
Parallel Programming
Introduction to Threads and Synchronization

Structure of Next Lectures

Motivation: Parallelism is Tricky but Useful

Multiprocessing vs. Multithreading

Java Threads: Creation, Status, Join

Shared Resources, Thread Interleavings

Synchronization with synchronize Blocks

Coordination/Communication: Producer-Consumer with wait & notify
2

Parallelism: an analogy
Wake-up

3

Parallelism: an analogy
Wake-up

Get out of bed

4

Parallelism: an analogy
Wake-up

Get out of bed

Brush teeth

5

Parallelism: an analogy
Wake-up

Get out of bed

Brush teeth

Get dressed

6

Parallelism: an analogy
Wake-up

Get out of bed

Brush teeth

Get dressed

Make coffee

Make toast
7

Parallelism: an analogy
Wake-up

Get out of bed

Brush teeth

Get dressed

Make coffee

Make toast
8

Sequential
Parallel

Parallelism: an analogy (continued)

9

The bad news:
Parallelism is tricky!

10

Magic Trick (1)

11

Pick one card from the six cards below:

Focus on just that card!

Magic Trick (2)

I’ve shuffled the cards and removed the one which I think was your card.

Can you still remember your card?

12

Magic Trick (3)

Here are the remaining five cards, is your card there?

Did I guess right? Or is it an illusion?

13

Magic Trick – The Explanation

• You just experienced Inattentional Blindness

• None of the original six cards was displayed!

14

Take Home Message: You can’t do two things at a time

Attention involves selective processing of visual information

Our brain is not “made for” doing things in parallel (or thinking of
parallelism).

If attention is elsewhere (even temporarily), changes can be missed
à implication?

• Driving!
• Laptop in Class!

15

The good news:
Parallelism is useful!

16

2/25/24 17

Multitasking/Multiprocessing

18

Multitasking

Concurrent execution of multiple
tasks/processes

Time multiplexing of CPU
Creates impression of parallelism
Even on single core/CPU system

Allows for asynchronous I/O
I/O devices and CPU are truly parallel
10ms waiting for HDD allows other
processes to execute >1010 instructions

19

Process context
A process is (essentially) a program executing inside an OS

Each running instances of a program (e.g., multiple browser windows) is
a separate process

Multiple applications (=processes) in parallel

Each process has a context:
• Instruction counter
• Values in registers, stack and heap
• Resource handles (device access, open files)
• …

20

Process lifecycle states

Main Memory

21

Waiting Blocked

Running

Page File / Swap space

Swapped out Waiting Swapped out Blocked

Created Terminated

Process management

Processes need resources
• CPU time, Memory, etc.

OS manages processes:
• Starts processes
• Terminates processes (frees resources)
• Controls resource usage (prevents monopolizing CPU time)
• Schedules CPU time
• Synchronizes processes if necessary
• Allows for inter process communication

22

Process control blocks (PCB)

23

24

Capture PCB1 state

Load PCB2 state

Capture PCB2 state

Load PCB1 state

idle

executing

Interrupt

Interrupt

Process P1 Operating System Process P2

Process level parallelism can
be complex and expensive

executing

executing
idle

idle

25

Multithreading

26

Threads

Threads (of control) are
• independent sequences of execution
• running in the same OS process

Multiple threads share the same address space.
• Threads are not shielded from each other
• Threads share resources and can communicate more easily

Context switching between threads is efficient
• No change of address space
• No automatic scheduling
• No saving / (re-)loading of PCB (OS process) state

27

More vulnerable for
programming mistakes

Usage of Multithreading

Reactive systems – constantly monitoring

More responsive to user input – GUI
application can interrupt a time-consuming
task

Server can handle multiple clients
simultaneously

Take advantage of multiple CPUs/cores

28

Multithreading: 1 vs. many CPUs

29

Multiple
threads
sharing a
single CPU

Thread 1

Thread 2

Thread 3

Multithreading: 1 vs. many CPUs

30

Multiple
threads on
multiple
CPUs

Multiple
threads
sharing a
single CPU

Thread 1

Thread 2

Thread 3

Thread 1

Thread 2

Thread 3

Big Picture (Part I)

32

CPU

OS

JVM (Process A)

Core Core Core Core

OS thread OS thread OS thread OS thread

OS scheduler

JVM scheduler

JVM thread

Process B

Memory Space A Memory Space BPhysical
Memory

JVM thread JVM thread JVM threadL03-05

L06

L07

L08-09

L10-L11

L13

…

…

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Parallel
performance &

algorithms

L12Virtual
threads

Java Threads

33

34

Thread
• A set of instructions to be executed one at a time, in a specified order
• A special Thread class is part of the core language

