
Parallel Programming
Introduction & Course Overview

Prof. Barbara Solenthaler

SS 2024

Lecturers

2

Prof. Barbara Solenthaler
CNB G 102.1
solenthaler@inf.ethz.ch

Teaches Part I
Office hours: per email request

Prof. Torsten Hoefler
OAT V 15
torsten.hoefler@inf.ethz.ch

Teaches Part II
Office hours: per email request

https://spcl.inf.ethz.ch/Teaching/2024-pp/

mailto:solenthaler@inf.ethz.ch
mailto:torsten.hoefler@inf.ethz.ch
https://spcl.inf.ethz.ch/Teaching/2024-pp/

1. Parallel programming is a
necessity – since 2000-ish

2. A different way of computational
thinking – who said everything
needs a total order?

3. Generally fun (since always) – if
you like to challenge your brain

3

Why This Course?

Karl Rupp’s blog

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Course Overview

Parallel Programming (252-0029-00L)
• 4L + 2U
• 7 ECTS Credits
• Audience: Computer Science Bachelor

• Part of Basisprüfung

• Lecture Language: Denglisch

4

Course Coordination

• Lectures 2 x week:
• Monday 10-12 HG F 5, HG F 7
• Tuesday 10-12 HG F 5, HG F 7

• Weekly Exercise Sessions
• Wednesday 16-18 or Friday 10-12
• Enroll via myStudies
• Focus groups

5

Course Material and Communication

Course website:
https://spcl.inf.ethz.ch/Teaching/2024-pp/

Moodle 2024:
https://moodle-app2.let.ethz.ch/course/view.php?id=22281
Lecture slides, exercises, forum

6

https://spcl.inf.ethz.ch/Teaching/2024-pp/
https://moodle-app2.let.ethz.ch/course/view.php?id=22281

About This Course
Head TAs:
• Philine Witzig (Part I)
• Timo Schneider (Part II)

Teaching Assistants (Part I):

7

Grades:
• Class is part of Basisprüfung: written, centralized exam

after the term
• 100% of grade determined by final exam

• Exercises not graded but essential

Your TA ► Head TA ► Lecturer
Communication:

• Daniel Dorda
• Aurel Gruber
• Nikola Kovacevic
• Lasse Lingens
• Till Schnabel
• Agon Serifi
• Yingyan Xu
• Lingchen Yang

• Benjamin Gruzman
• Gamal Hassan
• Finn Heckman
• Sarah Kuhn
• Raphael Larisch
• Julianne Orel

• Zero tolerance cheating policy (cheat = fail + being reported)
• Homework
• Don’t look at other students code
• Don’t copy code from anywhere
• Ok to discuss things – but then you have to do it alone
• Code may be checked with tools

• Don’t copy-paste
• Code
• Text
• Images

8

Academic Integrity

Concepts and Practice

Our goal is twofold:

• Learn how to write parallel programs in practice
• Using Java for the most part
• And showing how it works in C

• Understand the underlying fundamental concepts
• Generic concepts outlive specific tools
• There are other approaches than Java's

9

You are Encouraged to:

• Ask questions:
• helps us keep a good pace
• helps you understand the material
• let's make the course interactive
• class or via e-mail or via forum

• Use the web to find additional information
• Javadocs
• Stack Overflow

• Write Code & Experiment

10

If there is a problem,

let us know as early

as possible!

What are Exercises for?

Learning tool
Seeing a correct solution is not enough
You should try to solve the problem yourselves

Hence, exercise sessions are
for guiding you to solve the problem
not for spoon-feeding you solutions

11

Class Overview

12

Parallelism

• Understanding
and detecting
parallelism

• Intro to PC
Architectures

• Formalizing
parallelism

• Programming
models for
parallelism

(Parallel) Programming

• Recap:
Programming in
Java + a bit of JVM

• Parallelism in Java
(Threads)

Concurrency

• Shared data
• Race Conditions
• Locks,

Semaphores, etc.
• Lock-free

programming
• Communication

across tasks and
processes

Parallel Algorithms

• Useful & common
algorithms in
parallel

• Data structures for
parallelism

• Sorting &
Searching, etc.

