Parallel Programming

Introduction & Course Overview

SS 2024

Prof. Barbara Solenthaler

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Lecturers

4 i
1 0
. i
y AL 8 [T
4 » e
| ; i
1. fiid
, Il
p & ”
| i
| §ii
. 1
4.l
» Rl) LAy

Prof. Barbara Solenthaler Prof. Torsten Hoefler

CNB G 102.1 OAT V 15
solenthaler@inf.ethz.ch torsten.hoefler@inf.ethz.ch
Teaches Part | Teaches Part Il

Office hours: per email request Office hours: per email request

https://spcl.inf.ethz.ch/Teaching/2024-pp/

mailto:solenthaler@inf.ethz.ch
mailto:torsten.hoefler@inf.ethz.ch
https://spcl.inf.ethz.ch/Teaching/2024-pp/

Why This Course?

1. Parallel programming is a
necessity — since 2000-ish

2. A different way of computational
thinking — who said everything
needs a total order?

3. Generally fun (Isince always) — if
you like to challenge your brain

42 Years of Microprocessor Trend Data

T T T T Y
7L ‘ ‘ ‘]
10 | | “ Transistors
106 = . AAAAAA: A] (thousands)
! A A“A Aa
100 B, ¥ VT —— Single-Thread
f | s 3 e, ™ * Performance
4 : | A 08 0p ° (SpecINT x 107)
o | LA ‘ ‘
| | aspatl e LBl Frequency (MHz
0 L % . A‘A..ciﬂli*.' ol gu | Frequency (MHz)
, s ’.ﬂ-. o, . %t* 'y Typical Power
10° [j - i‘ o |= - v AT INIEE T :o‘ 1 (Watts)
Lot m BT TRy T epat | Number of
10 L A . v j ¢ :‘3 4 Logical Cores
i v v TV vy |
10° —s: e e B oeee mmm::m preees e
! ! ! |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Karl Rupp’s blog

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Course Overview

Parallel Programming (252-0029-00L)
e 4L+ 2U
7 ECTS Credits

 Audience: Computer Science Bachelor
* Part of Basisprifung

* Lecture Language: Denglisch

Course Coordination

e Lectures 2 x week:
* Monday 10-12 HGF5 HGF7?7
e Tuesday 10-12 HGF5 HGF7

 Weekly Exercise Sessions
* Wednesday 16-18 or Friday 10-12
* Enroll via myStudies
* Focus groups

Course Material and Communication

Course website:
https://spcl.inf.ethz.ch/Teaching/2024-pp/

Moodle 2024:
https://moodle-app2.let.ethz.ch/course/view.php?id=22281

Lecture slides, exercises, forum

https://spcl.inf.ethz.ch/Teaching/2024-pp/
https://moodle-app2.let.ethz.ch/course/view.php?id=22281

About This Course

Head TAs:
* Philine Witzig (Part I)

e Timo Schneider (Part Il)

Teaching Assistants (Part |):

e Daniel Dorda .
e Aurel Gruber
 Nikola Kovacevic .

* Lasse Lingens .
e Till Schnabel .
e Agon Serifi .
* Yingyan Xu

* Lingchen Yang

Benjamin Gruzman
Gamal Hassan

Finn Heckman
Sarah Kuhn
Raphael Larisch
Julianne Orel

Communication:
Your TA » Head TA P Lecturer

Grades:

Class is part of Basisprufung: written, centralized exam
after the term

100% of grade determined by final exam

Exercises not graded but essential

Academic Integrity

e Zero tolerance cheating policy (cheat = fail + being reported)

* Homework
* Don’tlook at other students code
* Don’t copy code from anywhere
Ok to discuss things — but then you have to do it alone
* Code may be checked with tools

* Don’t copy-paste

e Code
* Text
* Images

Concepts and Practice

Our goal is twofold:

 Learn how to write parallel programs in practice

 Using Java for the most part
* And showing how it works in C

 Understand the underlying fundamental concepts
* Generic concepts outlive specific tools
 There are other approaches than Java's

You are Encouraged to: Fth
/Gtus/:@/ a5
* Ask questions: aspos .’70:4,8 rob/@,h
* helps us keep a good pace slb/e/ Sear/y

* helps you understand the material
 Jet's make the course interactive
e class or via e-mail or via forum

e Use the web to find additional information
e Javadocs
e Stack Overflow

* Write Code & Experiment

10

What are Exercises for?