(Some) methods of class java.lang.Thread
• start() : method called to spawn a new thread

• Causes JVM to call run() method on object
• interrupt() : freeze and throw exception to thread

Java Threads

Create Java Threads: Option 1 (oldest)

Instantiate a subclass of java.lang.Thread class
• Override run method (must be overridden)
• run() is called when execution of that thread begins
• A thread terminates when run() returns
• start() method invokes run()
• Calling run() does not create a new thread

35

class ConcurrWriter extends Thread { …
public void run() {

// code here executes concurrently with caller
}

}
ConcurrWriter writerThread = new ConcurrWriter();
writerThread.start(); // calls ConcurrWriter.run()

Creating the Thread
object does not start
the thread!

Need to actually call
start() to start it.

Create Java Threads: Option 2 (better)

Implement java.lang.Runnable
• Single method: public void run()
• Class implements Runnable

36

public class ConcurrWriter implements Runnable {
…
public void run() { …

// code here executes concurrently with caller
}

}

ConcurrWriter writerThread = new ConcurrWriter();
Thread t = new Thread(writerThread);
t.start(); // calls ConcurrWriter.run()

Thread state model in Java

37

http://pervasive2.morselli.unimo.it/~nicola/courses/IngegneriaDelSoftware/java/J5e_multithreading.html

http://pervasive2.morselli.unimo.it/~nicola/courses/IngegneriaDelSoftware/java/J5e_multithreading.html

// Thread.java from OpenJDK:
// https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/classes/java/lang/Thread.java
public class Thread implements Runnable {

static { registerNatives(); }

private volatile String name;
private int priority;

private boolean daemon = false;

...

public static native void yield();
public static native void sleep(long millis) throws InterruptedException;

private Thread(...) { ... }

public synchronized void start() { ... }

private native void start0();

...

Creates execution environment for the thread
(sets up a separate run-time stack, etc.)

java.lang.Thread (under the hood)

38

A Thread is Runnable

// Thread.java from OpenJDK:
// https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/classes/java/lang/Thread.java
public class Thread implements Runnable {

static { registerNatives(); }

private volatile String name;
private int priority;

private boolean daemon = false;

...

public static native void yield();
public static native void sleep(long millis) throws InterruptedException;

private Thread(...) { ... }

public synchronized void start() { ... }

private native void start0();

...

java.lang.Thread (under the hood)

39

// Thread.c from OpenJDK:
// https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/nati
ve/libjava/Thread.c

#include "jni.h"
#include "jvm.h"

#include "java_lang_Thread.h"

#define THD "Ljava/lang/Thread;"
#define OBJ "Ljava/lang/Object;"
#define STE "Ljava/lang/StackTraceElement;"
#define STR "Ljava/lang/String;"

#define ARRAY_LENGTH(a) (sizeof(a)/sizeof(a[0]))

static JNINativeMethod methods[] = {
{"start0", "()V", (void *)&JVM_StartThread},
...
{"yield", "()V", (void *)&JVM_Yield},
{"sleep", "(J)V", (void *)&JVM_Sleep},
...

Native C implementation
of Java’s native thread

methods

Example: The parallel calculator
Create 10 threads: each calculates and prints multiplication tables between 1 -10

40

public class Calculator implements Runnable {

private int number;

public Calculator(int number) {

this.number = number;

}

public void run() { // Override run()

for (int i = 1; i <= 10; i++){

System.out.printf("%s: %d * %d = %d\n",

Thread.currentThread().getName(),

number,i,i*number);

}}}

Example: The parallel calculator
Create 10 threads: each calculates and prints multiplication tables between 1 -10

41

public class Calculator implements Runnable {

private int number;

public Calculator(int number) {

this.number = number;

}

public void run() { // Override run()

for (int i = 1; i <= 10; i++){

System.out.printf("%s: %d * %d = %d\n",

Thread.currentThread().getName(),

number,i,i*number);

}}}

public static void main(String[] args) {

//Launch 10 threads that make the operation
with a different number

for (int i=1; i <= 10; i++){

Calculator calculator = new Calculator(i);

Thread thread = new Thread(calculator);

thread.start();

}}

Example: The parallel calculator
Create 10 threads: each calculates and prints multiplication tables between 1 -10

42

public class Calculator implements Runnable {

private int number;

public Calculator(int number) {

this.number = number;

}

public void run() { // Override run()

for (int i = 1; i <= 10; i++){

System.out.printf("%s: %d * %d = %d\n",

Thread.currentThread().getName(),

number,i,i*number);

}}}

public static void main(String[] args) {

//Launch 10 threads that make the operation
with a different number

for (int i=1; i <= 10; i++){

Calculator calculator = new Calculator(i);

Thread thread = new Thread(calculator);

thread.start();

}}

Sample output:

….

