
Parallel Programming
A bit of JVM and Java recap connected to concurrency/parallelism

Today

2

• Sneak peek into JVMs
• Brief overview of JVM components …
• … spending a bit more time on bytecode
• This material is not examinable. Do not worry if you do not follow

some of the concepts. This is only meant to give you a feel for the
bigger picture (and can also be useful when debugging).

• Recap of Java
• Certain constructs and patterns that are connected to concurrency
• More recap slides in the slide deck, not covered in class

Why Java?

Widely used programming language in academia and industry

Lots of courses downstream use Java

Lots of resources available online and in books

Sophisticated support of concurrency in the language and in libraries

3

Java

Platform independence via bytecode
interpretation

Java programs run (in theory) on any
computing device (PC, mobile phones,
Toaster, Windows, Linux, Android)

Java compiler translates source to byte code

Java virtual machine (JVM) interprets the
bytecode of the compiled program

4

6

Key JVM Components

Memory
Allocators

Garbage
Collectors

Portability
Layer

Bytecode
Interpreter

JIT
Compiler

Resolver/
Loader

Native
Interface

Bytecode
Verification

JVM

Operating System: Linux, Windows, OSEK/VDX, etc…

Architecture: x86, ARM, TI DSP, etc…

Program.class

Resolver, Loader
Loads class files and setups their internal memory….but when?

class Test {

public static void main(String args[]) {
if (args[0].equals(“nuf si HTE”))

LoadMe t = new LoadMe();
}

}

class LoadMe() {
static int x = 0;
static { System.out.println (“Got statically initialized”); }

}

The JVM has a choice here:

Eager: the JVM resolves the reference to
LoadMe when class Test is first loaded.

Lazy: the JVM resolves the reference to
LoadMe when it is actually needed (here,
when the LoadMe object is created). Most
JVMs are lazy.

Static initialization of the class is quite non-
trivial, can be done concurrently by many
Java threads (we will see what a Thread is
later). Typically done before the class is used.

Bytecode Verification

Automatically verifies bytecode provided to JVM satisfies certain security constraints.
Usually done right after the class is located and loaded, but before static initialization

• bytecodes type check

• no illegal casts

• no conversion from integers to pointers

• no calling of directly private methods of

another class

• no jumping into the middle of a method

• ….and others

Minor problem:

Automated verification is undecidable.

Practically, this means the verifier may
reject valid programs that actually do
satisfy the constraints. L

The goal is to design a verifier that accepts
as many valid programs as possible. J

Bytecode Interpreter

A program inside the JVM that interprets the bytecodes in the class files generated by
the javac compiler using a stack and local variable storage.

• JVM is a stack based abstract machine:
bytecodes pop and push values on the stack

• A set of registers, typically used for local
variables and parameters: accessed by load
and store instructions

• For each method, the number of stack slots
and registers is specified in the class file

• Most JVM bytecodes are typed.

The bytecode interpreter is typically slow
as its pushing and popping values from a
stack…

One can speed-up the interpreter but in
practice parts of code that are frequently
executed simply get compiled by the Just
in Time (JIT) compiler to native code (e.g.,
Intel x86, etc)…next.

Just-In-Time Compiler (JIT)

Compiles the bytecode to machine code (e.g., ARM, DSP, x86, etc) on-demand, especially
when a method is frequently executed (hot method). JIT makes bytecodes fast J

Compilation of bytecode to machine code
happens during program execution. Typically
needs profiling data to know which method is
hot or cold. Can be expensive to gather during
execution.

In this example, method inc(int) is a hot
method so may be inlined inside the main to
avoid the overheads of function calling.

A modern JIT compiler has 100’s of
optimizations…

class Test {

public static int inc(int j) {return j + 1; }

public static void main(String args[]) {
int j = 0;
for (int i = 0; i < 100000; i++)

j = inc(j);
}}

Memory Allocators

Consists of, often concurrent algorithms, which are invoked when your Java program
allocates memory.

Object allocation in Java invokes the JVM
memory allocator. The JVM memory allocator
often has to ask the underlying OS for
memory which it then manages internally.

The allocator algorithms typically have to be
concurrent because multiple Java threads (we
will learn about threads later) can allocate
memory. Otherwise, if sequential, one may
see major pause times in their application.

class Test {

public static void main(String args[]) {

A a = new A();

int t[][] = new int[2][5];
}}

Garbage Collectors (GC)

JVM uses many different GC algorithms, often concurrent and parallel,
invoked periodically to collect memory unreachable by your program.