Learning tool
Seeing a correct solution is not enough
You should try to solve the problem yourselves

Hence, exercise sessions are
for guiding you to solve the problem
not for spoon-feeding you solutions

Class Overview

(Parallel) Programming Parallelism

* Recap: Understanding
Programming in and detecting
Java + a bit of JVM parallelism

e Parallelismin Java Intro to PC
(Threads) Architectures

Formalizing
parallelism
Programming
models for
parallelism

Concurrency

Shared data
Race Conditions
Locks,

Semaphores, etc.

Lock-free
programming
Communication
across tasks and
processes

Parallel Algorithms

Useful & common
algorithms in
parallel

Data structures for
parallelism

Sorting &
Searching, etc.

Schedule (Part 1)

Lecture

Feb 19
Feb 20
Feb 26
Feb 27
Mar 4

Mar 5

Mar 11
Mar 12
Mar 18
Mar 19
Mar 25
Mar 26
Apr 8

Apr 9

Introduction & Course Overview

Java Recap and JVM Overview

Introduction to Threads and Synchronization (Part |)
Introduction to Threads and Synchronization (Part Il)
Introduction to Threads and Synchronization (Part Il)
Parallel Architectures: Parallelism on the Hardware Level (Part I)
Basic Concepts in Parallelism

Divide and Conquer

ForklJoin Framework

Cilk-style bounds and Task Parallel Algorithms
Cilk-style bounds and Task Parallel Algorithms
Virtual threads

Shared Memory Concurrency, Locks and Data Races
Reserve, exam prep

Exercises

Ex1 Introduction

Ex 2 Introduction to Multi-threading

Ex3 Multi-threading

Ex4 Parallel Models

Ex5 Divide and Conquer

Ex 6 Task Parallelism

Ex 7 Synchronization and Resource Sharing

Schedule (Part Il)

Lecture

Apr 15
Apr 16
Apr 22
Apr 23
Apr 29

Apr 30
May 6

May 7

May 13
May 14
May 21
May 27
May 28

Data Races - Implementing locks with Atomic Registers

Data Races - Implementing locks with Atomic Registers |l

Beyond Locks I: Spinlocks, Deadlocks, Semaphores

Beyond Locks Il: Semaphore, Barrier, Producer-/Consumer, Monitors

Readers/Writers Lock, Lock Granularity: Coarse Grained, Fine Grained,
Optimal, and Lazy Synchronization

Lock tricks, skip lists, and without Locks |

Without Locks I

ABA Problem, Concurrency Theory

Sequential Consistency, Consensus, Transactional Memory
Consensus Hierarchy + Transactional Memory
Transactional Memory + Message Passing

Message Passing

Consensus Proof and Reductions

Parallel Sorting

Exercises

Ex 8
Ex 9

Ex 10
Ex 11
Ex 12
Ex 13
Ex 14

Synchronization Il

Reasoning about Locks / Java Memory
Model Basics

Advanced Synchronization Mechanisms
Advance Synchronization Mechanisms
Linearizability

Software Transactional Memory

MPI + Reductions

Big Picture (Part I)

Physical Memory Space A Memory Space B EFD
Memory

JVM scheduler

JVM thread JVM thread JVM thread JVM thread

Virtual Parallel

LO7
threads performance &
algorithms L10-L11

OS thread OS thread OS thread OS thread

OS scheduler

15

Terminology

* https://cgl.ethz.ch/teaching/parallelprog24/pages/terminology.html

Parallel Programming (1st half): Terminology

atomic
A statement or instruction is (truly) atomic if it is executed by the CPU in a single, non-interruptible step.

abstractly atomic
A statement or instruction that, at a certain level of abstraction, appears to be executed atomically. E.g. from a caller's perspective, a method

synchronized append(x) Of @ queue appears to append element x in one step, but from the queue's perspective, this might take several steps.