….

Example: The parallel calculator
Create 10 threads: each calculates and prints multiplication tables between 1 -10

43

public class Calculator implements Runnable {

private int number;

public Calculator(int number) {

this.number = number;

}

public void run() { // Override run()

for (int i = 1; i <= 10; i++){

System.out.printf("%s: %d * %d = %d\n",

Thread.currentThread().getName(),

number,i,i*number);

}}}

public static void main(String[] args) {

//Launch 10 threads that make the operation
with a different number

for (int i=1; i <= 10; i++){

Calculator calculator = new Calculator(i);

Thread thread = new Thread(calculator);

thread.start();

}}

Sample output:

….

Note that threads do not appear
in the order they were created…

….

Java Threads: some key points

Every Java program has at least one execution thread
• First execution thread calls main()

Each call to start() method of a Thread object creates an actual execution thread

Program ends when all threads (non-daemon threads) finish.

Threads can continue to run even if main() returns

Creating a Thread object does not start a thread

Calling run() doesn’t start thread either (need to call start()!)

47

(Some) Useful Thread attributes and methods
ID: this attribute denotes the unique identifier for each Thread.

Thread t = Thread.currentThread(); // get the current thread
System.out.println(“Thread ID” + t.getId()); // prints the current ID.

Name: this attribute denotes the name of Thread.
t.setName(“PP“ + 2022); // can be modified like this

Priority: denotes the priority of the thread. Threads can have a priority between 1 and 10:
JVM uses the priority of threads to select the one that uses the CPU at each moment
t.setPriority(Thread.MAX_PRIORITY); // updates the thread’s priority

Status: denotes the status the thread is in: one of new, runnable, blocked, waiting, time waiting, or terminated
(we will discuss the different statuses in more detail later):

if (t.getState() == State.TERMINATED) //check if thread’s status is terminated

48

Using Thread states and priorities

49

public static void main(String[] args) {

// Launch 10 threads to do the operation, 5 with the max

// priority, 5 with the min

Thread threads[] = new Thread[10];

Thread.State status[] = new Thread.State[10];

for (int i=0; i<10; i++){

threads[i]=new Thread(new Calculator(i));

if ((i%2)==0){

threads[i].setPriority(Thread.MAX_PRIORITY);

} else {

threads[i].setPriority(Thread.MIN_PRIORITY);

}

threads[i].setName("Thread "+i);

} ... Cont’d on next slide

50

try (FileWriter file = new FileWriter(".\\data\\log.txt");PrintWriter pw = new PrintWriter(file);){

for (int i=0; i<10; i++){

pw.println("Main : Status of Thread "+i+" : "+threads[i].getState());

status[i]=threads[i].getState();

threads[i].start();

}

boolean finish=false;

while (!finish) {

for (int i=0; i<10; i++){

if (threads[i].getState()!=status[i]) {

writeThreadInfo(pw, threads[i],status[i]);

status[i]=threads[i].getState();

}

}

... Cont’d on next slide

51

...

finish=true;

for (int i=0; i<10; i++){

finish=finish &&(threads[i].getState()==State.TERMINATED);

}

}//end while

} catch (IOException e) {

e.printStackTrace();

}

Using Thread states and priorities

Thread priorities: Output

52

Thread priorities: Observations

53

Parallel calculators perform I/O (println)
à most threads typically blocked

High-priority threads typically finish before low-
priority thread

Joining Threads

54

55

Common scenario:
• Main thread starts (forks, spawns) several worker threads...
• ... then needs to wait for the worker’s results to be available

Previously:
• Busy waiting by spinning

(looping) until each worker’s
state is TERMINATED

• Boilerplate code
• Inefficient! Main thread spinning uses up CPU time

...

finish = false;

While (!finish) {

...

finish = true;

for (int i=0; i<10; i++){

finish = finish && (threads[i].getState() == State.TERMINATED);

}

}

Results, please!

56

From main thread’s perspective:
• Instead of busily waiting for the results (ready? now ready? now?) ...
• ... go to sleep and be woken up once the results are ready

Performance trade-off:
• Join (sleep, wakeup) typically incurs context switch overhead
• If worker threads are short-lived, busy waiting may perform better
• Later in the course: SpinLock

Question: Is joining threads[0], ..., threads[9]optimal?