Frees the programmer from having to free memory
manually…which is good as it avoids tricky bugs.

Many different GC algorithms: generational,
concurrent, parallel, mark and sweep, etc. Trade-off
different performance goals. Concurrent GC
algorithms are very difficult to get correct.

finalize() method called when GC collects the object.

class Test {

public static void main(String args[]) {
A a = new A();
a = null; // memory of A() now unreachable.
System.gc(); // force GC
while(true); // wait till it triggers J

}}

class A() {
public void finalize() {

System.out.println(“I got freed by the GC”);
}}

Native Interface

When your Java program calls a native method, one has to convert the JVM parameters (e.g.,
what is on the stack) into machine registers (e.g, x86) following the calling convention.

As the JVM interpreter is executing the Java program, at
some point it may have to call a native method: some code
written in C or C++ say.

To do so, the JVM has to pass the parameters to the native
method in a particular way so to interact with binaries on the
particular platform.

This is not a large module but can be tricky to get the types
correct.

java.lang.Object contains many native methods (e.g., starting
a thread) for which the JVM provides an internal
implementation.

class Test {

public static native int print(double d);

public static void main(String args[]) {

print(5.2);

}}

Portability Layer

When the JVM is to run on top of Windows vs. Linux or x86 vs. ARM, the JVM designer
must implement a small number of JVM constructs (e.g., synchronization, threading)
using the primitives of the underlying operating system and architecture.

Portability
Layers

Operating System: Linux, Windows, OSEK/VDX, etc…

Example: Java provides its own notion of a
thread (as we will see later). However, the
operating system has a different notion of
what a thread is. So this layer somehow
needs to come up with a way to use the OS
notion of a thread to provide the Java notion
of a thread that the Java programmer expects.

If you want your JVM to run on a different OS,
you need to write the portability layer.

e.g.: Java notion of a Thread

must be mapped to

e.g.: OS notion of a thread

Look inside via: javap –c Test

17

You can find the meaning of all JVM instructions here:
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html#jvms-6.5

This kind of usage of ‘javap’ is not examinable but it may help you to
get deeper understanding of how the Java language actually gets
executed.

We will see how this is helpful later with constructs such as
synchronized and volatile and why this is instructive.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-6.html

Lets look a bit at the bytecodes…

19

class Test {

static int x = 2018;
double d;

public static native int print(double d);
public double pp(int a) { return a; }

public static void main(String args[]) {
Test t = new Test();
t.d = t.pp(1) + x;
Test.print(t.d);

}
}

javac Test.java

Test.class

What is inside
here?

20

class Test {
static int x;
double d;

Test();
Code:

0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>": ()V
4: return

public static native int print(double);

public double pp(int);
Code:

0: iload_1
1: i2d
2: dreturn

static {};
Code:

0: sipush 2018
3: putstatic #5 // Field x:I
6: return

}

Pushes content of local variable 0 (note: the variable is
of a reference type) to the stack.

Invoke constructor for the superclass of Test, that is,
java.lang.Object…and clear the stack.

Native method. Its implementation could be provided
for example in a C/C++ library.

Pushes content of local variable 1 (type integer) to stack.

convert the integer on the stack to a double.

Pop value from stack and return it.

push constant 2018 of type short (hence: si) to stack

pop 2018 from stack and write it to static field x.

JVM invokes this code before main()

Constructor for class Test

21

public static void main(java.lang.String[]);
Code:

0: new #2 // class Test

3: dup

4: invokespecial #3 // Method "<init>":()V

7: astore_1

8: aload_1

9: aload_1

10: iconst_1

11: invokevirtual #4 // Method pp:(I)D

14: getstatic #5 // Field x:I

17: i2d

18: dadd

19: putfield #6 // Field d:D

22: aload_1

23: getfield #6 // Field d:D

26: invokestatic #7 // Method print:(D)I

29: pop

30: return

Create the object of class Test and push it on the stack.
Object not yet initialized! Triggers the JVM’s memory allocator.

Duplicate object reference on the stack.

Invoke constructor for top-of-stack object (pops it). This initializes it as we
saw before. After, 1 reference to object remains

Store top-of-stack reference in local variable and pops it. Stack now empty.

Load reference from local variable 1 onto the stack.

Load reference from local variable 1 onto the stack again.

push the constant 1 onto the stack

Invoke method pp(). Pops the constant 1 and the reference. Method
returns a value stored on top of the stack.

