Parallel Programming

Parallel Architectures: Parallelism on the Hardware Level



Big Picture (Part I)

Physical Memory Space A Memory Space B EFD
Memory

JVM scheduler

JVM thread JVM thread JVM thread JVM thread

Virtual Parallel

LO7
threads performance &
algorithms L10-L11

OS thread OS thread OS thread OS thread

OS scheduler



Parallel vs. Concurrent (Recap)

In practice, these terms are often used interchangeably
Key concerns:
Parallelism: Use extra resources to solve a problem faster

Concurrency: Correctly and efficiently manage access to shared
resources



Parallel and Concurrent vs. Distributed (Preview)

Common assumption for parallel and concurrent:
 one “system”

Distributed computing:

* Physical separation, administrative separation, different domains, multiple
systems

Reliability / Fault tolerance is a big issue in distributed computing
e Also for parallel computing

 Some of the approaches developed for distributed systems may find their
way into parallel systems.



Motivation for material to come

Get some high-level intuition about:
* Architectural challenges & choices
 Why architects have turned to multicores

Useful for parallel programming
 Due to performance implications (caches, locality)
 Some challenges & choices transfer to software



Today's computers: different appearances ...




... Similar from the inside

2 3-pin Back panel and l/0 connections
Marvell Onboard case fan L
wireless chipset connectors I 1 1 I l 1
-

2x PCI Express slots 3xPCisiots /| 1 AGP slot

Onboard audig Heat sink
integrated circ!
CD-IN
P4 power connector
SPDIF
Inductor (coil)
1394 header
— Capacitors
1394 controllers
Gigabit LAN header
Onboard LED
Osculator
CPU socket lever
SATA RAID
CPU socket
Voltage regulator
Jumpers
SATA controller Northbridge
USB header
4-pin CPU fan
Serial port ‘connection
connector Motherboard
erboal
ATA controller model name
Game / MIDI
header
4x DIMM
memory slots
FWH in PLCC
Super /O
System panel P
connectors
Mounting
screw hole
24-pin motherboard
:;T:Kl;“d secondary :z ::‘:Aﬂom Bower Primary ATA (IDE) connector  “Fjop0u connector
Coln cellCHOS ASUS P5AD2-E Motherboard - http://www.computerhope.com

backup battery



Basic principles of today's computers

Based on the Von Neumann architecture (or Princeton arch.):
program data and program instructions in the same memory

John von Neumann
Wasn't always like this: see ENIAC, the first general purpose (1903-1957).

(1945, Turing-complete) computer; used Harvard arch.

Von Neumann arch. is simpler:
one address space (data and code), one bus




Von Neumann architecture “matches” imperative programming languages (PL) such as Java:
statement executes, then another statement, then a 3™ statement, etc...

Have imperative languages been designed in some sense to “match’”’ hardware rather than
human thinking?

Memory

_ Instruction
Register oointer




Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its
Algebra of Programs

John Backus
IBM Rescarch Laboratory, San Jose

John Backus (IBM Research), Turing award winner 1977

Turing award 1977 : : : : :
P:pe§1978 co-inventor of Fortran, 1t high level imperative programming language

co-inventor BNF (Backus-Naur Form), used to define formal languages

10



CPU Caches

CPUs grew faster

Memories grew bigger

Accessing memory became slower than accessing
CPU registers

Locality:

» Data locality/locality of reference: related
storage locations (spatial) are often accessed
shortly after each other (temporal)

* (Modularity/Encapsulation: reason locally, e.g.
one thread at a time)




CPUs and Memory Hierarchies

L2 cache (32MB)
L1 cache (32KB)

CPU reads/writes values from/to main memory, to compute with them ...
... with a hierarchy of memory caches in between

Faster memory is more expensive, hence smaller: L1 is 5x faster than L2, which is 30x
faster than main memory, which is 350x faster than disk

Memory size and speed are approximated but realistic numbers



CPUs and Memory Hierarchies

Multi-core CPUs have caches per core = more complicated hierarchies



Memory

CPU

Caches are:
» faster than memory

« smaller than memory

« organized in multi-level hierarchies

(e.g., L1, L2, L3)