...

for (int i=0; i<10; i++) {

threads[i].join(); // May throw InterruptedException

}

Wake me up when work is done

60

Exceptions in a single-threaded (i.e. sequential) program terminate
the program, if not caught

What if a worker thread throws an
exception?
• Exception is (usually) shown on console
• Behaviour of thread.join() is unaffected
• à Main thread may not be aware of an

exception inside a worker thread

public class Worker extends Thread {
Data result;
...

@Override
public void run() {

...
// someObject could be null à NPE
result = calculate(someObject.getData());

}
}

public class Main {
public static void main(String[] args) {

Worker worker = new Worker(...);
worker.start();

worker.join(); // Unaffected
println(worker.result); // Another NPE

}
}

Exceptions

Setting UncaughtExceptionHandlers

Implementing UncaughtExceptionHandler interface allows us to
handle unchecked exceptions

Three options:
• Register exception handler with Thread object
• Register exception handler with ThreadGroup object
• Use setDefaultUncaughtExceptionHandler() to register handler for

all threads

Handler can then record which threads terminated exceptionally, or
restart them, or ...

61

UncaughtExceptionHandlers: Example

62

public class ExceptionHandler
implements UncaughtExceptionHandler {

public Set<Thread> threads = new HashSet<>();

@Override
public void uncaughtException(Thread thread,

Throwable throwable) {

println("An exception has been captured");
println(thread.getName());
println(throwable.getMessage());
...
threads.add(thread);

}
}

public class Main {
public static void main(String[] args) {

...

ExceptionHandler handler = new ExceptionHandler();

thread.setUncaughtExceptionHandler(handler);

...

thread.join();

if (handler.threads.contains(thread)) {
// bad

} else {
// good

}
}

}

Shared Resources

64

Battle of the Threads

Two threads “fighting” over console
One writes stars; the other deletes stars (in parallel)
Who will win?

65

66

public class BackAndForth {

public static void main(String args[]){

System.out.print("********************");

System.out.flush();

new Forth().start();

new Back().start();

}}

public class Forth extends Thread {

public void run(){

while(true){

try {

sleep((int)(Math.random()*1000));

} catch (InterruptedException e) { return; }

printStars();

System.out.flush();

}

}

public void printStars(){

System.out.print("*****");

}

}

class Back extends Forth{

@Override

public void printStars(){

System.out.print("\b\b\b\b\b\b\b\b\b\b");

}

}

Two thread “fighting” over the console

67

Synchronized incrementing and decrementing
public class Counter implements Runnable {

public int ticks = -1;

private Cell cell;
private int delta;
private int maxTicks;

Counter(Cell cell, int delta, int maxTicks) {
this.cell = cell;
this.delta = delta;
this.maxTicks = maxTicks;

}

@Override
public void run() {

ticks = 0;

while (ticks < maxTicks) {
cell.inc(delta);
++ticks;

}
}

}

public class Main {
public static void main(String[] args) {

...

Counter up = new Counter(cell, 1, MAX_TICKS);
Counter down = new Counter(cell, -1, MAX_TICKS);

Thread upWorker = new Thread(up);
Thread downWorker = new Thread(down);

upWorker.start(); downWorker.start();
upWorker.join(); downWorker.join();

System.out.printf(“Cell value: %d\n", cell.get());
}

}

public class Cell {
private long value;

...

public void inc(long delta) {
this.value += delta;

}
}

Cell value: -799
Cell value: 667088
Cell value: -281765
Cell value: 147854
...

Updating shared state in parallel

Single statement in LongCell.inc
this.value += delta;

is executed in several small steps

Many different interleavings possible

Including bad interleavings in which state data is used

68

// relevant bytecode
ALOAD 0
DUP
GETFIELD LongCell.value
LLOAD 1
LADD
PUTFIELD LongCell.value

Preview: Threads Safety Hazard

Thread safety
• implies program safety
• typically refers to “nothing bad ever happens”, in any possible

interleaving (a safety property)

This is often hard to achieve and requires careful design with parallel
execution in mind from the beginning

70

Preview: Threads Liveness Hazard

Thread safety means: “nothing bad happens”

Liveness means: “eventually something good happens”

Endless loops are an example of liveness hazards in sequential
programs

Threads makes liveness hazards more frequent:
• If ThreadA holds a resource (e.g. a file handle) exclusively …
• ... then ThreadB might be waiting for that resource forever