Read the value of the static field ‘x’ and push it onto the stack.

Convert to a double.

Add two values on top of stack (pop them) and produce 1 value.

…..// we skip 19, 22 and 23 here: can do it yourself.

We are invoking a native method! The native interface component of the
JVM will make sure local vars/stack information is converted to the
particular binary interface…

Today

22

• Sneak peek into JVMs
• Brief overview of JVM components …
• … spending a bit more time on bytecode
• This material is not examinable. Do not worry if you do not follow

some of the concepts. This is only meant to give you a feel for the
bigger picture (and can also be useful when debugging).

• Recap of Java
• Certain constructs and patterns that are connected to concurrency
• More recap slides in the slide deck, not covered in class

Structure of a Java program

public class name {
public static void main(String[] args) {

statement;
statement;
...
statement;

}
}

Every executable Java program consists of a class that contains a method
named main, that contains the statements (commands) to be executed.

class: a program

statement: a command to be executed

method: a named group
of statements

23

Keywords

Keyword: An identifier that you cannot use (to name methods,
classes, etc) because it already has a reserved meaning in Java.

abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch ...
continue goto package synchronized

24

25

Creating, Compiling, and
Running Programs

Different kinds of errors

27

1. Compiler errors
2. Runtime errors
3. Logic errors

Data types
Type: A category or set of data values.
• Constrains the operations that can be performed on data
• Many languages ask the programmer to specify types

• Examples: integer, real number, string

Internally, computers store everything as 1s and 0s
104 à 01101000

Primitive Types in Java

Source: Christian Ullenboom: Java ist auch eine Insel,
Galileo Computing, 8. Auflage, 2009, ISBN 3-8362-1371-4

Java's primitive types
Primitive types: 8 simple types for numbers, text, etc.

Name Description Examples

• int integers (up to 231 - 1) 42, -3, 0, 926394

• double real numbers (up to 10308) 3.1, -0.25, 9.4e3

• char single text characters 'a', 'X', '?', '\n'

• boolean logical values true, false

Why does Java distinguish integers vs. real numbers?

Primitive Types – Complete List

Integer:
• byte (8 Bits)
• short (16 Bits)
• int (32 Bits)
• long (64 Bits)

Real numbers:
• float (32 Bits)
• double (64 Bits)

Characters (Unicode):
• char (16 Bits)

Booleans:
• boolean

38

Range: -2147483648 ... 2147483647
or −2!" to 2!"-1

65536 different values, allows for
non-English characters

Examples: 18.0 , -0.18e2 , .341E-2

Values: true , false
Operators: &&, | |, !

Type conversion (Casting)
Java is a strongly typed language, so the compiler can detect type
errors at compile time

40

int myInt;
float myFloat = -3.14159f;

myInt = myFloat;

int myInt;
float myFloat = -3.14159f;

myInt = (int)myFloat;

Compile time error Explicit type cast (truncates value)

Bytecode:
0: ldc #2 // float -3.14159f
2: fstore_2
3: fload_2
4: f2i
5: istore_1
6: return

The Two-way if Statement

if (boolean-expression) {
statement(s)-for-the-true-case;

}
else {

statement(s)-for-the-false-case;
}

42

Nested if/else

Chooses between outcomes using many tests
if (test) {

statement(s);
} else if (test) {

statement(s);
} else {

statement(s);
}

Example:
if (x > 0) {

System.out.println("Positive");
} else if (x < 0) {

System.out.println("Negative");
} else {

System.out.println("Zero");
}

43Tip: in parallelism/concurrency…try to have the if /else’s read from a local variable.

Loops: walkthrough

for (int i = 1; i <= 4; i++) {
System.out.println(i + " squared = " + (i * i));

}
System.out.println("Whoo!");

Output:

1 squared = 1
2 squared = 4
3 squared = 9
4 squared = 16
Whoo!

1

1

2

2

3

3

4

4

5

5

47What can happen if ‘i’ is not a local variable and we have many processes? J

Categories of loops
Bounded loop: Executes a known number of times.
• The for loops we have seen are bounded loops.

• print "hello" 10 times.
• print each odd number between 5 and 127.

Unbounded loop: where number of times its body repeats is
unknown in advance.

• e.g. repeat until the user types "q" to quit.

48

How would you write the mutual exclusion algorithm for a single participant from last lecture?
What kind of loop would we use?