Examp(E: 1 [ =3 g |

S

¢ x = [

[ :staed va leg
X = floeacl local vasiaSCe

e e Mwatj

leruleg s
- (2 | L

23 X

-




kcg?u A g—j-)[{ii—— -
) ) &2’ & L
\c_?u 2\ A ?ﬂj \

["a(‘_;b(
o hatac, i—j FfO‘/OCo/

4 —
) @h(.' clfuU Ma\-j /of‘-//a’be bdf(:/Pj/
prefefebas =5 gpfiwizeden

= M-Lway Lot S =—7/4A/a: JJ"C



70

\Z 2. acceSS

aa clt ua S O ('ac.L« [i

7T

~2,
N
Y
3
A

_

by



Code example: 01_cache _effects



How can we make computations faster (on hardware level)?

Parallel Execution

l.e., additional execution units (that are actually used)




3 approaches to apply parallelism to
improve sequential processor performance

* Vectorization: Exposed to developers
* [nstruction Level Parallelism (ILP): Inside CPU

* Pipelining: Also internal, but transfers to software



Vectorization

|

X0 X1
YO Y1

Z0

|

Z1

X2

X3

Y3

Z2

|

Z3

Single Instruction (OP),
applied to Multiple Data

SIMD



Example: adding vectors X and Y

Step 1: load (mem->registers)
Step 2: Operation
Step 3: store (registers->mem)

Standard way: 1-at-a-time
Vectorized way: N-at-a-time




Vectorise

a [t -

T 7 : é

b (G { 2besassigle pasalle

= = Supporkeef Laolevas g
¢ (N Leefov:=a iy

<. ) '
fev( ib\(-i=o/- (< Ab; 44 >

CC'\j = C{E'\'] - B(,\‘]

lcap ww e (i 5

AsSEMBLEEL  TSeuDoeDE
3-4. | (4 = LoAD o ,'L l'L.-k%
k-Cv L'\'—\lr‘l: Oi \CA(O,\‘\"::\',') { rz- = nf LeAD o ( L, X%
C.C'\'l-@h& Ly q(‘_'u\-oj + 5{! ‘\-0—1 / (3 — \ADD fa) Vo
C f'l ‘\'/\3 = ..,

C .\‘\-5 - .
5



Code example: 02 _gcc _vectorize



w ae b —
et veel, A dekech CaakR
tos gek plokbev
2. buawd veek,
Twsh. @ P(M(Lrv\
3. Budl veck, .
o(forbuvibic y
@ c/Ct+t ech
Wein fubicsic e L w acdin
cowpiles” Codlr
Adoxs ho{‘ul.
Speci e
J«bd Cou—p';b./ \./’T Cotn i e

6) Java cocdp —) -%7/1’&01-?

1
2....
3

Q—Zhﬁw N

.~

Luntfetm,

wina

el .
‘/:w. AN

Co X \{

3



3 approaches to apply parallelism to
improve sequential processor performance

* Vectorization
* Instruction Level Parallelism (ILP)

* Pipelining



Modern CPUs exploit
Instruction Level Parallelism (ILP)

Instruction stream Parallel execution,
(multiple hardware units)

(sequential program)

ADD 42,
ADD 23,
ADD 54,

ADD 10,
ADD Y, X Appears

ADD W, Z
ADD Z, X
STORE X

as if program
was executed
sequentially




ILP: a very simple example

Consider the following program:

1: e=a+b // this and the one below are independent
2: f=c+d // can execute these 2 instructions in parallel
3:m=e*f // this one depends on results above, so has to wait

Independent, if
e different register names
e different memory addresses



.
defoun e o
Ve NS ()
X
\ )
?’/

U ,0‘“4{&03'3 acref [
Cﬂl’f X’QCL\AEIA lA.u-‘l[S'

(?( (chmp (x =atb [[ J=C+J>/-

2 =><.j

7’([4)[6[\;(. =) [(eUetK o,o/orM'/'ieJ for I1LP
4) Specelehive wocecubic
2) f.(ofG(-UI'b_\J