71(What does “holds exclusively” mean in Java? à soon)

Preview: Threads Performance Hazard

Liveness means that progress will be made (at some point)

But in (parallel) programming, we’re interested in fast progress

Multithreaded applications introduce potential performance
bottlenecks:
• Frequent context switches: CPU time spend scheduling versus running

threads
• Loss of locality (à next week)
• With synchronization (enforcing mutual exclusion) there is an additional

overhead

72(What does “synchronization” mean in Java? à soon)

Correctness of Parallel Programs

Examples of safety properties we will encounter in this course include:
• absence of data races
• mutual exclusion
• linearizability
• atomicity
• schedule-deterministic
• absence of deadlock
• custom invariants (e.g., age > 15)

To ensure the parallel program satisfies such properties, we need to correctly synchronize
the interaction of parallel threads so to make sure they do not step on each other toes.

73

synchronized

74

Shared memory interaction between threads
Two or more threads may read/write the same data (shared objects, global data).
Programmer responsible for avoiding bad interleaving by explicit synchronization!

How do we synchronize? Via synchronization primitives.

In Java, all objects have an internal lock, called intrinsic lock or monitor lock

Synchronized operations (see next) lock the object: while locked, no other thread
can successfully lock the object

Generally, if you access shared memory, make sure it is done under a lock (Java
memory model is complicated!).

(can also use volatile keyword, more for experts writing concurrent collections)
75

Synchronized Methods
// synchronized method: locks on "this" object
public synchronized type name(parameters) { ... }

// synchronized static method: locks on the given class
public static synchronized type name(parameters) { ... }

A synchronized method grabs the object or class's lock at the start,
runs to completion, then releases the lock

Useful for methods whose entire bodies are critical sections (recall
Alice and Bob’s farm), and thus should not be entered by multiple
threads at the same time.

I.e. a synchronized method is a critical section with guaranteed
mutual exclusion.

76

77

Synchronized incrementing and decrementing
public class Counter implements Runnable {

public int ticks = -1;

private Cell cell;
private int delta;
private int maxTicks;

Counter(Cell cell, int delta, int maxTicks) {
this.cell = cell;
this.delta = delta;
this.maxTicks = maxTicks;

}

@Override
public void run() {

ticks = 0;

while (ticks < maxTicks) {
cell.inc(delta);
++ticks;

}
}

}

public class Main {
public static void main(String[] args) {

...

Counter up = new Counter(cell, 1, MAX_TICKS);
Counter down = new Counter(cell, -1, MAX_TICKS);

Thread upWorker = new Thread(up);
Thread downWorker = new Thread(down);

upWorker.start(); downWorker.start();
upWorker.join(); downWorker.join();

System.out.printf(“Cell value: %d\n", cell.get());
}

}

public class Cell {
private long value;

...

public synchronized void inc(long delta) {
this.value += delta;

}
}

Cell value: 0
Cell value: 0
Cell value: 0
Cell value: 0
...

Synchronized Blocks
// synchronized block: uses the given object as a lock
synchronized (object) {

statement(s); // critical sections
}

A synchronized method, e.g.

is syntactic sugar for

79

public synchronized void inc(long delta) {
this.value += delta;

}

public void inc(long delta) {
synchronized (this) {
this.value += delta;

}
}

Synchronized Blocks
// synchronized block: uses the given object as a lock
synchronized (object) {

statement(s); // critical sections
}

Enforces mutual exclusion w.r.t to some object

Every Java object can act as a lock for concurrency:
A thread T1 can ask to run a block of code, synchronized on a
given object O.

• If no other thread has locked O, then T1 locks the object and proceeds.
• If another thread T2 has already locked O, then T1 becomes blocked

and must wait until T1 is finished with O (that is, unlocks O). Then, T1 is
woken up, and can proceed. 80

Preview: Locks
In Java, all objects have an internal lock, called intrinsic lock or
monitor lock, which are used to implement synchronized

Java also offers external locks (e.g. in package
java.util.concurrent.locks)
• Less easy to use
• But support more sophisticated locking idioms, e.g. for reader-writer

scenarios

81

Locks Are Recursive (Reentrant)

public class Foo {
public void synchronized f() { … }
public void synchronized g() { … f(); … }

}

Foo foo = new Foo();
synchronized(foo) { … synchronized(foo) { … } … }

82

A thread can request to lock an object it has already locked

83

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() { c++; }
public synchronized void decrement() { c--; }
public synchronized int value() { return c; }

}

Examples: Synchronization granularity

public void addName(String name) { synchronized(this) {
lastName = name;
nameCount++;

}
nameList.add(name); // add synchronizes on nameList

}

The advantage of not
synchronizing the entire
method is efficiency but
need to be careful with
correctness

84

public class TwoCounters {
private long c1 = 0, c2 = 0;
private Object lock1 = new Object();
private Object lock2 = new Object();
public void inc1() {

synchronized(lock1) {
c1++;

}
}
public void inc2() {

synchronized(lock2) {
c2++;

}
}

}

Examples: Synchronization with different locks

The locks are disjoint – allows
for more concurrency.