Schedule (Part I)

13

Lecture
Ex 1 Introduction
Ex 2 Introduction to Multi-threading
Ex 3 Multi-threading
Ex 4 Parallel Models
Ex 5 Divide and Conquer
Ex 6 Task Parallelism
Ex 7 Synchronization and Resource Sharing

Exercises

Feb 19 Introduction & Course Overview
Feb 20 Java Recap and JVM Overview
Feb 26 Introduction to Threads and Synchronization (Part I)
Feb 27 Introduction to Threads and Synchronization (Part II)
Mar 4 Introduction to Threads and Synchronization (Part II)
Mar 5 Parallel Architectures: Parallelism on the Hardware Level (Part I)
Mar 11 Basic Concepts in Parallelism
Mar 12 Divide and Conquer
Mar 18 ForkJoin Framework
Mar 19 Cilk-style bounds and Task Parallel Algorithms
Mar 25 Cilk-style bounds and Task Parallel Algorithms
Mar 26 Virtual threads
Apr 8 Shared Memory Concurrency, Locks and Data Races
Apr 9 Reserve, exam prep

Schedule (Part II)

14

Lecture Exercises
Ex 8 Synchronization II

Ex 9 Reasoning about Locks / Java Memory
Model Basics

Ex 10 Advanced Synchronization Mechanisms
Ex 11 Advance Synchronization Mechanisms
Ex 12 Linearizability
Ex 13 Software Transactional Memory
Ex 14 MPI + Reductions

Apr 15 Data Races - Implementing locks with Atomic Registers

Apr 16 Data Races - Implementing locks with Atomic Registers II

Apr 22 Beyond Locks I: Spinlocks, Deadlocks, Semaphores

Apr 23 Beyond Locks II: Semaphore, Barrier, Producer-/Consumer, Monitors

Apr 29 Readers/Writers Lock, Lock Granularity: Coarse Grained, Fine Grained,
Optimal, and Lazy Synchronization

Apr 30 Lock tricks, skip lists, and without Locks I

May 6 Without Locks II

May 7 ABA Problem, Concurrency Theory

May 13 Sequential Consistency, Consensus, Transactional Memory

May 14 Consensus Hierarchy + Transactional Memory

May 21 Transactional Memory + Message Passing

May 27 Message Passing

May 28 Consensus Proof and Reductions

Parallel Sorting

Big Picture (Part I)

15

CPU

OS

JVM (Process A)

Core Core Core Core

OS thread OS thread OS thread OS thread

OS scheduler

JVM scheduler

JVM thread

Process B

Memory Space A Memory Space BPhysical
Memory

JVM thread JVM thread JVM threadL03-05

L06

L07

L08-09

L10-L11

L13

…

…

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Parallel
performance &

algorithms

L12Virtual
threads

• https://cgl.ethz.ch/teaching/parallelprog24/pages/terminology.html

16

Terminology

Course Overview

17

aka why should you care?

How Does This Course Fit Into the CS Curriculum?

• Programming-in-the-small

• Programming-in-the-large

18

Program = Algorithms + Data Structures

=> Data Structures and Algorithms

System = Processes + Objects + Communication

This class

Intro to Programming

This class

How Does This Course Fit Into the CS Curriculum?

19

Process / Program

Algorithm

Data structure

Algorithm

Data structure

…

…

Process / Program

Algorithm Algorithm

Data structure

…

…

…

…

Operating System

Network

OS

Learning Objectives

By the end of the course you should
1. have mastered fundamental concepts in parallelism
2. know how to construct parallel algorithms using different parallel

programming paradigms (e.g., task parallelism, data parallelism) and
mechanisms (e.g., threads, tasks, locks, communication channels).

3. be qualified to reason about correctness and performance of parallel
algorithms

4. be ready to implement parallel programs for real-world application
tasks (e.g. searching large data sets)

20

Requirements

Basic understanding of Computer Science concepts

Basic knowledge of programming concepts:
We will do a quick review of Java and briefly discuss JVMs

Basic understanding of computer architectures:
No detailed knowledge necessary (we will cover some)

21

Image source: http://jolyon.co.uk
22

http://jolyon.co.uk/

Motivation – Why Parallelism?

24

Moore’s Law Recap: Transistor counts double every two years
§ Means: Smaller transistors => can put more on chip => computational power grows exponentially => your

sequential program automatically gets faster.
§ Also applies to RAM size and pixel densities

CPU DB

http://cpudb.stanford.edu/visualize/technology_scaling

Motivation – Why Parallelism?

25

CPU DB

http://cpudb.stanford.edu/visualize/clock_frequency

Why Don’t We Keep Increasing Clock Speeds?

Transistors have not stopped getting smaller + faster (Moore lives)

Heat and power have become the primary concern in modern
computer architecture!

