (1 − ?)

= ? + 1
4
− 1

4
· ?

=
3
4
? + 1

4

Ex 9 We define the probability space by looking at all possibilities for
the car position (2), our guess (6) and the host’s choice of door to open
(ℎ):

Ω = {(2, 6, ℎ) ∈ [3]3 | ℎ ≠ 2 ∧ ℎ ≠ 6}

Because the host sometimes has no choice and sometimes chooses the
door with probability 1

2 , we get:

Pr[(2, 6, ℎ)] =
{

1
9 if 2 ≠ 6
1
18 if 2 = 6
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So for example, say we choose door 2 and the host opens door 3 (you
could also do this more generally), we look at the conditional probability
of finding the car behind our door:

Pr[2 = 2 | 6 = 2 ∧ ℎ = 3] =
Pr[2 = 2 ∧ 6 = 2 ∧ ℎ = 3]

Pr[6 = 2 ∧ ℎ = 3]

=
Pr[{(2, 2, 3)}]

Pr[{(1, 2, 3), (2, 2, 3)}]

=
1/18
3/18

=
1
3

Ex 10 We work backwards and try to stay fairly close to the terms
in the question. We first notice that two events are independent if
Pr[�] = Pr[� | �]. To get Pr[�] using Pr[� | �] and Pr[� | �], we use
Total Probability:

Pr[�] = Pr[� | �] · Pr[�] + Pr[� | �] · Pr[�]

And using the assumption given in the question:

Pr[�] = Pr[� | �] · Pr[�] + Pr[� | �] · Pr[�]

= Pr[� | �] ·
(
Pr[�] + · Pr[�]

)
= Pr[� | �] · 1

And that concludes the proof.

Ex 11 We first define a random variable - as the number of edges
within both colors. We define an indicator random variable -8 for each of
the =(=− 1) edges that run within colors. Each indicator random variable
has expected value 1

2 and we can write - as their sum. Thus:

E[-] = E

[
=(=−1)∑
8=1

-8

]
=

=(=−1)∑
8=1

E[-8] = =(= − 1)1
2
=
=(= − 1)

2

We used Linearity of Expectation, but not independence here.

Ex 12 We define - just as above and use the hint:

E[-2] = E


(
=(=−1)∑
8=1

-8

)2
= E

[
=(=−1)∑
8=1

=(=−1)∑
9=1

-8 · -9

]
=

=(=−1)∑
8=1

=(=−1)∑
9=1

E
[
-8 · -9

]
To calculate the expected value, we have to differentiate two cases: When
8 ≠ 9, the two indicator random variables are independent (it says so in
the question) and we can do E

[
-8 · -9

]
= E [-8] · E

[
-9

]
.

If, however 8 = 9, then they are dependent, and we have to do something
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else. Here, we notice that an indicator random variable squared is exactly
the same indicator random variable (since it only takes values 0 and 1).
There are =(= − 1) terms in the first case, each with expected value 1

4 and
= terms in the second case, each with expected value 1

2 . We get:

E[-2] =
=(=−1)∑
8=1

=(=−1)∑
9=1

E
[
-8 · -9

]
= =(= − 1)1

4
+ = 1

2

=
=2 − =

4
+ =

2

=
=2 + =

4

Ex 13 This exercise ismostly to show thatwe don’t actually need to know
Ω to calculate expected value and variance if we have the distribution.
We can calculate the expected value as:

E[-] =
∑
G∈,-

G · 5-(G) = 4

We can get the variance as Var[-] = E
[
-2] − E[-]2. To calculate the

first term, we can view it as a new random variable whose distribution is
derived from -:
G2 16 4 25 64 100
5-2(G2) 0.25 0.10 0.20 0.15 0.30

And we can calculate this expected value in the same way as before to
get:

E[-2] =
∑
G∈,-2

G · 5-2(G) = 49

We now have:

E[-] = 4

Var[-] = 49 − 42 = 33

And using the Linearity of Expectation and the corresponding rule for
variance:

E[2- + 8] = 2 · E[-] + 8 = 16
Var[2- + 8] = 4 · Var[-] = 132

Ex 14

1. 2 independent rolls of the same die. For example modelled as:

Ω = [6]2 ∀$ : Pr[$] = 1
36

-1((0, 1)) := 0 -2((0, 1)) := 1

2. Rolling not two identical dice but maybe a four-sided one and a
twenty-sided one.
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3. Looking at the same die roll as three random variables -1 = -2 =

-3.

Ex 15 We calculate the variance again as:

Var[-] = E
[
-2] − E[-]2

And we get (Bernoulli variables are the same when squared):

Var[-] = ? − ?2 = ?(1 − ?)

Ex 16 We first define a variable . for the number of victories, and we
see that it has a binomial distribution (unlike -): . ∼ Bin(25, 0.6).
We can write - = 2 · . + 25 and because

E[.] = =? = 15
Var[.] = =?(1 − ?) = 6

we know that:

E[-] = 2 · E[.] + 25 = 55
Var[-] = 4 · Var[.] = 24

Ex 17 Because theGeometric distribution only takes on natural numbers,
we can use:

E [-] =
∞∑
8=1

Pr [- ≥ 8]

Giving us (with a little Analysis):

E [-] =
∞∑
8=1

Pr [- ≥ 8]

=

∞∑
8=1
(1 − ?)(8 − 1)

=

∞∑
8=0
(1 − ?)8

=
1

1 − (1 − ?) =
1
?

Ex 18 This is the modified calculation. You need to watch out not to
make a mistake when rewriting the sum.