85

public class Screen {
private static Screen theScreen;

private Screen(){…}

public static synchronized getScreen() {
if (theScreen == null) {

theScreen = new Screen();
}

return theScreen;
}

}

Examples: Synchronization with static methods

Which object does synchronized lock here?
What if Screen instances call getScreen()?

Interleavings: Examples

86

c = 0

T1:

synchronized (this)
{
1: t1 = c;
2: t1++
3: c = t1;

}

T2:

synchronized (this)
{
4: t2 = c;
5: t2++
6: c = t2;

}

Suppose we have 2 threads, T1 and T2, both incrementing a shared counter. If we use synchronized (say on ‘this’ object), we
will get the desired result of 2 by the time both threads have finished executing their code below.

For convenience, we use labels 1-6 to refer to the instructions. The possible interleavings / executions of this program are
that either T1 runs before T2 or vice versa. So we will have:

Interleaving 1: 123456 Interleaving 2: 456123

Interleavings: Another example

87

c = 0

T1:

synchronized (this)
{
1: t1 = c;
2: t1++
3: c = t1;

}

T2:

4: t2 = c;
5: t2++
6: c = t2;

Suppose the programmer forgot to use synchronized in thread T2. What is an example of an undesirable interleaving that we
can see?

A possibly bad interleaving is: 4 1 2 3 5 6

This interleaving will result in the counter ‘c’ being set to 1 at the end of the interleaving.

Interleavings: Another example

89

c = 0

T1:

synchronized (this)
{
1: t1 = c;
2: t1++
3: c = t1;

}

T2:

synchronized (p)
{
4: t2 = c;
5: t2++
6: c = t2;

}

Suppose the programmer now uses synchronized in thread T2 but not on ‘this’, but say another object ‘p’. Does this prevent
the bad interleaving we just saw?

No, the bad interleaving: 4 1 2 3 5 6 can still happen because ‘p’ and ‘this’ are different objects.

Synchronized and Exceptions

90

public void foo() {
synchronized (this) {
longComputation(); // say this takes a while…
divisionbyZero(); // this throws an exception..
someOtherCode(); // something else

}
}

What happens if in the middle of a synchronized block, an exception triggers?

In this case, after longComputation() completes, an exception is thrown. What happens then is as follows. First,
the synchronized on the ‘this’ object will be released -- as if the synchronized scope ends right at the point where the
exception is thrown. Second, the exception is caught, then the exception handler is executed. If there is no exception
handler, as in our example, then the exception is propagated back down to the caller of foo() as usual.

Note that the code someOtherCode() will NOT be executed in this case. Also note that any side effects of
longComputation() are NOT reverted, they do take effect, even if exceptions are thrown.

Synchronized and Exceptions (optional)

91

class test {
public void foo() {
int pp;
synchronized (this) { pp = 1; }

}
}

If you want to know more on exactly how synchronized/exceptions interact in the bytecode, you can
compile the following code:

Then you can call the command: javap –c test (our old friend)

This will show you the 14 bytecodes for this method foo(). You can then see exactly how synchronized is handled (e.g.,
via monitorenter/monitorexit) and see the 2 exception tables generated in the case of exceptions inside synchronized.
This is not something that will be examined, it is for your own information when you need to debug the code
sometimes.

You should know what happens with synchronized/exceptions though as outlined on the previous slide.

(not exam relevent)

92

How is synchronized actually implemented?

Recall the native layer we briefly discussed in Lecture 2.

Internally, the JVM implements synchronized by using native, operating system
primitives (and low level architecture instructions, say Intel’s x86 e.g. compare-
and-swap, or IBM Power’s LL/SC). This means the implementation of
synchronized will look different on different OS/architecture combinations.

If you remember our informal mutual exclusion, we essentially provided an
implementation of synchronized that works for 2 threads (Alice and Bob) that
relies only shared reads and writes to 3 variables (flag1, flag2, and turn)

In later lectures we will see the instructions that are used to implement
synchronized.