Amdahl's law
Specifies the maximum amount of speedup that can be achieved for a program with a given sequential part. The pessimistic view on scalability.

bad interleaving
An interleaving that yields a problematic or otherwise undesirable computation. E.g. an incorrect result, a deadlock or non-deterministic output.

busy waiting
Occurs when a thead busily (actively) waits, e.g. by spinning in a loop, for a condition to become true. In the opposite scenario, the thread sleeps
(i.e. is blocked; in Java: join() , wait()) until the condition becomes true. Trade-off: busy waiting uses up CPU time, whereas blocking may cause
additional context switches.

cache coherence protocols
Hardware protocols that ensure consistency across caches, typically by tracking which locations are cached, and synchronising them if necessary.

cilk-style programming
Parallel programming idiom: To compute a program, execute code and spawn new tasks if required. Before returning, wait for all spawned tasks to
complete. The system manages the eventual execution of the spawned tasks potentially in parallel. spawning and waiting on tasks creates a task
graph which is a DAG.

16

Course Overview

How Does This Course Fit Into the CS Curriculum?

* Programming-in-the-small => Data Structures and Algorithms
@

Program = Algorithms + Data Structures
* Programming-in-the-large

System = Processes + Objects + Communication

 § §

This class This class

Intro to Programming

How Does This Course Fit Into the CS Curriculum?

Algorithm Algorithm Algorithm Algorithm

Data structure Data structure

Process / Program Process / Program

Operating System

19

Learning Objectives

By the end of the course you should

1. have mastered
2. know how to using different parallel

orogramming paradigms (e.g., task parallelism, data parallelism) and
mechanisms (e.g., threads, tasks, locks, communication channels).

3. be qualified to and of parallel
algorithms
4. be ready to for

(e.g. searching large data sets)

Requirements

Basic understanding of Computer Science concepts

Basic knowledge of programming concepts:
We will do a quick review of Java and briefly discuss JVMs

Basic understanding of computer architectures:
No detailed knowledge necessary (we will cover some)

Cngrafvlaﬁons, ‘:':f,‘h
i€ only took you

wyyy jolyon.co.uk

22
Image source: http://jolyon.co.uk

http://jolyon.co.uk/

Motivation — Why Parallelism?

10 ® e AMD
Cypress
DEC
Fujitsu
Hitachi
HP

IBM

IDT
Intel

0.5 e”e

Motorola

NEC

0.1 [I Samsung
(L L X J ¢ TI

e e @ ® Toshiba

unnamed

® TSMC

Feature Size (um)
@9
©®
@

1970 1980 1990 2000 2010 2020

CPU DB

Year

Moore’s Law Recap: Transistor counts double every two years

= Means: Smaller transistors => can put more on chip => computational power grows exponentially => your

sequential program automatically gets faster.
= Also applies to RAM size and pixel densities

24

http://cpudb.stanford.edu/visualize/technology_scaling

Motivation — Why Parallelism?

Clock Frequency (MHz)

10000

1000

100

10

0

Clock Frequency

1970

1975

1980

1985

1990

1995

Year

2000

AMD
Cypress
DEC
Fujitsu
Hitachi
HP

IBM
Intel

Motorola
MIPS
SGI

Sun
Cyrix
HAL
NexGen

12V
2005 2010 2015 2020

CPU DB

25

http://cpudb.stanford.edu/visualize/clock_frequency

Why Don’t We Keep Increasing Clock Speeds?

Transistors have not stopped getting smaller + faster (Moore lives)

Heat and power have become the primary concern in modern
computer architecture!

Conseqguence:
* Smaller, more efficient Processors in terms of power (Ops / Watt)
 More processors — often in one package

What Kind of Processors Do We Build Then?

Main design constraint today is power

=Single-Core CPUs:
= Complex control hardware
i Flexibility + performance
o Expensive in terms of power (Ops / Watt)

=Many-Core/GPUs etc:
= Simpler control hardware
: Potentially more power efficient (Ops / Watt)

: More restrictive / complex programming models [but useful in
many domains, e.g. deep learning].