Code example: 03_reordering



Instruction Level Parallelism (ILP)

 Enable ILP: Superscalar CPUs
* Multiple instructions per cycle / multiple functional units

* |Increase opportunities for ILP:

* Speculative execution
* Predict results to continue execution
e Qut-of-Order (0O00) execution
* Potentially change execution order of instructions
* Aslong as the programmer observes the sequential program order

* Pipelining = next



3 approaches to apply parallelism to
improve sequential processor performance

* Vectorization
* Instruction Level Parallelism (ILP)

* Pipelining



Washing clothes




Washing clothes — Pipeline

1st batch
(Input 9)

Il

e Additional functional units
 Multiple “inputs” (stream)

2nd batch
(Input 1)




Ba Ia nCEd PI penne balanced = all steps require same time

Time

T0 T6 ([T7 | T8 | TS

Inputs

Lead In Full Utilization Lead out



Pipeline Characteristics/Metrics

* Throughput = amount of work that can be done by a system in a
given period of time

* Latency = time needed to perform a given computation (e.g., a
CPU instruction)

More exists, e.g. bandwidth (amount of work done in parallel)



Throughput

* Throughput = amount of work that can be done by a system in a
given period of time

* |n CPUs: # of instructions completed per second
e Larger is better

1

max(computationtime(stages))

Throughput bound =

(ignoring lead-in and lead-out time in pipeline with large number of states; cannot do
better than this)



Latency

e Latency = time to perform a computation (e.g., a CPU instruction)

* |In CPU: time required to execute a single instructions in the
pipeline

e Lower is better

Latency bound = #stages ° max(computationtime (Stages))

* Pipeline latency only constant over time if pipeline balanced: sum
of execution times of each stage



Washing clothes — Unbalanced Pipeline

Takes 5 seconds. We use “w” for Washer next.

Takes 10 seconds. We use “d” for Dryer next.

— Takes 5 seconds. We use “f” for Folding next.

Takes 10 seconds. We use “c” for Closet next.




Designing a pipeline: 15t Attempt
(lets consider 5 washing loads)

Time (s) 10 70
Load #

Load 1 W

Load 2 w o d d f C C

Load 3 w o _ d d f C C

Load 4 wo _ _ d d f C C

Load 5 W d d f C C

The total time for all 5 loads is 70 seconds.

This pipeline can work, however it cannot bound the latency of a Load as it keeps
growing. If we want to bound this latency, one approach is to make each stage take
as much time as the longest one, thus balancing it. In our example, the longest
time is 10 seconds, so we can do the following:



Make Pipeline balanced by increasing time for
each stage to match longest stage

Now takes 10 seconds.

Takes 10 seconds, as before.

— Now takes 10 seconds.

Takes 10 seconds, as before.




Designing a pipeline: 2"9 Attempt

Time (s) 70 100 | 110 70 |75
Load #
f

Load 1 w d C

Load 2 w d f C

Load 3 w d f C

Load 4 w d f C

Load 5 w d f C

This pipeline is a bit wasteful, but the latency is bound at 40 seconds for each Load.
Throughput here is about 1 load / 10 seconds, so about 6 loads / minute.

So now we have the total time for all 5 loads at 80 seconds, higher than before.

Can we somehow get a bound on latency while improving the time/throughput?



Step 1: make the pipeline from 15t attempt a bit more fine-grained:

Like in the 15t attempt, this takes 5 seconds.

= = Lets have 2 dryers working in a row. The first dryer is referred to as d1
and takes 4 seconds, the second as d2 and takes 6 sec.

P Like in the 15t attempt, it takes 5 seconds.

Lets have 2 closets working in a row. The first closet is referred to as c1
and takes 4 seconds, the second as c2 and takes 6 sec.




Step 2: and also, like in the 2" pipeline, make each stage take as much time
as the longest stage does from Step 1 [this is 6 seconds due to d2 and c2]

It now takes 6 seconds.

Each of d1 and d2 dryers take 6 seconds.

Now takes 6 seconds.

" | ] ! Each of c1 and c2 closets now take 6 seconds.



