
Parallel Programming
Parallel Architectures: Parallelism on the Hardware Level

Big Picture (Part I)

2

CPU

OS

JVM (Process A)

Core Core Core Core

OS thread OS thread OS thread OS thread

OS scheduler

JVM scheduler

JVM thread

Process B

Memory Space A Memory Space BPhysical
Memory

JVM thread JVM thread JVM threadL03-05

L06

L07

L08-09

L10-L11

L13

…

…

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Parallel
performance &

algorithms

L12Virtual
threads

Parallel vs. Concurrent (Recap)

In practice, these terms are often used interchangeably

Key concerns:

Parallelism: Use extra resources to solve a problem faster

Concurrency: Correctly and efficiently manage access to shared
resources

Parallel and Concurrent vs. Distributed (Preview)

Common assumption for parallel and concurrent:
• one “system”

Distributed computing:
• Physical separation, administrative separation, different domains, multiple

systems

Reliability / Fault tolerance is a big issue in distributed computing
• Also for parallel computing
• Some of the approaches developed for distributed systems may find their

way into parallel systems.

Motivation for material to come

Get some high-level intuition about:
• Architectural challenges & choices
• Why architects have turned to multicores

Useful for parallel programming
• Due to performance implications (caches, locality)
• Some challenges & choices transfer to software

Today's computers: different appearances …

… similar from the inside

CPU

Memory

Basic principles of today's computers

Based on the Von Neumann architecture (or Princeton arch.):
program data and program instructions in the same memory

Wasn't always like this: see ENIAC, the first general purpose
(1945, Turing-complete) computer; used Harvard arch.

Von Neumann arch. is simpler:
one address space (data and code), one bus

John von Neumann
(1903-1957).

Von Neumann architecture “matches” imperative programming languages (PL) such as Java:
statement executes, then another statement, then a 3rd statement, etc…

Have imperative languages been designed in some sense to ‘’match’’ hardware rather than
human thinking?

10

John Backus (IBM Research), Turing award winner 1977

co-inventor of Fortran, 1st high level imperative programming language
co-inventor BNF (Backus-Naur Form), used to define formal languages

CPU Caches

CPUs grew faster

Memories grew bigger

Accessing memory became slower than accessing
CPU registers

Locality:
• Data locality/locality of reference: related

storage locations (spatial) are often accessed
shortly after each other (temporal)

• (Modularity/Encapsulation: reason locally, e.g.
one thread at a time)

CPUs and Memory Hierarchies

CPU reads/writes values from/to main memory, to compute with them …
… with a hierarchy of memory caches in between
Faster memory is more expensive, hence smaller: L1 is 5x faster than L2, which is 30x
faster than main memory, which is 350x faster than disk

12

Main Memory (32GB)

CPU

L2 cache (32MB)

L1 cache (32KB)

Memory size and speed are approximated but realistic numbers

CPUs and Memory Hierarchies

Multi-core CPUs have caches per core → more complicated hierarchies
13

Main Memory (32GB)

L3 cache

L1

CPU

Core Core CoreCore

L2

L1

L2

L1

L2

L1

L2

18

Code example: 01_cache_effects

How can we make computations faster (on hardware level)?

Parallel Execution

I.e., additional execution units (that are actually used)

3 approaches to apply parallelism to
improve sequential processor performance
• Vectorization: Exposed to developers

• Instruction Level Parallelism (ILP): Inside CPU

• Pipelining: Also internal, but transfers to software

Vectorization

X

Z

X

Y

OP

X0 X1 X2 X3

Y0 Y1 Y2 Y3

Z0 Z1 Z2 Z3

OP OP OP OP Single Instruction (OP),
applied to Multiple Data

=
SIMD

Example: adding vectors X and Y

Step 1: load (mem->registers)
Step 2: Operation
Step 3: store (registers->mem)

Standard way: 1-at-a-time
Vectorized way: N-at-a-time

X X0

X1

X2

X3

Y Yo
Y1
Y2
Y3

24

Code example: 02_gcc_vectorize

3 approaches to apply parallelism to
improve sequential processor performance

• Vectorization

• Instruction Level Parallelism (ILP)

• Pipelining

Modern CPUs exploit
Instruction Level Parallelism (ILP)

ILP: a very simple example

Consider the following program:

1: e = a + b // this and the one below are independent
2: f = c + d // can execute these 2 instructions in parallel
3: m = e * f // this one depends on results above, so has to wait

Independent, if
• different register names
• different memory addresses

28

31

Code example: 03_reordering

Instruction Level Parallelism (ILP)

• Enable ILP: Superscalar CPUs
• Multiple instructions per cycle / multiple functional units

• Increase opportunities for ILP:
• Speculative execution

• Predict results to continue execution
• Out-of-Order (OoO) execution

• Potentially change execution order of instructions
• As long as the programmer observes the sequential program order