(preview)

Few Historic Notes: Objects/Monitors

93

1960’s - Simula 67 introduces the concept of objects - by Ole-Johan
Dahl and Kristen Nygaard

1971 – Ideas around monitor concept discussed by Per Brinch
Hansen/Tony Hoare/Edsger Dijkstra

1972 - Proposes first monitor notation, influenced by Simula 67’s
classes – by Per Brinch Hansen, later refined by Tony Hoare

1970’s - Smalltalk introduces object oriented programming (OOP) – by
Alan Kay and Xerox PARC

1985 – Eiffel: OOP + Design-by-contract – by Bertrand Meyer

1985 – C++ : by Bjarne Stroustrup

1995 – Java: by James Gosling and Sun Microsystems … also borrowed
the concept of monitors.

Many more follow: JavaScript, Scala, Kotlin, etc…

(not exam relevent)

Few Historic Notes: Memory Models

94

Java semantics =
+ statement semantics (under single-threaded execution)
+ memory model (how threads interact through memory)

Java’s 1995 memory model is seen as
• first serious attempt for a popular language (C/C++ simply had none)
• too vague

• unclear if code was ever correct
• reduced potential for compile/runtime optimizations
• unexpected behavior in practice, e.g. final fields changing their values

2004: New, improved Java memory model takes effect

2011: C11/C++11 memory model takes effect
• more complex (and powerful) than Java’s
• different levels of how “weak” memory may be: fewer guarantees for developers means more optimization

potential for compilers and hardware

C/C++’s memory model is currently under revision: soundness and performance issues in specific situations

(not exam relevent)

Wait, Notify, NotifyAll

95

96

Producer and consumer run indefinitely

Producer puts items into a shared buffer, consumer takes them out

For simplicity, buffer is unbounded (has no capacity limit); producing
is always possible

But consumption only possible if buffer isn’t empty

Producer-Consumer

shared bufferproducer consumer
producer

adds items

consumer

takes items
...

97

public class UnboundedBuffer {
// Internal implementation could be a standard collection,
// or a manually-maintained array or linked-list

public boolean isEmpty() { ... }
public void add(long value) { ... }
public long remove() { ... }

}

public class Consumer extends Thread {
private final UnboundedBuffer buffer;
...

public void run() {
while (true) {

while (buffer.isEmpty()); // Spin until item available
performLongRunningComputation(buffer.remove());

}
}

}

Producer-Consumer: v1

public class Producer extends Thread {
private final UnboundedBuffer buffer;
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
buffer.add(prime);

}
}

}

public static void main(String[] args) {
UnboundedBuffer buffer = new UnboundedBuffer();

Producer producer = new Producer(buffer);
producer.start();

Consumer[] consumers = new Consumer[3];

for (int i = 0; i < consumers.length; ++i) {
consumers[i] = new Consumer(i, buffer);
consumers[i].start();

}
}

Can you see any problems?

98

Producer-Consumer: v1 – Bad Interleavings
Problem: buffer could be
emptied between
isEmpty() and remove()

public class Producer extends Thread {
private final UnboundedBuffer buffer;
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
buffer.add(prime);

}
}

}

public class Consumer extends Thread {
private final UnboundedBuffer buffer;
...

public void run() {
while (true) {

while (buffer.isEmpty()); // Spin until item available
performLongRunningComputation(buffer.remove());

}
}

}

Problem: buffer operations (add(),
remove()) might be interleaved on
bytecode level à buffer’s internal
state might get corrupted

99

Producer-Consumer: v2
public class Consumer extends Thread {

...

public void run() {
long prime;
while (true) {

synchronize (buffer) {
while (buffer.isEmpty());
prime = buffer.remove();

}
performLongRunningComputation(prime);

}
}

}

public class Producer extends Thread {
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {

buffer.add(prime);
}

}
}

}

Added synchronize(buffer) blocks around operations on buffer to
enforce mutual exclusion in the critical sections

Can you see any new problems?

100

Producer-Consumer: v2 – Deadlock
public class Consumer extends Thread {

...

public void run() {
long prime;
while (true) {

synchronize (buffer) {
while (buffer.isEmpty());
prime = buffer.remove();

}
performLongRunningComputation(prime);

}
}

}

public class Producer extends Thread {
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {

buffer.add(prime);
}

}
}

}

Problem:
1. Consumer locks buffer (synchronize (buffer))
2. Consumer spins on isEmpty(), i.e. waits for producer to add item
3. Producer waits for lock to become available (synchronize (buffer))
4. à Deadlock! Consumer and producer wait for each other; no progress

101

Producer-Consumer: v3
public class Consumer extends Thread {

...

public void run() {
long prime;
while (true) {

synchronize (buffer) {
while (buffer.isEmpty())

buffer.wait();
prime = buffer.remove();

}
performLongRunningComputation(prime);

}
}

}

public class Producer extends Thread {
...

public void run() {
...