Designing a pipeline: 3" Attempt
(lets consider 5 washing loads)

Time (s) 18 110 70 |75
Load #
f cl «c2

Load 1 w dl d2

Load 2 w dl d2 f cl «c2

Load 3 w dl d2 f cl «c2

Load 4 w dl d2 f cl «c2

Load 5 w dl d2 f cl «c2

The bound on latency for each load is now: 6 * 6 = 36 seconds.
The throughput is approximately: 1 load / 6 seconds = ~ 10 loads / minute.

The total time for all 5 loads is 60 seconds.



Throughput vs. Latency

Throughput optimization may increase the latency: in our 3™ pipeline attempt,
we split the dryers into 2, but it could be that the split of ‘d” into d1 and d2
leads to higher times for d1 and d2 than 4 and 6.

Pipelining typically adds constant time overhead between individual stages
(synchronization, communication)

= Infinitely small pipeline steps not practical

= Time it takes to get one complete task through the pipeline may take
longer than with a serial implementation



CPU Pipeline (ClaSSical R|SC) (remaining slides not exam relevant)

Instr. Fetch Instr. Decode Execution Mem. access Writeback

Multiple stages (CPU functional units)

 Each instruction takes 5 time units (cycles)

 1linstr. / cycle (not always possible, though)

Parallelism (multiple hardware functional units)
Leads to faster execution of sequential programs
Actual pipelines potentially much more complicated




CPU Pipeline (Classical RISC)

Instr. Fetch Instr. Decode Execution Mem. access Writeback

* Fetches next instruction from memory (CPU’s instruction pointer)
* May prefetch additional instructions (ILP, speculative execution)



CPU Pipeline (Classical RISC)

Instr. Fetch

Prepares instructions for execution, e.g.

Instr. Decode

Execution

Mem. access

Writeback

* Decodes bit sequence 01101.. into ADD Al A2

* “Understands” registers denoted by A1/A2

(RISC instructions either transfer data between memory and CPU registers, or compute on registers)




CPU Pipeline (Classical RISC)

Instr. Fetch

Instr. Decode

Executes decoded instruction (in CPU, no data transfer yet)

Execution

Mem. access

Writeback




CPU Pipeline (Classical RISC)

Instr. Fetch

Instr. Decode

Execution

Exchange data between CPU and memory

Mem. access

(if needed, depending on executed instruction)

Writeback




CPU Pipeline (Classical RISC)

Instr. Fetch Instr. Decode Execution Mem. access Writeback

Updates registers
(if needed, depending on executed instruction; also special registers
such as flags)



For a long time...

 CPU architects improved sequential execution by exploiting
Moore's law and ILP

 more transistors - used for add. CPU pipeline stages - more
performance

e sequential programs were becoming exponentially faster with
each new CPUs

* Most programmers did not worry about performance
 They waited for the next CPU generation




But architects hit walls

 power (dissipation) wall
* faster CPU - consumes more energy — expensive to cool

* memory wall
e CPUs faster than memory access

 |LP wall
* Limitsin inherent program's ILP, complexity

no longer affordable to
increase sequential CPU performance




Multicore processors

* Use transistors to add cores: “externalize” parallelization to
developers ...

e ...instead of improving sequential performance: “internalize”
parallelization to hardware designers

* Expose parallelism to software
* Implication: programmers need to write parallel programs to take
advantage of new hardware
e Past: parallel programming was performed by select few

 Now (since 2008): ETH teaches parallel programming in the first
year =2 programmers need to worry about (parallel)
performance



Parallel Architectures



Shared / Distributed memory architectures
Shared Memory Distributed Memory

CPU || CPU CPU CPU CPU CPU

Main fOCUSj Interconnect Network

of course




Shared memory architectures

Simultaneous Multithreading (Hyper-Threading)

Multicores

Symmetric Multiprocessor System

Non-Uniform Memory Access

less
resource
sharing at
hardware

level



Simultaneous Multithreading

» Single physical core, but multiple logical/virtual cores (to OS)
* Certain pipelines steps (e.g. decode) duplicated