• Pipelining à next

3 approaches to apply parallelism to
improve sequential processor performance

• Vectorization

• Instruction Level Parallelism (ILP)

• Pipelining

Washing clothes

Washing clothes – Pipeline

• Additional functional units
• Multiple “inputs” (stream)

I0 I0 I0

I1 I1 I1 I1

1st batch
(Input 0)

2nd batch
(Input 1)

T0 T T2T1 T3

I0

Balanced Pipeline balanced = all steps require same time

Pipeline Characteristics/Metrics

• Throughput = amount of work that can be done by a system in a
given period of time

• Latency = time needed to perform a given computation (e.g., a
CPU instruction)

More exists, e.g. bandwidth (amount of work done in parallel)

38

Throughput

• Throughput = amount of work that can be done by a system in a
given period of time

• In CPUs: # of instructions completed per second
• Larger is better

Throughput bound = !
"#$ %&'()*+*,&-*,'. /*+0./

(ignoring lead-in and lead-out time in pipeline with large number of states; cannot do
better than this)

39

Latency

• Latency = time to perform a computation (e.g., a CPU instruction)
• In CPU: time required to execute a single instructions in the

pipeline
• Lower is better

Latency bound = #stages	�max 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑔𝑒𝑠

• Pipeline latency only constant over time if pipeline balanced: sum
of execution times of each stage

41

Washing clothes – Unbalanced Pipeline

Takes 5 seconds. We use “w” for Washer next.

Takes 10 seconds. We use “d” for Dryer next.

Takes 5 seconds. We use “f” for Folding next.

Takes 10 seconds. We use “c” for Closet next.

Designing a pipeline: 1st Attempt
(lets consider 5 washing loads)

Time (s)
Load #

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Load 1 w d d f c c

Load 2 w _ d d f c c

Load 3 w _ _ d d f c c

Load 4 w _ _ _ d d f c c

Load 5 w _ _ _ _ d d f c c

The total time for all 5 loads is 70 seconds.

This pipeline can work, however it cannot bound the latency of a Load as it keeps
growing. If we want to bound this latency, one approach is to make each stage take
as much time as the longest one, thus balancing it. In our example, the longest
time is 10 seconds, so we can do the following:

Make Pipeline balanced by increasing time for
each stage to match longest stage

Now takes 10 seconds.

Takes 10 seconds, as before.

Now takes 10 seconds.

Takes 10 seconds, as before.

Designing a pipeline: 2nd Attempt

Time (s)
Load #

0 10 20 30 40 50 60 70 80 90 100 110 60 65 70 75 80 85 90

Load 1 w d f c

Load 2 w d f c

Load 3 w d f c

Load 4 w d f c

Load 5 w d f c

This pipeline is a bit wasteful, but the latency is bound at 40 seconds for each Load.
Throughput here is about 1 load / 10 seconds, so about 6 loads / minute.

So now we have the total time for all 5 loads at 80 seconds, higher than before.

Can we somehow get a bound on latency while improving the time/throughput?

Step 1: make the pipeline from 1st attempt a bit more fine-grained:

Like in the 1st attempt, this takes 5 seconds.

Lets have 2 dryers working in a row. The first dryer is referred to as d1
and takes 4 seconds, the second as d2 and takes 6 sec.

Like in the 1st attempt, it takes 5 seconds.

Lets have 2 closets working in a row. The first closet is referred to as c1
and takes 4 seconds, the second as c2 and takes 6 sec.

Step 2: and also, like in the 2nd pipeline, make each stage take as much time
as the longest stage does from Step 1 [this is 6 seconds due to d2 and c2]

It now takes 6 seconds.

Each of d1 and d2 dryers take 6 seconds.

Now takes 6 seconds.

Each of c1 and c2 closets now take 6 seconds.

Designing a pipeline: 3rd Attempt
(lets consider 5 washing loads)

Time (s)
Load #

0 6 12 18 24 30 36 42 48 54 60 110 60 65 70 75 80 85 90

Load 1 w d1 d2 f c1 c2

Load 2 w d1 d2 f c1 c2

Load 3 w d1 d2 f c1 c2

Load 4 w d1 d2 f c1 c2

Load 5 w d1 d2 f c1 c2

The bound on latency for each load is now: 6 * 6 = 36 seconds.

The throughput is approximately: 1 load / 6 seconds = ~ 10 loads / minute.

The total time for all 5 loads is 60 seconds.

Throughput vs. Latency

Throughput optimization may increase the latency: in our 3rd pipeline attempt,
we split the dryers into 2, but it could be that the split of ‘d’ into d1 and d2
leads to higher times for d1 and d2 than 4 and 6.