The while loop
while loop: repeatedly executes its

body as long as a logical test is true.
while (test) {

statement(s);
}

Example:
int num = 1; // initialization
while (num <= 200) { // test

System.out.print(num + " ");
num = num * 2; // update

}

// output: 1 2 4 8 16 32 64 128

49

Arrays
Array: object that stores many values of the same type.
• element: One value in an array.
• index: A 0-based integer to access an element from an array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

52

How are multi dimensional arrays represented?

Example: int [] [] PP = new int[10][20]

Strings

String: An object storing a sequence of text characters.
• Unlike most other objects, a String can be created without new.

String name = "text";
String name = expression;

• Examples:
String name = “ETH 2021 Parallel Programming";
int x = 3;
int y = 5;
String point = "(" + x + ", " + y + ")";

59

Indexes
Characters of a string are numbered with 0-based indexes:

String name = "R. Kelly";

• First character's index : 0
• Last character's index : 1 less than the string's length

• The individual characters are values of type char

index 0 1 2 3 4 5 6 7
character R . K e l l y

60

Objects

Object: An entity that contains data and behavior.
• data: variables inside the object
• behavior: methods inside the object

• You interact with the methods;
the data is hidden in the object.

Constructing (creating) an object:
Type objectName = new Type(parameters);

Calling an object's method:
objectName.methodName(parameters);

http://docs.oracle.com/javase/tutorial/java/concepts/object.html

http://docs.oracle.com/javase/tutorial/java/concepts/object.html

Bicycle: An example

Software objects are similar to real world objects
They have states and behaviors

• States are stored in variables (Java: fields)
• Behavior is exposed via methods

Methods are used for object-to-object
communication
Methods hide the internal state (and the concrete
implementation) from the outside world (developer)

71
http://docs.oracle.com/javase/tutorial/java/concepts/object.html

http://docs.oracle.com/javase/tutorial/java/concepts/object.html

Object references

Arrays and objects use reference semantics.
• efficiency. Copying large objects slows down a program.
• sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);
DrawingPanel panel2 = panel1; // same window
panel2.setBackground(Color.CYAN);

panel1

panel2

Pass by reference value (Objects)

When an object is passed as a parameter, the object is not copied.
The parameter refers to the same object.
• If the parameter is modified, it will affect the original object.

public static void main(String[] args) {
DrawingPanel window = new DrawingPanel(80, 50);
window.setBackground(Color.YELLOW);
example(window);

}

public static void example(DrawingPanel panel) {
panel.setBackground(Color.CYAN);
...

}
panel

window

Static Variables, Constants, and Methods

Static variables are shared by all the instances of the class.

Static methods are not tied to a specific object.

Static constants are final variables shared by all the instances of the
class.

CONCURRENCY ISSUES?

77

Instance Variables, and Methods

Instance variables belong to a specific class instance.

Instance methods are invoked by an instance of the class.

78

Exceptions
Advantages of exception handling:
• enables a method to throw an exception to its caller
• without this, a method must handle the exception or terminate

the program

public static int quotient(int number1, int number2) {
if (number2 == 0)
throw new ArithmeticException("Divisor cannot be zero");

return number1 / number2;
}

84

Language features vs. parallelism: Guidelines

• Keep variables as ‘local’ as possible: global variables means they
can be accessed by various parallel activities. While when its local
to the process/thread, we are safe against inadvertent accesses
to the variable.

• If possible, avoid aliasing of references: aliasing can lead to
unexpected updates to memory through a process that accesses
a seemingly unrelated variable (named differently).

• If possible, avoid mutable state, in particular when aliased:
aliasing is no problem if the shared object is immutable, but
concurrent mutations can make bugs really hard to reproduce
and investigate (“Heisenbugs”)

87

Language features vs. parallelism: Guidelines

• Exceptions vs. Concurrency/Parallelism:
• Exceptions tend to be less effective with parallelism because the

cause of the error may be far earlier in the execution than where the
exception triggers. Hence, the stack trace of the exception can be
less informative and useful.

• Exceptions thrown in a thread (parallel process) don’t automatically
reach the main program, and thus might go completely unnoticed.
This can make it (even) more complicated to track down the root
cause of a bug.

88

Summary

• Sneak peek into JVMs
• Brief overview of JVM components …
• … spending a bit more time on bytecode
• This material is not examinable. Do not worry if you do not follow

some of the concepts. This is only meant to give you a feel for the
bigger picture (and can also be useful when debugging).

• Recap of Java
• Certain constructs and patterns that are connected to concurrency
• More recap slides in the slide deck, not covered in class

89