 Multiple instruction streams (called threads) —

4

 Between ILP and multicore
e |LP: multiple units for one instr. stream

 SMT: multiple units for multiple instr. streams
 Multicore: completely duplicated cores

* Limited parallel performance, but can increase pipeline utilization if CPU
would otherwise have to wait for memory (CPU stalling)



Intel’s Hyper-threading

First mainstream attempt to expose parallelism
to developers

Push users to structure their software in
parallel units

Motivation for developers: potentially gain
performance (not “only” reactivity)

core




& System Information - O
File Edit View Help

System Summary [tem Value

! - Hardware Resources 0S Name Microsoft Windows 10 Education
 [f-Components Version 10.0.17134 Build 17134

| &-Software Environment Other OS Description Not Available

: OS Manufacturer Microsoft Corporation

| System Name MALTE

System Manufacturer
| System Model

System Type x64-based PC
| System SKU
! Processor Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz, 3401 Mhz, 4 Core(s), 8 Logical Processor(s) i
| BIOS Version/Date Intel Corp. BAP6710H.86A.0072.2011.0927.1425, 27-Sep-11
SMBIOS Version 27
| Embedded Controller Version 255.255
I BIOS Mode Legacy
: BaseBoard Manufacturer Intel Corporation
| BaseBoard Model Not Available
Find what: Find Close Find

[ search selected category only []Search category names only



Multicores

Single chip, multiple cores

Dual-, quad-, octa-...

Each core has its own hardware units
 Computations in parallel perform well

Might share part of the cache hierarchy

core core

[u [ u ]
l

Memory




AMD Bulldozer (2011

Between multicore and

simultaneous multithreading
— hybrid design

* 2Xx cores integer
e 1x core floating point

64kB two-way

L1 instruction cache

Instruction Branch

Fetch

o

Prediction |

32B

Predecode/Pick

Module block
(incl. 2 cores)

Instruction decoder |

Fast
Path

Micro
Decode

Fast
Path

Fast
Path

Micro
Decode

Micro
Decode

Micro
Decode

Fast
Path

Format
Decode

Format
Decode

Format
Decode

Format
Decode

Format
Decode

Format
Decode

Format
Decode

Format
Decode

Dispatch

Resource
Monitor

L
—

Dispatch
Controller

Integer Cluster 1

Scheduler

Int
Regs

Thread
Retirement|
L1 data cache
16kB four-way

Integer Cluster 2

Shared FP 0 Shared FP
Scheduler Reg File

Resource
Monitor

Write Coalescing Cache

Int

Regs
rF A
A A

Scheduler

Thread
Retiremel

Monitor

Resource

L1 data cache
16 kB four-way

11

(image taken from wikipedia)

$| Core Interface Unit

L2

2048kB (shared,Max)

Data Cache




Symmetric Multi Processing

* Multiple chips (CPUs) on the same system

e CPUs share main memory (same cost to
access memory for each CPU)

e Communication through main memory

* CPUs still have caches, could have multiple
cores

CPU

CPU




Non-Uniform Memory Access

 Main memory is distributed

* Accessing local/remote memory is
faster/slower

 Shared memory interface

CPU

CPU

CPU

CPU




Distributed Memory

CPU CPU

e C(Clusters, Data Warehouses CPU

e Large-scale machines
* See top500

* Message Passing
* MPI

Interconnect Network




Shared vs Distributed Memory

* The categorization is about the native programming/ communication
interface the system provides

e Shared: directly access memory locations (x.f) [implicit communication]

« Distributed: send messages (e.g. over network) to access/exchange data [explicit
communcation]

 Shared memory systems still need to exchange messages between
processors (synchronize caches)

* Itis possible to program (via suitable abstractions)

* shared memory systems as distributed memory systems
e distributed memory systems as shared memory systems



Summary

* Parallelism is used to improve performance (at all levels)
* Architects cannot improve sequential CPU performance anymore
 “Multicore era” - programmers need to write parallel programs

* Shared vs distributed memory architectures



Further reading material (for the interested)

ER
GANIZATION
GN

COMPUTER
ARCHITECTURE

A Quantitative Approach