Pipelining typically adds constant time overhead between individual stages
(synchronization, communication)

Þ Infinitely small pipeline steps not practical
Þ Time it takes to get one complete task through the pipeline may take

longer than with a serial implementation

51

CPU Pipeline (Classical RISC)

Multiple stages (CPU functional units)
• Each instruction takes 5 time units (cycles)
• 1 instr. / cycle (not always possible, though)

Parallelism (multiple hardware functional units)
Leads to faster execution of sequential programs
Actual pipelines potentially much more complicated

Instr. Fetch Instr. Decode Execution Mem. access Writeback

(remaining slides not exam relevant)

CPU Pipeline (Classical RISC)

• Fetches next instruction from memory (CPU’s instruction pointer)
• May prefetch additional instructions (ILP, speculative execution)

Instr. Fetch Instr. Decode Execution Mem. access Writeback

CPU Pipeline (Classical RISC)

Prepares instructions for execution, e.g.
• Decodes bit sequence 01101… into ADD A1 A2
• “Understands” registers denoted by A1/A2

(RISC instructions either transfer data between memory and CPU registers, or compute on registers)

Instr. Decode Execution Mem. access WritebackInstr. Fetch

CPU Pipeline (Classical RISC)

Executes decoded instruction (in CPU, no data transfer yet)

Execution Mem. access WritebackInstr. Fetch Instr. Decode

CPU Pipeline (Classical RISC)

Exchange data between CPU and memory
(if needed, depending on executed instruction)

Mem. access WritebackInstr. Fetch Instr. Decode Execution

CPU Pipeline (Classical RISC)

Updates registers
(if needed, depending on executed instruction; also special registers
such as flags)

WritebackInstr. Fetch Instr. Decode Execution Mem. access

For a long time...

• CPU architects improved sequential execution by exploiting
Moore's law and ILP

• more transistors → used for add. CPU pipeline stages → more
performance

• sequential programs were becoming exponentially faster with
each new CPUs
• Most programmers did not worry about performance
• They waited for the next CPU generation

But architects hit walls

• power (dissipation) wall
• faster CPU → consumes more energy → expensive to cool

• memory wall
• CPUs faster than memory access

• ILP wall
• Limits in inherent program's ILP, complexity

no longer affordable to
increase sequential CPU performance

Multicore processors

• Use transistors to add cores: “externalize” parallelization to
developers …

• … instead of improving sequential performance: “internalize”
parallelization to hardware designers

• Expose parallelism to software
• Implication: programmers need to write parallel programs to take

advantage of new hardware
• Past: parallel programming was performed by select few
• Now (since 2008): ETH teaches parallel programming in the first

year à programmers need to worry about (parallel)
performance

Parallel Architectures

Shared / Distributed memory architectures

Shared memory architectures

• Simultaneous Multithreading (Hyper-Threading)

• Multicores

• Symmetric Multiprocessor System

• Non-Uniform Memory Access

less
resource

sharing at
hardware

level

Simultaneous Multithreading

• Single physical core, but multiple logical/virtual cores (to OS)
• Certain pipelines steps (e.g. decode) duplicated
• Multiple instruction streams (called threads)

• Between ILP and multicore
• ILP: multiple units for one instr. stream
• SMT: multiple units for multiple instr. streams
• Multicore: completely duplicated cores

• Limited parallel performance, but can increase pipeline utilization if CPU
would otherwise have to wait for memory (CPU stalling)

Intel’s Hyper-threading

• First mainstream attempt to expose parallelism
to developers

• Push users to structure their software in
parallel units

• Motivation for developers: potentially gain
performance (not “only” reactivity)

Multicores

• Single chip, multiple cores

• Dual-, quad-, octa-...

• Each core has its own hardware units
• Computations in parallel perform well

• Might share part of the cache hierarchy

AMD Bulldozer (2011)

Between multicore and
simultaneous multithreading
→ hybrid design

• 2x cores integer
• 1x core floating point

(image taken from wikipedia)

• Multiple chips (CPUs) on the same system

• CPUs share main memory (same cost to
access memory for each CPU)

• Communication through main memory

• CPUs still have caches, could have multiple
cores

Symmetric Multi Processing

Non-Uniform Memory Access

• Main memory is distributed

• Accessing local/remote memory is
faster/slower

• Shared memory interface

Distributed Memory

• Clusters, Data Warehouses

• Large-scale machines
• See top500

• Message Passing
• MPI
• …

Shared vs Distributed Memory

• The categorization is about the native programming/ communication
interface the system provides

• Shared: directly access memory locations (x.f) [implicit communication]
• Distributed: send messages (e.g. over network) to access/exchange data [explicit

communcation]

• Shared memory systems still need to exchange messages between
processors (synchronize caches)

• It is possible to program (via suitable abstractions)
• shared memory systems as distributed memory systems
• distributed memory systems as shared memory systems

Summary

• Parallelism is used to improve performance (at all levels)

• Architects cannot improve sequential CPU performance anymore

• “Multicore era” → programmers need to write parallel programs

• Shared vs distributed memory architectures

Further reading material (for the interested)

