
Parallel Programming
Basic Concepts in Parallelism

Big Picture (Part I)

2

CPU

OS

JVM (Process A)

Core Core Core Core

OS thread OS thread OS thread OS thread

OS scheduler

JVM scheduler

JVM thread

Process B

Memory Space A Memory Space BPhysical
Memory

JVM thread JVM thread JVM threadL03-05

L06

L07

L08-09

L10-L11

L13

…

…

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Parallel
performance &

algorithms

L12Virtual
threads

Expressing Parallelism

● Work partitioning
– Split up work of a single program into parallel tasks

● Can be done:
– Explicitly / Manually (task/thread parallelism)

– User explicitly expresses tasks/threads

– Implicit parallelism:
– Done automatically by the system (e.g., in data parallelism)
– User expresses an operation and the system does the rest

3

Work Partitioning & Scheduling

● work partitioning
– split up work into parallel tasks/threads
– (done by user)
– A task is a unit of work
– also called: task/thread decomposition

● scheduling
– assign tasks to processors
– (typically done by the system)
– goal: full utilization
(no processor is ever idle)

work

Processors

scheduling

work partitioning

4

of chunks
should be larger
than the # of
processors

Task/Thread Granularity

work work

Coarse granularity Fine granularity
5

Coarse vs Fine granularity

● Fine granularity:
– more portable
(can be executed in machines with more processors)
– better for scheduling
– but: if scheduling overhead is comparable to a single task → overhead

dominates

7

Task granularity guidelines

● As small as possible
● but, significantly bigger than scheduling overhead

– system designers strive to make overheads small

8

Scalability

An overloaded concept: e.g., how well a system reacts to increased
load, for example, clients in a server

In parallel programming:
– speedup when we increase processors
– what will happen if processors →
– a program scales linearly → linear speedup

∞

9

Parallel Performance

Sequential execution time: T1

Execution time Tp on p CPUs
– Tp = T1 / p (perfection)
– Tp > T1 / p (performance loss, what normally happens)
– Tp < T1 / p (sorcery!)

10

(parallel) Speedup

(parallel) speedup Sp on p CPUs:

Sp = T1 / Tp
● Sp = p → linear speedup (perfection)
● Sp < p → sub-linear speedup (performance loss)
● Sp > p → super-linear speedup (sorcery!)

● Efficiency: Sp / p

11

Absolute versus Relative Speed-up

Relative speedup (Efficiency):
relative improvement from using P execution units.
(Baseline: serialization of the parallel algorithm).

Sometimes there is a better serial algorithm that does not parallelize
well.
In these cases it is fairer to use that algorithm for T1 (absolute speedup).
Using an unnecessarily poor baseline artificially inflates speedup and
efficiency.

15

(parallel) speedup graph example

16

why Sp < p?

● Programs may not contain enough parallelism
– e.g., some parts of program might be sequential

● overheads introduced by parallelization
– typically associated with synchronization

● architectural limitations
– e.g., memory contention

17

Question:

Parallel program:
– sequential part: 20%
– parallel part: 80% (assume it scales linearly)
– T1 = 10

What is T8 ? What is the speedup S8 ?

Sequential
partParallel part

18

Answer:

● 𝑇! = 10

● 𝑇" = 3

● 𝑆" = 𝑇!/𝑇" = 10/3 = 3.33

Sequential
partParallel part

80% 20%

21

Amdahl’s Law

22

…the effort expended on achieving high parallel processing rates is
wasted unless it is accompanied by achievements in sequential
processing rates of very nearly the same magnitude.

— Gene Amdahl

Amdahl’s Law – Ingredients

Execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these 𝑊#$% and 𝑊𝑝𝑎𝑟 respectively

23

Amdahl’s Law – Ingredients

Given 𝑃 workers available to do parallelizable work, the times for
sequential execution and parallel execution are:

𝑇! = 𝑊#$% +𝑊&'%

And this gives a bound on speed-up:

𝑇& ≥ 𝑊#$% +
𝑊&'%
𝑃

24

Amdahl’s Law

Plugging these relations into the definition of speedup yields
Amdahl's Law:

𝑆& ≤
𝑊#$% +𝑊&'%

𝑊#$% +
𝑊&'%
𝑃

25

Amdahl’s Law - Corollary

If f is the non-parallelizable serial fractions of the total work, then
the following equalities hold:

𝑊#$% = 𝒇𝑇!,
𝑊&'% = 1 − 𝒇 𝑇!

which gives:

𝑆& ≤
1

𝒇 + 1 − 𝒇𝑃

26

𝑆! ≤
𝑊"#$ +𝑊!%$

𝑊"#$ +
𝑊!%$
𝑃

What happens if we have infinite workers?

𝑆(≤
1
𝑓

28

Amdahl’s Law Illustrated

29

Amdahl’s Law Illustrated

30

Amdahl’s Law Illustrated

31

Amdahl’s Law Illustrated

32

Speedup

33

Efficiency

34

Remarks about Amdahl's Law
● It concerns maximum speedup (Amdahl was an optimist (or pessimist?))

– architectural constraints will make factors worse
• But his law is mostly bad news (as it puts a limit on scalability)

● takeaway: all non-parallel parts of a program (no matter how small) can cause
problems

• Amdahl’s law shows that efforts required to further reduce the fraction of the
code that is sequential may pay off in large performance gains.

• Hardware that achieves even a small decrease in the percent of things executed
sequentially may be considerably more efficient

35

Gustafson’s Law

● An alternative (optimistic) view to Amdahl's Law

Observations:
● consider problem size
● run-time, not problem size, is constant
● more processors allows to solve larger problems in the same time
● parallel part of a program scales with the problem size

36

Gustafson’s Law

37

Gustafson’s Law

38

Gustafson’s Law

39

Gustafson’s Law

40

Gustafson's Law

● 𝑓: sequential part (no speedup)

41

𝑊 = 𝑝 1 − 𝑓 𝑇!"## + 𝑓𝑇!"##

http://link.springer.com/referenceworkentry/10.1007%2F978-0-387-09766-4_78

𝑆$ = 𝑓 + 𝑝 1 − 𝑓
= 𝑝 − 𝑓(𝑝 − 1)

http://link.springer.com/referenceworkentry/10.1007/978-0-387-09766-4_78

Amdahl's vs Gustafson's Law

p=4 p=4

Amdahl's Law Gustafson's Law

43

Summary

● Parallel speedup

● Amdahl's and Gustafson's law

● Parallelism: task/thread granularity

44

