
Parallel Programming
Basic Concepts in Parallelism



Big Picture (Part I)
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Expressing Parallelism

● Work partitioning
– Split up work of a single program into parallel tasks

● Can be done:
– Explicitly / Manually (task/thread parallelism)

– User explicitly expresses tasks/threads

– Implicit parallelism: 
– Done automatically by  the system (e.g., in data parallelism)
– User expresses an operation and the system does the rest

3



Work Partitioning & Scheduling

● work partitioning
– split up work into parallel tasks/threads
– (done by user)
– A task is a unit of work
– also called: task/thread decomposition

● scheduling
– assign tasks to processors
– (typically done by the system)
– goal: full utilization
(no processor is ever idle)

work
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Task/Thread Granularity

work work

Coarse granularity Fine granularity
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Coarse vs Fine granularity

● Fine granularity:
– more portable
(can be executed in machines with more processors)
– better for scheduling
– but: if scheduling overhead is comparable to a single task → overhead 

dominates 
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Task granularity guidelines

● As small as possible
● but, significantly bigger than scheduling overhead

– system designers strive to make overheads small
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Scalability

An overloaded concept: e.g., how well a system reacts to increased 
load, for example, clients in a server

In parallel programming:
– speedup when we increase processors
– what will happen if processors →
– a program scales linearly → linear speedup

∞
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Parallel Performance

Sequential execution time:  T1  

Execution time Tp on p CPUs
– Tp =  T1 / p (perfection)
– Tp >  T1 / p (performance loss, what normally happens)
– Tp <  T1 / p (sorcery!)
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(parallel) Speedup

(parallel) speedup Sp on p CPUs:

Sp = T1 / Tp
● Sp = p → linear speedup (perfection)
● Sp < p → sub-linear speedup (performance loss)
● Sp > p → super-linear speedup (sorcery!)

● Efficiency: Sp / p
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Absolute versus Relative Speed-up

Relative speedup (Efficiency): 
relative improvement from using P execution units. 
(Baseline: serialization of the parallel algorithm). 

Sometimes there is a better serial algorithm that does not parallelize 
well. 
In these cases it is fairer to use that algorithm for T1 (absolute speedup). 
Using an unnecessarily poor baseline artificially inflates speedup and 
efficiency.
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(parallel) speedup graph example
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why Sp < p?

● Programs may not contain enough parallelism
– e.g., some parts of program might be sequential

● overheads introduced by parallelization
– typically associated with synchronization

● architectural limitations
– e.g., memory contention
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Question:

Parallel program:
– sequential part: 20%
– parallel part: 80% (assume it scales linearly)
– T1 = 10

What is T8 ? What is the speedup S8 ?

Sequential
partParallel part
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Answer:

● 𝑇! = 10

● 𝑇" = 3

● 𝑆" = 𝑇!/𝑇" = 10/3 = 3.33

Sequential
partParallel part

80% 20%
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Amdahl’s Law
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…the effort expended on achieving high parallel processing rates is 
wasted unless it is accompanied by achievements in sequential 
processing rates of very nearly the same magnitude.

— Gene Amdahl



Amdahl’s Law – Ingredients

Execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these 𝑊#$% and 𝑊𝑝𝑎𝑟 respectively
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Amdahl’s Law – Ingredients

Given 𝑃 workers available to do parallelizable work, the times for 
sequential execution and parallel execution are:

𝑇! = 𝑊#$% +𝑊&'%

And this gives a bound on speed-up:

𝑇& ≥ 𝑊#$% +
𝑊&'%
𝑃
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Amdahl’s Law

Plugging these relations into the definition of speedup yields 
Amdahl's Law:

𝑆& ≤
𝑊#$% +𝑊&'%

𝑊#$% +
𝑊&'%
𝑃
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Amdahl’s Law - Corollary

If f is the non-parallelizable serial fractions of the total work, then
the following equalities hold:

𝑊#$% = 𝒇𝑇!,
𝑊&'% = 1 − 𝒇 𝑇!

which gives:

𝑆& ≤
1

𝒇 + 1 − 𝒇𝑃
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𝑆! ≤
𝑊"#$ +𝑊!%$

𝑊"#$ +
𝑊!%$
𝑃





What happens if we have infinite workers?

𝑆( ≤
1
𝑓

28



Amdahl’s Law Illustrated
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Amdahl’s Law Illustrated
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Amdahl’s Law Illustrated
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Amdahl’s Law Illustrated
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Speedup
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Efficiency
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Remarks about Amdahl's Law
● It concerns maximum speedup (Amdahl was an optimist (or pessimist?))

– architectural constraints will make factors worse
• But his law is mostly bad news (as it puts a limit on scalability)

● takeaway: all non-parallel parts of a program (no matter how small) can cause 
problems

• Amdahl’s law shows that efforts required to further reduce the fraction of the 
code that is sequential may pay off in large performance gains.

• Hardware that achieves even a small decrease in the percent of things executed 
sequentially may be considerably more efficient
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Gustafson’s Law

● An alternative (optimistic) view to Amdahl's Law

Observations:
● consider problem size
● run-time, not problem size, is constant
● more processors allows to solve larger problems in the same time
● parallel part of a program scales with the problem size
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Gustafson’s Law
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Gustafson’s Law
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Gustafson’s Law
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Gustafson’s Law
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Gustafson's Law

● 𝑓: sequential part (no speedup)
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𝑊 = 𝑝 1 − 𝑓 𝑇!"## + 𝑓𝑇!"##

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-09766-4_78

𝑆$ = 𝑓 + 𝑝 1 − 𝑓
= 𝑝 − 𝑓(𝑝 − 1)

http://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_78


Amdahl's vs Gustafson's Law

p=4 p=4

Amdahl's Law Gustafson's Law
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Summary

● Parallel speedup

● Amdahl's and Gustafson's law

● Parallelism: task/thread granularity
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