E [-] =
=/2∑
8=1

E [-8] =
=/2∑
8=1

=

= − 8 + 1
= =

=/2∑
8=1

1
= − 8 + 1

= =
=∑

8==/2+1

1
8

= = ·
(
�= − �=/2

)
= = · (ln = + O(1) − ln(=/2) − O(1))
= = · (ln = + O(1) − ln = + ln 2 − O(1)
= = · O(1) = O(=)
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Ex 19 Any random variable with negative expected value will break
Markov (probabilities can’t be negative after all). It’s also possible to
construct a random variable with positive expected value that breaks
Markov as follows:

1. Pick some E[-] that is pleasing to you
2. Pick some C > E[-] that you want to use later
3. Pick probability ? < 1 you like for the event - ≥ C
4. Now define a probability space to make this all work as follows:

Ω = {−H, C} Pr[−H] = 1 − ?, Pr[C] = ?

5. And finally solve for the variable H:

−H · (1 − ?) + C · ? = E[-] ⇐⇒
C · ? − E[-]

1 − ? = H

Ex 20 First off, let - be the number of correct answers. It is clear that
- ∼ Bin(18, 0.5). That means we have E[-] = 9 and Var[-] = 9

2 .

The true probability is
∑1
:=5 3

(18
:

) 1
218 (no closed form expression for that

sum exists) and if we were to calculate it, we’d get 7939
8192 ≈ 0.969.

I Markov cannot be used because it only gives us an upper bound
for the probability to have too big values but here we also need to
have an upper bound for the probability of too small values, and
you cannot subtract two upper bounds to get another upper bound
(do it step by step if that’s not clear).

I Chebyshev can be used to calculate an upper bound for the proba-
bility of the complementary event:

Pr [|- − E[-]| ≥ C] ≤ Var[-]
C2

=⇒ Pr [|- − 9| ≥ 5] ≤ 9/2
25

=
9
50

=⇒ Pr [|- − 9| < 5] ≥ 1 − 9
50
=

41
50
= 0.82

I Chernoff can be used once for the probability that - is too small
(≤ 4) and once for the case where - is too big (≥ 14).

Pr [- ≥ (1 + �)E[-]] ≤ 4− 1
3 �

2E[-]

=⇒ Pr [- ≥ 14] ≤ 4− 1
3 ·( 5

9 )2 ·9 = 4−25/27

Pr [- ≤ (1 − �)E[-]] ≤ 4− 1
2 �

2E[-]

=⇒ Pr [- ≤ 4] ≤ 4− 1
2 ·( 5

9 )2 ·9 = 4−25/18

We can now add those upper bounds together to get the probability
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of the complementary event again (yes, adding bounds is fine).

Pr [|- − 9| ≥ 5] = Pr [- ≥ 14] + Pr [- ≤ 4]
=⇒ Pr [|- − 9| ≥ 5] ≤ 4−25/27 + 4−25/18

=⇒ Pr [|- − 9| < 5] ≥ 1 − 4−25/27 − 4−25/18 ≈ 0.646

To conclude, of course both bounds are correct. Chebyshev is better in
this case, because we’re very "close" to the expected value and = is very
small, but there’s no general rule to know which is better.

Ex 21

1. - ∼ Bin(45′000, 1
3 + 1

5 =
8
15 ). Thus the expected value is E[-] =

=? = 45′000 · 8
15 = 24′000.

2. WeuseChernoff toget bounds forPr [- ≥ 1.2E[-]] andPr [- ≤ 0.9E[-]]:

Pr [- ≥ (1 + �)E[-]] ≤ 4− 1
3 �

2E[-]

=⇒ Pr [- ≥ 1.2E[-]] ≤ 4− 1
3 ·0.22 ·24000 = 4−320

Pr [- ≤ (1 − �)E[-]] ≤ 4− 1
2 �

2E[-]

=⇒ Pr [- ≤ 0.9E[-]] ≤ 4− 1
2 ·0.12 ·24000 = 4−120

And we get:

Pr
[
0.9� < - < 1.2�

]
= Pr [- ≥ 1.2E[-]] + Pr [- ≤ 0.9E[-]]

=⇒ Pr
[
0.9� < - < 1.2�

]
≤ 4−320 + 4−120 ≈ 7.67 · 10−53

3. Using the normal inequality is not possible because we’d need to
choose a � > 1.
Using the third inequality instead (which we’re allowed to do
because 300 = 6 · 50 ≥ 6 · E[-] ≥ 24 · E[-]) gives:

Pr [- ≥ 300] ≤ 2−300 ≈ 4.9 · 10−91

4.3 Randomized Algorithms

Ex 22 Only the first algorithm is useful. As soon as we get 50% success
probability, we might as well flip a coin.

Ex 23 Now all of these algorithms are suddenly useful!
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Ex 24 We can stop the execution of the Las Vegas algorithm after a
predetermined time and return any (possibly wrong) result we like.
The other direction is not possible (we cannot produce results that are
always correct from results that are only sometimes correct).

Ex 25 The answer "not prime" is always correct. Thus, we design the
algorithm as follows:

1 for 8 = 1, . . . , # do
2 if MillerRabin(=) = "not prime"
3 return "not prime"
4 return "prime"

Correctness proof:
As we know, the Miller Rabin test has one-sided error with a success
probability of � = 3/4. We can use the Theorem we saw earlier to
conclude that our algorithm has a 99.99% success probability by choosing
� = 0.0001 and calculating # as:

# = �−1 ln �−1 =
4
3

ln(104) = 16
3

ln 10

And because ln 10 ≈ 2.303 ≤ 3 it suffices to use:

# =
16
3
· 3 = 16

(because this implies # ≥ �−1 ln �−1)

Runtime analysis:
Because we do a constant amount of iterations, the runtime of this
algorithm is O()"')where )"' is the runtime of the Miller Rabin test.
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