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {

buffer.add(prime);
buffer.notifyAll();

}
}

}
}

buffer.wait():
1. Consumer thread goes to sleep

(status NOT RUNNABLE) …
2. … and gives up buffer’s lock

buffer.notifyAll():
1. All threads waiting for

buffer’s lock are woken up
(status RUNNABLE)

Beyond synchronization: Wait, Notify, NotifyAll

wait() releases object lock, thread waits on internal queue
notify() wakes the highest-priority thread closest to front of object’s internal queue
notifyAll() wakes up all waiting threads

• Threads non-deterministically compete for access to object
• May not be fair (low-priority threads may never get access)

May only be called when object is locked (e.g. inside synchronize)

102

103

Why do we need loop and synchronized when we
use wait/notify?

public void consume() {

if (!consumable()) {

wait();

} // release lock and wait for resource

… // have exclusive access to resource, can consume

}

public void produce() {

… // do something to make consumable() return true

notifyAll(); // tell waiting threads to try consuming

// can also call notify() to notify one thread at a time

}

CASE I: Lets consider the case where we do NOT have a loop
(we use an ‘if’ instead) and do NOT have synchronized: see
code below.

For a moment, let’s assume that bad
interleavings on the bytecode level aren’t
already a problem.
A remaining problem is that we can have a
situation where the consumer checks if it can
proceed and consumable() returns false. Right
before calling wait(), produce() now completes
successfully, and consume resumes and goes
to wait(). If produce never runs again,
consume will be blocked forever even though
there is something to consume (i.e.
consumable() would return true).
Note that in Java, if wait() is called without
synchronized on that object, an exception will
be thrown. However, even if it was not
thrown somehow, the above bad scenario can
happen.

105

Why do we need loop and synchronized when we
use wait/notify?

public synchronized void consume() {

if (!consumable()) {

wait();

} // release lock and wait for resource

… // have exclusive access to resource, can consume

}

public synchronized void produce() {

… // do something to make consumable() return true

notifyAll(); // tell waiting threads to try consuming

// can also call notify() to notify one thread at a time

}

CASE II: Let us now consider the case where we have synchronized but still no loop, we have an if.

The problem here is that the consumer can
return from a wait() call for reasons other
than being notified (e.g. due to a thread
interrupt), or because different consumer’s
have different conditions.

If we do not recheck the consumable()
condition upon return from wait, we do not
know why the thread returned from wait().

This is the reason why it is strongly
recommended to use a while loop around the
condition, instead of just an if statement.

class Stack {
LinkedList list = new LinkedList();
public synchronized void push(Object x) {
synchronized(list) {

list.addLast(x); notify();
} }
public synchronized Object pop() {
synchronized(list) {

if(list.size() <= 0) wait();
return list.removeLast();

} }
}

Releases lock on this object but
not lock on list; a push from
another thread will deadlock

Potentially blocking code within a synchronized method can lead to deadlock

Nested Lockout Problem

Preventing the problem: No blocking code/calls in synchronized methods, or provide
some non-synchronized method of the blocking object. No simple solution that works
for all programming situations.

106

Thread state model in Java (repetition)

108

http://pervasive2.morselli.unimo.it/~nicola/courses/IngegneriaDelSoftware/java/J5e_multithreading.html

http://pervasive2.morselli.unimo.it/~nicola/courses/IngegneriaDelSoftware/java/J5e_multithreading.html

Thread States: Summary

Thread is created when an object derived from the Thread class is created. At this point, the thread is not
executable, it is in a new state.

Once the start method is called, the thread becomes eligible for execution by the scheduler.

If the thread calls the wait method in an Object, or calls the join method in another thread object, the
thread becomes not runnable and no longer eligible for execution.

It becomes executable as a result of an associated notify method being called by another thread, or if the
thread with which it has requested a join, becomes terminated.

A thread enters the terminated state, either as a result of the run method exiting (normally, or as a result of
an unhandled exception) or because its destroy method has been called.

In the latter case, the thread is abruptly moved to the terminated state and does not have the opportunity to
execute any finally clauses associated with its execution; it may leave other objects locked.

109