1. MUTUAL EXCLUSION

Alice’s Cat vs. Bob’s Dog

A

A

& »

Requirement |: Mutual Exclusion !

A

]

Requirement Il: No Lockout when free

A A
Y.

X

Communication: Idea 1 [Alternate]

Dog is
allowed
in yard

dog cat

=i

.

»

Access Protocol [Alternate]

Now cat is
allowed in

yard
dog cat

=i

[

o

Problem: Starvation!

Communication: Idea 2 [Notification]

w P

Ay

My petisin
the yard

Access Protocol 2.1: Idea

Cat wants to
get out

37

Another Scenario

Cat wants to
get out

Dog wants
to get out

40

Problem: No Mutual Exclusion!

< v

Checking Flags Twice Does Not Help: Deadlock!

Access Protocol 2.2

Cat wants to
get out

45

Dog wants
to get out

49

Access Protocol 2.2 is provably correct

A

e

AP~

Minor (?) Problems: Livelock, Starvation

& (&

Final Solution

dog goes
first

dog

=i

cat

54

Final Solution

dog cat

Cat wants to

get out Dog wants

to get out

55

Final Solution

dog cat

Final Solution

Final Solution

Final Solution

dog

cat

Next
time cat
goes first

o

59

Still: General Problem of Waiting ...

2. PRODUCER-CONSUMER

Producer-Consumer

Producer-Consumer

63

Rules

64

65

Communication

OO O

Food is
empty

wor

Protocol

not any
more

69

......

3. READERS-WRITERS

PET
J

HAM

OO O

HATE

| PET
LOVES

The bad news

= Reality of parallel computing is much more complicated than this.

= The results of one action, such as the lifting of a flag by one thread, can
become visible by other threads delayed or even in different order,
making the aforementioned protocols even more tricky.

= Precise reasons will become clear much later in your studies. But we will
understand consequences in the lectures later.

The good news

" On parallel hardware we will find an interesting tool to deal with low
level concurrency issues.

= There is sufficient abstraction in the programming models of different
programming languages.

= Later on, we will not really have to deal with such low level concurrency
issues. But we should have understood them once.

Language Landscape
X(,
C, C++ = .
@8E . KKotlin

Java, Kotlin, C# e
@ JS

Python, Ruby, Per]

Go, Rust Swift B
Haskell, OCaml A ’[hOﬂ“ _Go
JavaScript, TypeScript PY mOCaml

Swift, Dart & Scala 4 @& Dart

81

Why use Java?

Is ubiquitous (see oracle installer)

* Many (very useful) libraries

* Excellent online tutorials & books
Parallelism is well supported

* In the language and via frameworks
Interoperable with modern JVM languages
* E.g., Akka framework

Yet, not perfect

* Tends to be verbose, lots of boilerplate code

The Arrival of
Java 18

Used by over 10 million developers and running

611156 billion devices globallyiBEVE

Platform truly moves the world forward, and
now even faster with Java 18.

Download Java 18
earn Java

82

Introduction to Java Programming

Introduction to Java Programming, INTRODUCTION'TO
2014.

Daniel Liang.

ISBN-13: 9780133813463

Chapters 1-13 (with some
omissions)

Week 1-3

83

Java Concurrency in Practice

Java Concurrency in Practice, 2006.

Brian Goetz, Tim Peierls, Joshua
Bloch, Joseph Bowbeer, David
Holmes, Doug Lea.

ISBN-13: 9780321349606

Week 4-9

BRIAN GOETZ

84

Theory and beyond

Fundamental treatment of
concurrency

In particular the "Principles" part is
unique

Not easy

In this course

= Theory of concurrency
= Behind locks

= Lock-free programming

!\(UCE HE l!i IHY NIR SHAVTT
JR LUCHANGCO | MICHAEL SPEAR

THEARIT

A
MULTIPROCESSOR
 PROGRAMMING

e
¥ -
2 v

SECOND ERITION

85