Consequence:
• Smaller, more efficient Processors in terms of power (Ops / Watt)
• More processors – often in one package

26

Main design constraint today is power

§Single-Core CPUs:
§ Complex control hardware
§ Pro: Flexibility + performance
§ Con: Expensive in terms of power (Ops / Watt)

§Many-Core/GPUs etc:
§ Simpler control hardware
§ Pro: Potentially more power efficient (Ops / Watt)
§ Con: More restrictive / complex programming models [but useful in

many domains, e.g. deep learning].

27

What Kind of Processors Do We Build Then?

1. MUTUAL EXCLUSION
Three stories

28

Alice’s Cat vs. Bob’s Dog

29

A B

Requirement I: Mutual Exclusion !

30

A B

31

A B

Requirement II: No Lockout when free

32

A B

Communication: Idea 1 [Alternate]

33

A B

catdog

Dog is
allowed
in yard

Access Protocol [Alternate]

34

A B

catdog

Now cat is
allowed in
yard

Problem: Starvation!

35

A B

catdog

on vacation

Communication: Idea 2 [Notification]

36

A B

My pet is in
the yard

Access Protocol 2.1: Idea

37

A B

Cat wants to
get out

38

A B

39

A B

Another Scenario

40

A B

Cat wants to
get out

Dog wants
to get out

41

A B

42

A B

Problem: No Mutual Exclusion!

43

A B

Checking Flags Twice Does Not Help: Deadlock!

44

A B

Access Protocol 2.2

45

A B

Cat wants to
get out

46

A B

47

A B

48

A B

49

A B

Dog wants
to get out

50

A B

51

A B

Access Protocol 2.2 is provably correct

52

A B

Minor (?) Problems: Livelock, Starvation

53

A B

Final Solution

54

A B

catdog
dog goes
first

Final Solution

55

A B

catdog

Dog wants
to get out

Cat wants to
get out

Final Solution

56

A B

catdog

Final Solution

57

A B

catdog

Final Solution

58

A B

catdog

Final Solution

59

A B

catdog

Next
time cat
goes first

Still: General Problem of Waiting ...

60

A B

2. PRODUCER-CONSUMER
Three stories

61

Producer-Consumer

62

A B

Producer-Consumer

63

A B

Rules

64

A B

65

A B

66

A B

Communication

67

A BFood is
empty

Protocol

68

A B

69

A B

not any
more

70

A B

71

A B
Empty
again

Oh dear...

3. READERS-WRITERS
Three stories

72

73

A B

PET

PET

74

A B

LOVES
PET
LOVES

75

A B

HAM
PET
LOVES

76

A B

I
PET
LOVES

77

A B

HATE
PET
LOVES

78

A B

SALAD
PET
LOVES
SALAD

The bad news

§ Reality of parallel computing is much more complicated than this.

§ The results of one action, such as the lifting of a flag by one thread, can
become visible by other threads delayed or even in different order,
making the aforementioned protocols even more tricky.

§ Precise reasons will become clear much later in your studies. But we will
understand consequences in the lectures later.

79

The good news

§ On parallel hardware we will find an interesting tool to deal with low
level concurrency issues.

§ There is sufficient abstraction in the programming models of different
programming languages.

§ Later on, we will not really have to deal with such low level concurrency
issues. But we should have understood them once.

80

Language Landscape

C, C++

Java, Kotlin, C#

Python, Ruby, Perl

Go, Rust

Haskell, OCaml

JavaScript, TypeScript

Swift, Dart

…

81

Why use Java?
Is ubiquitous (see oracle installer)
• Many (very useful) libraries
• Excellent online tutorials & books
Parallelism is well supported
• In the language and via frameworks
Interoperable with modern JVM languages
• E.g., Akka framework
Yet, not perfect
• Tends to be verbose, lots of boilerplate code

82

Introduction to Java Programming

§ Introduction to Java Programming,
2014.

§ Daniel Liang.

§ ISBN-13: 9780133813463

§ Chapters 1-13 (with some
omissions)

§ Week 1-3

83

Java Concurrency in Practice

§ Java Concurrency in Practice, 2006.

§ Brian Goetz, Tim Peierls, Joshua
Bloch, Joseph Bowbeer, David
Holmes, Doug Lea.

§ ISBN-13: 9780321349606

§ Week 4-9

84

Theory and beyond

• Fundamental treatment of
concurrency

• In particular the "Principles" part is
unique

• Not easy

• In this course
§ Theory of concurrency

§ Behind locks

§ Lock-free programming

85

